Remote sensed and in situ constraints on processes affecting tropical tropospheric ozone

B. Sauvage1, R. V. Martin1,2, A. van Donkelaar1, X. Liu2, K. Chance2, L. Jaegle3, P. I. Palmer4, S. Wu5, and T.-M. Fu5

1Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada
2Atomic and Molecular Physics Division, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, USA
3Department of Atmospheric Sciences, University of Washington, Seattle, Washington, USA
4School of GeoSciences, University of Edinburgh, UK
5Department of Earth and Planetary Sciences and Division of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA

Received: 5 October 2006 – Accepted: 8 November 2006 – Published: 17 November 2006
Correspondence to: B. Sauvage (bsauvage@fizz.phys.dal.ca)
Abstract

We use a global chemical transport model (GEOS-Chem) to evaluate the consistency of satellite measurements of lightning flashes and ozone precursors with in situ measurements of tropical tropospheric ozone. The measurements are tropospheric O$_3$, NO$_2$, and HCHO columns from the GOME satellite instrument, lightning flashes from the OTD and LIS instruments, profiles of O$_3$, CO, and relative humidity from the MOZAIC aircraft program, and profiles of O$_3$ from the SHADOZ ozonesonde network. We interpret these multiple data sources with our model to better understand what controls tropical tropospheric ozone. Tropical tropospheric ozone is mainly affected by lightning and convection in the upper troposphere and by surface emissions in the lower troposphere. Scaling the spatial distribution of lightning in the model to the observed flash counts improves the simulation of O$_3$ in the upper troposphere by 5–20 ppbv versus in situ observations and by 1–4 Dobson Units versus GOME retrievals of tropospheric O$_3$ columns. A lightning source strength of 5±2 Tg N/yr best represents in situ observations from aircraft and ozonesonde. Tropospheric NO$_2$ and HCHO columns from GOME are applied to provide top-down constraints on emission inventories of NO$_x$ (biomass burning and soils) and VOCs (biomass burning). The top-down biomass burning inventory is larger by a factor of 2 for HCHO and alkenes, and by 2.6 for NO$_x$ over northern equatorial Africa. These emissions increase lower tropospheric O$_3$ by 5–20 ppbv, improving the simulation versus aircraft observations, and by 4 Dobson Units versus GOME observations of tropospheric O$_3$ columns. Emission factors in the a posteriori inventory are more consistent with a recent compilation from in situ measurements. The ozone simulation using two different dynamical schemes (GEOS-3 and GEOS-4) is evaluated versus observations; GEOS-4 better represents O$_3$ observations by 5–15 ppbv due to enhanced convective detrainment in the upper troposphere. Heterogeneous uptake of HNO$_3$ on aerosols reduces simulated O$_3$ by 5–7 ppbv, reducing a model bias versus in situ observations over and downwind of deserts. Exclusion of HO$_2$ uptake on aerosols improves O$_3$ by 5 ppbv in biomass burning regions.
1 Introduction

Ozone (O_3) in the tropical troposphere is a major component of atmospheric radiative forcing (de Forster et al., 1997; Lacis et al., 1990) and plays a key role in the global oxidizing power of the atmosphere (Logan et al., 1981). Indeed tropical regions present high ultraviolet radiation and humidity rates that promote hydroxyl (OH) creation through O_3 photolysis (Thompson et al., 1992). Tropical tropospheric O_3 production is limited by nitrogen oxides ($NO_x=NO+NO_2$) emitted from biomass burning (Chatfield and Delany, 1990), biogenic sources, lightning, and fossil fuel combustion (Jacob et al., 1996). The motivation of the present manuscript is to better understand processes affecting tropical tropospheric O_3, using a global chemical and transport model constrained with satellite and in situ data.

Considerable uncertainty remains in the magnitude and distribution of tropical O_3 precursor emissions, such as NO_x (Lee et al., 1997; Holland et al., 1999). Lightning produced NO_x (L-NO_x) are the most uncertain with recent estimates varying by an order magnitude from 1 to 13 Tg N/yr (Nesbitt et al., 2000; Price et al., 1997). Lightning NO_x emissions are largest over the Tropics, in the Inter Tropical Convergence Zone (ITCZ) area (Christian et al., 2003), and are directly emitted into the free troposphere where long lifetimes and efficient O_3 production make the O_3 burden very sensitive to those emissions (Martin et al., 2002a). Surface sources from biomass burning and soils are also highly uncertain (around 3–13 Tg N/yr and 4–21 Tg N/yr respectively, Holland et al., 1999). Biomass burning accounts for half of the global CO emissions (Andreae et al., 1993) and most recently soils have been highlighted to be an underestimated NO_x source (Jaeglé et al., 2004). Bottom-up estimates of these tropical emissions have been confounded by the lack of measurements in this remote region.

The goal of the present study is motivated by 2 objectives: 1/ use a global chemical transport model to evaluate the consistency of satellite measurements of lightning flash counts and O_3 precursors with in situ measurements of tropospheric O_3, and 2/ interpret these multiple data sources with a global chemical transport model to bet-

11467
ter understand what controls tropical tropospheric O_3. Indeed evaluation of satellite
data is limited over the tropics because of lack of in situ measurements especially
for O_3 precursors. Understanding of tropical tropospheric O_3 is also limited by cur-
rent uncertainties on anthropogenic and natural O_3 precursors sources, which can be
readily inferred from satellite observations. Global measurements of nitrogen dioxi-
de (NO_2) atmospheric concentrations from space provide a top-down constraint on
NO_x emissions (Martin et al., 2003a; Jaeglé et al., 2005; Leue et al., 2001). Tropo-
spheric NO_2 columns track surface NO_x emissions on a regional scale since NO_2 is
the dominant form of NO_x in the boundary layer and the NO_x lifetime against oxidation
in the tropical boundary layer is several hours. Similarly, volatile organic compounds
(VOC) emissions, critical for understanding radical chemistry in the troposphere, can
be constrained by formaldehyde (HCHO) columns measured from space (Palmer et al.,
2003). Indeed HCHO is a high-yield product of VOC oxidation with a lifetime of hours
(Palmer et al., 2003). Interpretation of these two tropospheric column molecules is
then fundamental for evaluation of a correct location and intensity of ground sources
of O_3 precursors. In situ measurements from the Measurements of ozone and water
vapor by in-service Airbus aircraft (MOZAIC) program (Marenco et al., 1998; Thouret
et al., 2006) and the Southern Hemisphere Additional Ozonesondes SHADOZ network
(Thompson et al., 2003a, b) provide vertical profile information that is unavailable from
satellite. Few studies have used at the same time the different dataset available over
the Tropics, through in situ measurements and satellite observations, to better under-
stand tropical tropospheric O_3. A global chemical transport model is a useful tool to
relate measurements from these disparate sources.

We provide an overview of the data sets in Sect. 2. A complete description of the
GEOS-Chem global chemical transport model is in Sect. 3.1. Then we introduce the
standard simulation used in this study, based on improvements described in the same
Sect. 3.2. These improvements enable a better understanding of factors controlling
tropospheric tropical O_3. In Sect. 4, we first evaluate the simulation and integration of
satellite information with in situ data and satellite data; then we assess the dynamical
and chemical processes driving tropical tropospheric O$_3$.

2 Presentation and overview of the data

The following measurements are used to improve and evaluate the GEOS-Chem chemical transport model.

2.1 In situ data. Aircraft and ozonesonde measurements

Since 1994, the MOZAIC airborne program provides regular measurements of ozone (the overall precision is ± 2 ppbv+2%) and water vapor at high spatial and temporal resolution (Marenco et al., 1998). Recent details are available at http://mozaic.aero.obs-mip.fr. Additional CO measurements are performed onboard the five instrumented aircraft (Nédélec et al., 2003) since the end of 2000 with an overall precision of ± 5 ppbv, $\pm 5\%$. Table 1 contains characteristics of the MOZAIC sites, with their locations shown in Fig. 1 in blue font. We use 19 of the 30 cities sampled by the MOZAIC program between 30° N–30° S, the most sampled ones, with 15 to 60 flights per month for a site. This corresponds to a total of 6750 flights over all regions.

We analyze the data in monthly average for the 1994–2005 period, except for West Africa where measurements began in 2001 (Sauvage et al., 2005). For each site, we remove data within 15 km of a site, to avoid local pollution that is not representative of the broader region. This criterion removes the lowest 25–50 hPa.

The SHADOZ network complements the MOZAIC coverage as shown in Fig. 1 in black. It provides regular ozonesonde measurements (Thompson et al., 2003a,b), at different tropical stations, at least twice a month. Further details can be found on the SHADOZ Web site: http://croc.gsfc.nasa.gov/shadoz/. We use measurements over the 1998-2004 period.

For clarity and conciseness, we present a subset representative of the broader region indicated by the black rectangle in Fig. 1. We also examined other sites within

11469
each region, but found similar features.

2.2 Space-based observations. The LIS, OTD and GOME instruments

The Optical Transient Detector (OTD) (Boccippio et al, 2000b) was launched in 1995 on the MicroLab-1 satellite. The OTD spatial resolution is 10 km over a field of view of 1300 km × 1300 km. The OTD detects both intra-cloud (IC) and cloud-to-ground (CG) discharges during day and night conditions with a 40–65% detection efficiency. The Lightning Imaging sensor (LIS) was launched in 1997 aboard the Tropical Rainfall Measuring Mission (TRMM) Observatory into a nearly circular orbit inclined 35 degrees with an altitude of 350 km. It detects lightning with storm-scale resolution of 3–6 km (3 at nadir, 6 at limb) over 550 × 550 km. The system is enabled to detect weak lightning and achieve a 90% detection efficiency (Christian et al., 1989).

The Global Ozone Monitoring Experiment (GOME) (Burrows et al., 1999) instrument onboard the European Remote Sensing-2 satellite provided the capability for continuous global monitoring of O$_3$, NO$_2$ and HCHO atmospheric columns through observation of solar backscatter over 1995–2003. GOME observes the atmosphere in the nadir view with a 40 km along track by 320 km across track. Global coverage is achieved every 3 days with an overpass time over the tropics between 10–11 local time (crossing the equator at 1030 local time). In this work we use GOME measurements for the year 2000.

We begin with tropospheric NO$_2$ line-of-sight (slant) columns retrieved from the GOME observations by Martin et al. (2002b) version 2 (Guerova et al., 2006), and HCHO slant columns retrieved by (Chance et al., 2000). Following Palmer et al. (2001) we calculate vertical columns by applying an air mass factor (AMF) algorithm to account for atmospheric scattering. The AMF is computed as the integral of the relative vertical distribution of the trace gas (shape factor), weighted by the altitude dependent scattering weights computed from the LIDORT radiative transfer model (Spurr et al., 2002). Coincident NO$_2$ and HCHO shape factors are from the standard GEOS-Chem simulation described in Sect. 3. The cloud correction uses local cloud information from
GOME (Kurosu et al., 1999) as described in Martin et al. (2002b). The aerosol correction uses aerosol profiles from the GEOS-Chem model following Martin et al. (2003a). We exclude observations in which the fraction of backscattered intensity from clouds exceeds 50% of a GOME scene. The stratospheric NO\(_2\) column is removed using observations over the central Pacific where there is little tropospheric NO\(_2\), and subtracting the corresponding column from the ensemble of GOME scenes for the appropriate latitude and month. The result is corrected for the small amount of tropospheric NO\(_2\) over the Pacific. Variability in the stratospheric NO\(_2\) columns is accounted for using assimilated stratospheric NO\(_2\) columns from Boersma et al. (2004), a minor issue in the Tropics.

Martin et al. (2004) evaluated the GOME retrieval with airborne in situ measurements of NO\(_2\) and HCHO over the Southeastern United States. Uncertainties include absolute errors of \(1 \times 10^{15}\) molecules cm\(^{-2}\) for tropospheric NO\(_2\) (Martin et al., 2002b) and \(4 \times 10^{15}\) molecules cm\(^{-2}\) for HCHO (Chance et al., 2000) from the spectral fitting, the stratospheric NO\(_2\) column and instrument artifacts. Other uncertainties arising from the AMF calculation include random and systematic contributions from surface reflectivity, clouds, aerosols, and the trace gas profile (Martin et al., 2003a; Boersma et al., 2004). The monthly mean uncertainty is \(\pm (5 \times 10^{14}\) molecules cm\(^{-2}\)+30\%) for tropospheric NO\(_2\) and a 30% (Millet et al., 2006) error on the HCHO column retrieval that increases in the presence of biomass burning aerosol (Fu et al., 2006\(^1\)). van Noije et al. (2006) compared three different retrievals of tropospheric NO\(_2\) columns from GOME, and found the greatest degree of consistency in the tropics, well within the error estimates reported here.

For \(\text{O}_3\), we use version 2 of tropospheric \(\text{O}_3\) columns retrieved by Liu et al. (2005). The retrieval uses an optimal estimation method (Rodgers, 2000). Tropospheric ozone

columns (TOC), the sum of tropospheric partial columns, are interpolated with the GEOS-Chem model tropopause used to divide the stratosphere and the troposphere. GOME retrievals and GEOS-Chem simulations are mapped onto a common regular grid.

3 General description of the GEOS-Chem model – original and standard versions

A global 3-D model of tropospheric chemistry provides a quantitative tool to assess the processes affecting tropospheric ozone. We use the GEOS-Chem chemical and transport model (Bey et al., 2001). In the following we first introduce the original model version (7-02-04 http://www-as.harvard.edu/chemistry/trop/geos/index.html). Then we describe the “standard” simulation, focusing on developments to improve the original simulation.

3.1 Original version

The model is driven by assimilated meteorological data for 2000 from the Goddard Earth Observing System (GEOS-4) at the NASA Global Modeling and Assimilation Office (GMAO). The model version has 30 vertical sigma-levels (surface to 0.1 hPa), and a horizontal resolution of 1° latitude by 1.25° longitude, which can be degraded to 2° latitude by 2.5° longitude and 4° latitude by 5° longitude for computational expediency. We use the latter two resolutions in the study. The data have 6-hour temporal resolution (3-hour for surface variables and mixing depth). We present sensitivity simulations using GEOS-3 as discussed in Sect. 4.4.

The GEOS-Chem model includes a detailed simulation of tropospheric O$_3$-NO$_x$-hydrocarbon chemistry as well as of aerosols and their precursors, using 41 tracers, around 90 species, and 300 reactions. The model presently includes sulfate, nitrate, ammonium, black and organic carbon, mineral dust and sea salt (Park et al., 2004, 11472).
The aerosol and gaseous simulations are coupled through formation of sulfate and nitrate, HNO$_3$(g)/NO$_3^-$ partitioning of total inorganic nitrate, heterogeneous chemistry on aerosols (Jacob, 2000; Evans et al., 2005), and aerosol effects on photolysis rates (Martin et al., 2003b). The model has been previously applied to interpret satellite observations of HCHO (Palmer et al., 2001, 2003, 2006; Shim et al., 2005; Millet et al., 2006), NO$_2$ (Martin et al., 2002b, 2003a; Jaeglé et al., 2004, 2005; Guerova et al., 2006), and tropospheric O$_3$ (Martin et al., 2002a; Chandra et al., 2002, 2003; Kim et al., 2005; Liu et al., 2006). However, none of these studies has examined all three species together.

Table 2 contains annual global NO$_x$ emissions used in the model. Soil NO$_x$ emissions are computed using a modified version of the algorithm of Yienger and Levy (1995) with the canopy reduction factors described in Wang et al. (1998). The biomass burning inventory is interannually varying and is based on satellite observations of fires as derived by Duncan et al. (2003). Emissions of lightning NO$_x$ are linked to deep convection following the parameterization of Price et al. (1992) with vertical profiles from Pickering et al. (1998) as implemented by Wang et al. (1998).

3.2 Standard (improved) version

In the following section we present several developments which are necessary for accurate understanding and evaluation of the processes affecting tropical tropospheric O$_3$ described in Sect. 4. These improvements deal with emissions and heterogeneous chemistry that are included in our standard simulation. GOME observations of NO$_2$ and HCHO are applied to constrain surface emissions of NO$_x$ and VOCs. Lightning flash counts are used to better represent its spatial distribution. Heterogeneous chemistry on aerosols is updated to reflect recent measurements.

3.2.1 Soil NO\textsubscript{x} emissions

Strong signals from soil NO\textsubscript{x} emissions are apparent in satellite observations of tropospheric NO\textsubscript{2} columns (Bertram et al., 2005). We use the a posteriori NO\textsubscript{x} emission inventory derived from GOME observations of NO\textsubscript{2} columns by Jaeglé et al. (2005) for the year 2000. GOME tropospheric NO\textsubscript{2} column observations were related to surface NO\textsubscript{x} emissions via inverse modeling with GEOS-Chem model. They used the spatio-temporal distribution of remotely sensed fires and a priori inventory information on the locations of regions dominated by fuel combustion to partition among the different NO\textsubscript{x} sources. The resulting annual tropical emissions are 35% higher in the a posteriori inventory (Table 2) and account for 22% of tropical NO\textsubscript{x} emissions. During March-April-May (MAM) and June-July-August (JJA), emissions increase by a factor of 3 over tropical ecosystems of Africa, reflecting a better constraint on NO\textsubscript{x} emissions associated with the monsoon (Jaeglé et al., 2004). Emissions increase by 20% during the rainy season over South America, and the agricultural region of North India.

3.2.2 Biomass burning emissions of NO\textsubscript{x} and VOCs

We apply tropospheric NO\textsubscript{2} and HCHO columns retrieved from GOME to provide top-down constraints on regional biomass burning emissions of NO\textsubscript{x} and reactive VOCs. Richter et al. (2002) found a strong signal from biomass burning in the GOME NO\textsubscript{2} columns. Our inversion for biomass burning NO\textsubscript{x} is conducted after application of the a posteriori soil NO\textsubscript{x} inventory from Jaeglé et al. (2005). The NO\textsubscript{x} inversion accounts for the local NO\textsubscript{2}/NO ratio and the local NO\textsubscript{x} lifetime following Martin et al. (2003a). The inversion is applied here at regional scale in the form of NO\textsubscript{x} emission factors that should be applicable to simulations for other years.

Palmer et al. (2003) showed that HCHO columns over North America are closely related to isoprene emissions, and exploited that relationship to infer continental isoprene emissions from the GOME HCHO columns. Meyer-Arnék et al. (2005) found signals in the GOME HCHO columns from both biogenic and pyrogenic sources over...
Africa. Shim et al. (2005) extended the approach of Palmer et al. (2003) to infer global isoprene emissions, but found that large increases in biomass burning emissions were necessary to reconcile the GOME observations. More recently, Fu et al. (2006) found over East and South East Asia a biomass burning source derived from GOME almost 5 times the estimate of a bottom-up emission inventory. We similarly find over the tropics an underestimate of more than a factor two in the GEOS-Chem HCHO columns during biomass burning. Neither scaling of the current GEIA isoprene emission inventory, nor application of the recently developed MEGAN inventory (Guenther et al., 2006), was able to account for the discrepancy without introducing biases outside of the biomass burning season. A recent compilation by Andreae (2005, personal communication) of in situ measurements of emission factors contain values that are higher than those used in GEOS-Chem for HCHO and alkenes. We tentatively attribute the regional difference between GOME and GEOS-Chem HCHO columns to biomass burning emissions of alkenes and HCHO, and calculate a tropical mean emission ratio for reactive VOCs emissions that is a factor of 2 larger for both species.

Figure 2 shows the seasonal NO\textsubscript{x} biomass burning emissions arising from the a priori (left) and top-down (right) inventories. Annual tropical NO\textsubscript{x} emissions are 30% higher in the top-down versus the a priori (Table 2). NO\textsubscript{x} emissions from Africa and eastern regions increase by 30%, whereas they decrease from South America by 30%. The largest absolute difference occurs in DJF over Northern Africa with top-down emissions of 0.96 Tg N /season compared to 0.41 Tg N /season, likely reflecting emission factors that were too low in the original simulation. There is also a 15% increase in emissions from Central/South Africa during JJA to 1.06 Tg N.

3.2.3 Lightning NO\textsubscript{x} emissions

We use space-based observations of lightning flash counts from the seasonally varying climatological OTD/LIS (Boccippio et al., 2000a, 2001) dataset (High Resolution Annual Climatology – HRAC – data) to constrain GEOS-Chem lightning flashes, by applying a
local seasonal rescaling factor, R:

$$R = \frac{\left(\frac{\text{Local}_{\text{LIS/OTD}}}{\text{Global}_{\text{LIS/OTD}}} \right)_{\text{season}}}{\left(\frac{\text{Local}_{\text{GEOS-Chem}}}{\text{Global}_{\text{GEOS-Chem}}} \right)_{\text{season}}}$$

(1)

This approach is motivated by the seasonal latitudinal variation in tropical lightning activity that is not well represented by the GEOS fields. The scaling factor is applied to a 10-year average of the simulated and observed flashes, such that inter-annual variability of the lightning emissions is allowed. The climatology is a $0.5^\circ \times 0.5^\circ$ gridded composite of total intra cloud – cloud to ground (IC+CG) lightning bulk production over 1995–2004. Lowpass temporal filtering of 110 days for the combined LIS/OTD is applied. Observations in the LIS/OTD v1.0 reanalysis have been corrected by the LIS Science Team for flash detection efficiency, applied as a function of sensor, viewing time, date of mission, and (for OTD) geographic location. For the entire dataset, these corrections correspond to average flash detection efficiencies of 47% (OTD) and 82% (LIS) (Boccippio et al., 2002; Christian et al., 2003). The adjustments derive from a combination of laboratory calibration, ground validation, and cross-normalization between OTD and LIS. The uncertainty in these corrections is ±10%.

Figure 3 shows the seasonal average lightning NO$_x$ emissions (L-NO$_x$) during DJF and JJA, for the original (left), and standard (right) simulations. The LIS/OTD seasonal climatologies and the improved L-NO$_x$ emissions in GEOS-Chem exhibit higher spatio-temporal correlations ($r^2=0.97–0.98$) than in the original simulation ($r^2=0.4–0.57$). Annual emissions are unchanged (Table 2). However substantial regional differences are inferred by the local rescaling. Emissions decrease over Africa by 16%, over South America by 42%, and increase from the Eastern tropics by 55% (mostly over Australia). During JJA, continental L-NO$_x$ emissions decrease south of the ITCZ by 50% whereas they increase by 45% over North Africa. During DJF continental emissions
decrease in general by around 50%. Oceanic emissions increase by a factor of 2.9.

3.2.4 Heterogeneous chemistry

The original simulation used a reaction probability γ of HO$_2$ on all aerosols equal to 0.2. Laboratory measurements by Thornton et al. (2005) demonstrated that HO$_2$ uptake on aerosols is negligible at temperatures warmer than 270 K in the absence of Cu or Fe ions that would catalyze the reaction. Field measurements of biomass burning aerosol (Yamasoe et al., 2000) found insufficient Cu or Fe ions to catalyze that reaction. We exclude this reaction for biomass burning aerosols.

Following Bauer et al. (2004) we implement HNO$_3$ uptake on mineral aerosols in the standard simulation using γ(HNO$_3$)=0.1. Laboratory experiments have shown HNO$_3$ uptake on mineral dust is promoted by its alkalinity (Goodman et al., 2000; Grassian, 2000; Underwood et al., 2001; Michel et al., 2002; Hanisch and Crowley, 2003). Field measurements also support HNO$_3$ uptake (Tabazadeh et al., 1998; Thakur et al., 1999). Rapid sedimentation of nitrate on mineral dust could reduce recycling of NO$_x$ from HNO$_3$, and in turn O$_3$, with lower tropospheric O$_3$ decreases of 8–30% over and downwind of deserts (Bian et al., 2003; Bauer et al., 2004; Umann et al., 2005; Liao et al., 2005).

There have been few comparisons with in situ measurements to evaluate these heterogeneous processes. In Sect. 4.3 we perform sensitivity studies to evaluate the uptake of HO$_2$ on biomass burning aerosols and uptake of HNO$_3$ on mineral dust.

4 Assessment of the dynamical and chemical processes affecting tropospheric tropical ozone

Of particular interest is 1/ the ability of the model to accurately simulate the distribution of tropospheric ozone and its precursors in order to 2/ accurately understand what controls tropical tropospheric ozone. We first give an overview of the distribution of
tropospheric ozone columns. We then discuss the processes affecting its distribution in the context of the MOZAIC and SHADOZ vertical O₃ profiles, as well as the GOME tropospheric NO₂ and HCHO columns.

Figure 4 shows seasonal TOC from GOME observations (left), our standard simulation (middle). We exclude retrievals with cloud fraction exceeding 0.7 of a GOME scene. The simulated and retrieved O₃ columns exhibit similar spatio-temporal variation over the Tropics (monthly r²=0.91–0.98; seasonal bias = 1.4–4.4 DU). Both show enhancements in the downwelling branches of the Hadley circulation, smaller values in the Tropics, and a zonal wave-one pattern, with maximum TOC between 40W-60E. The original and retrieved TOC are less consistent (monthly r²=0.67–0.87) although the tropical mean bias remains unchanged.

The right panels show large regional changes of 5 DU in the simulated O₃. In the following sections we focus on the consequences of our developments on the comparison of the model versus observations.

4.1 Sensitivity to lightning

Here we discuss how the local rescaling of lightning flashes affects the comparison with O₃ observations. Then we discuss the sensitivity of the simulation to lightning intensity and to lightning vertical distribution.

4.1.1 Satellite constraint. Lightning rescaling

The local rescaling of lightning flashes to match OTD/LIS measurements yields substantial improvement in the modeled TOC as demonstrated below. We compare the original and standard simulations at MOZAIC and SHADOZ sites that exhibit the largest sensitivity to lightning. These sites are generally in subsidence regions downwind of lightning activity, allowing for O₃ production during transport. Figure 5 shows the seasonal O₃ vertical profiles for the in situ measurements (MOZAIC, SHADOZ, black lines); original (blue line) simulation, and the standard simulation (red line). Both simulations
are generally within one standard deviation of the in situ measurements. However improvements due to the lightning rescaling are apparent in the standard simulation in the middle and upper troposphere.

The first panel of Fig. 5 show continental sites with O$_3$ concentrations of 40–50 ppbv throughout the year in the middle and upper troposphere, sustained by L-NO$_x$ emissions in the South American Convergence Zone (SACZ) or the ITCZ. The lightning rescaling reduces L-NO$_x$ emissions in South America (Fig. 3) decreasing in upper tropospheric O$_3$ during DJF and MAM by 5–10 ppbv over Sao Paolo and by 10–15 ppbv over Caracas. The Middle East is under the influence of an anticyclonic circulation in the middle and upper troposphere (Hoskins and Rodwell, 1995) and of easterly flow through the Tropical Easterly jet in the upper troposphere, which brings lightning outflow during the Indian monsoon (Li et al., 2001), mainly during JJA as depicted by the easterly ozone flux (Fig. 4). Reductions in Indian L-NO$_x$ emissions improve the simulation at Dubai by 5–10 ppbv in JJA and SON. Bangkok is influenced by lightning mostly during the dry season from November to May when the circulation is convergent. Lightning rescaling improves the O$_3$ simulation by 5–15 ppbv. Other continental sites exhibit less sensitivity due to their proximity to L-NO$_x$ emissions.

The effect of local lightning rescaling is also apparent in the TOC. Table 3 contains the TOC for the standard simulation, the in situ measurements, and the GOME retrievals. Lightning rescaling has a considerable effect on O$_3$ over South America (Fig. 4, right panel) reducing the model bias versus the in situ measurements to within 2 DU over Caracas and within 4 DU over Sao Paolo, compared to more than 8 DU difference in the original simulation. The simulation is closer to in situ TOC than to GOME observations over both regions. Over the Middle East lightning rescaling improves the simulated TOC by 3–5 DU to within 2–5 DU. The remaining bias at Dubai arises from the O$_3$ overestimate below 600 hPa (Fig. 5). GOME measurements are within 2 DU of the MOZAIC TOC except during DJF when there is a 5 DU underestimate that probably originates from the lower troposphere as noticed by Liu et al. (2006). Over South East Asia there is a positive bias of GEOS-Chem TOC compared to GOME, between 4 to
7 DU. The lightning rescaling clearly yields better modeled TOC versus MOZAIC to within 1–4 DU, versus 7 DU for the original simulation.

The second panel of Fig. 5 show that lightning rescaling also yields improvements over oceanic sites. Lightning rescaling increases emissions over the South Pacific Convergence Zone (Fig. 3) especially in DJF and SON resulting in a 5–10 ppbv increase in O₃ in the middle and upper troposphere (Samoa, Fig. 5). Over Reunion Island there is improvement in DJF due to a 7 ppbv increase in O₃. The Atlantic, Ascension and Natal depict similar O₃ vertical profiles near the maximum of the zonal-wave one, with enhanced mid-upper tropospheric O₃ throughout the year. Lightning is a significant source of this enhancement (Thompson et al., 2000; Martin et al., 2002a; Sauvage et al., 2006b). The main improvements are in DJF and MAM with O₃ increases of 7–10 ppbv from more lightning over Central Africa in the standard simulation (Fig. 3). During SON, both simulations in the middle troposphere and upper troposphere underestimate O₃ by 10 to 20 ppbv, but O₃ remains enhanced.

The TOC over oceans are generally consistent between the standard simulation, GOME and in situ measurements, within 5 DU everywhere. Over Ascension the standard simulation is closer than the original one to in situ measurements by 1–3 DU in DJF and MAM. However there is still an underestimate of 4 DU in SON. Better agreement is found over the Pacific and Indian Ocean, within 1–3 DU compared to in situ measurements, and within 2–5 DU versus GOME TOC.

Finally the seasonal cycle of the modeled TOC is reproduced for all sites, except over Caracas. The last line of Table 3 shows that for the TOC averaged for the tropical sites, the three datasets are within 2 DU bias and within 1σ of the measurements. The seasonal cycle is well reproduced, with maximum in SON, minimum in MAM, as depicted by the southern hemispheric zonal-wave one pattern (Thompson et al., 2003b; Sauvage et al., 2006a).

4.1.2 Lightning intensity and distribution

a. Sensitivity to intensity

In order to evaluate the lightning NO\textsubscript{x} source of 5 Tg N/yr, we conduct sensitivity studies based on the standard simulation that vary the intensity over 3 to 7 Tg N yr-1.

Figure 5 shows the sensitivity of the seasonal O\textsubscript{3} vertical profiles to L-NO\textsubscript{x} intensity, using either 3 or 7 Tg N/yr (dashed green lines). Lower concentrations reflect the simulation with 3 Tg N/yr. In general O\textsubscript{3} is perturbed throughout the entire troposphere by 5–10 ppbv. The simulation remains nearly within one standard deviation of measurements. However 3 Tg N/yr is generally too low. In contrast 7 Tg N/yr is generally too high. The largest sensitivity to intensity is found over the Atlantic region where O\textsubscript{3} concentrations change by 10–20 ppbv. The simulation with 7 Tg N/yr reduces the model bias versus in situ measurements in SON at Ascension (Fig. 5), but creates a bias during other seasons, and at most other sites. Emissions of 9.7 Tg N/yr would be necessary to achieve in situ O\textsubscript{3} concentrations in SON at Ascension. Another process is likely responsible for the bias.

In summary, 5±2 Tg N yr-1 represents the plausible range of lightning NO\textsubscript{x} emissions. Outside of that range, simulated O\textsubscript{3} becomes increasingly inconsistent with in situ measurements. This is obviously dependent of the accuracy of all surface sources. Martin et al. (2006)4 found a similar magnitude of 6±2 Tg N yr-1 best agreed with space-based measurements of NO\textsubscript{2}, O\textsubscript{3} and HNO\textsubscript{3}.

b. Sensitivity to distribution

The vertical distribution of lightning emissions is also important (Labrador et al.,

Most previous studies assumed much higher NO\textsubscript{x} emissions per flash for cloud to ground (CG) flashes than intra-cloud (IC) flashes (Price et al., 1997; Pickering et al., 1998). However, recent studies provide evidence that the IC/CG ratio may be between 0.5–1.0 (DeCaria et al., 2000; Fehr et al., 2004). The implications have not yet been evaluated versus tropical in situ O\textsubscript{3} data. We explore the implications of increasing the IC/CG ratio to 0.75, instead of 0.1 in our standard simulation. The additional NO\textsubscript{x} from intra-cloud flashes is distributed within the cloud anvil.

The simulation using enhanced IC emissions is shown in Fig. 5 (solid green line). Generally, this lightning parameterization overestimates middle-upper tropospheric O\textsubscript{3}, but remains within one standard deviation of measurements. The effects vary with season and location, with for example negligible incidence at Caracas, a negative bias at Bangkok, and a large impact at Ascension. Over Ascension, O\textsubscript{3} concentrations are biased high in DJF and MAM by 10–15 ppbv, but the model bias in SON is eliminated suggesting a seasonal variation in the IC/CG ratio. In summary, a uniform increase in the IC/CG ratio is unsupported by the in situ O\textsubscript{3} profiles, but it could be higher for particular geographical regions.

4.2 Sensitivity to biomass burning and soils

In this section we address the following questions: What are the consequences of the modifications to surface emissions of NO\textsubscript{x} and VOCs on O\textsubscript{3} distributions? Do these changes improve the simulated tropospheric O\textsubscript{3} compared to in situ measurements?

4.2.1 Satellite constraint

Figure 6 shows seasonal average GOME (left) and GEOS-Chem (middle: standard; right: original) tropospheric columns of NO\textsubscript{2}, during 2000. The GOME and GEOS-Chem NO\textsubscript{2} standard columns are highly consistent over the Tropics during the 4 seasons. The coefficient of determination of the retrieved columns versus the standard simulation during the 4 seasons ($r^2=0.86–0.91$, $p<0.0001$) is considerably higher than...
versus the original simulation, which are in the range of $r^2 = 0.6-0.8$. The annual mean absolute difference between the standard simulation and retrieved columns over the Tropics is 0.2×10^{15} molecules cm$^{-2}$ compared with 0.7×10^{15} molecules cm$^{-2}$ in the original simulation. The standard simulation better reproduces seasonal NO$_2$ maxima observed by GOME. For instance over Northern Africa during DJF and MAM, top down biomass burning NO$_x$ emissions enhance lower tropospheric NO$_2$ concentrations by a factor of 2.6, reducing a regional model bias. Over Central Africa, the regional bias in JJA and SON is reduced, however a local bias remains during JJA reflecting the regional emission factor applied here. Over India NO$_2$ tropospheric column are reduced by a factor 4 during the biomass burning season of MAM, better representing GOME columns. During May to July the a posteriori soil NO$_x$ emission inventory better reproduces the NO$_2$ column enhancement over the Sahel.

Figure 7 shows seasonal average GOME (left) and GEOS-Chem (middle standard; right original) tropospheric columns of HCHO during 2000. The spatio-temporal correlation is quite high with $r^2 = 0.7-0.9$ compared with 0.6–0.75 respectively versus the original simulation. The mean absolute difference between GOME and the standard simulation is 0.06×10^{16} molecules cm$^{-2}$, versus 0.2×10^{16} molecules cm$^{-2}$ with original simulation. Previous regional differences of more than a factor of 2 are reduced during the biomass burning season to 20% in the standard simulation over Northern Africa in DJF-MAM and to 35% over Central Africa and South America in JJA-SON. The remaining model biases likely reflect isoprene emissions.

4.2.2 Evaluation with in situ data

Figure 8 shows O$_3$ profiles at MOZAIC sites that have the greatest sensitivity to surface emissions. West equatorial (Lagos, Abidjan) and Central Africa (Brazzaville) sites exhibit O$_3$ enhancements related to seasonal biomass burning fires (Fig. 8) driven by the lower tropospheric Harmattan and trade flow. The new CO measurements confirm the sensitivity of those sites to biomass burning (as shown in Fig. 9) and as noticed
by Edwards et al. (2003) in their analysis of CO retrieval from the MOPITT satellite instrument. During DJF, \(\text{O}_3 \) enhancements confined to the lower troposphere over West Africa come with the highest tropical CO concentrations measured by the MOZAIC program, with 200–500 ppbv at Lagos below 700 hPa (Fig. 9) and 200–400 ppbv below 500 hPa at Douala (not shown). High CO concentrations originating from biomass burning fires over Central Africa are measured near 600–700 hPa over Lagos and Douala during JJA. Trade winds allow this CO transport and the associated \(\text{O}_3 \) enhancement (Sauvage et al., 2005). Aghedo et al. (2006) found also high influence of biomass burning on surface \(\text{O}_3 \) near 1000 hPa. A persistent CO enhancement that may reflect local pollution is observed at Delhi, with more than 150 ppbv below 800 hPa. No CO measurements are performed south of the ITCZ.

As a result of the GOME constraints on surface emissions, the simulation better reproduces lower tropospheric \(\text{O}_3 \). During DJF over Lagos and Abidjan, the intensity of the lower tropospheric \(\text{O}_3 \) enhancement is now well reproduced mostly because of the higher \(\text{NO}_x \) emission factors that increase \(\text{O}_3 \) by 15–20 ppbv (+45%) compared to the original version. Five ppbv of the 15–20 ppbv increase are attributed to the additional biomass burning VOCs. Moreover, Brazzaville shows an \(\text{O}_3 \) enhancement in the lower troposphere through inter-hemispheric transport (+15/20 ppbv (+55%) compared to the original version).

During JJA over Brazzaville the intensity of the \(\text{O}_3 \) maximum is also better reproduced (+10 ppbv/+14%), as a consequence of both the higher \(\text{NO}_x \) and VOC emissions. These emissions also yield a better reproduction of the \(\text{O}_3 \) enhancement at Lagos through inter-hemispheric transport. The enhancement near 600–700 hPa is also increased by 7 ppbv due to the a posteriori soil \(\text{NO}_x \) emissions.

There are improvements associated with biomass burning emissions over the South America Cerrado in SON, and over India in MAM. \(\text{O}_3 \) decreases in the lower troposphere of Bombay by around 5 to 7 ppbv (8–10%). However \(\text{O}_3 \) is still too high in the lower troposphere, perhaps reflecting a combination of local sea breeze, missing halogen chemistry (Dickerson et al., 1999; Stehr et al., 2002), or inefficient \(\text{O}_3 \) production in
The top-down emissions also affect the TOC (Table 3). Over the Gulf of Guinea (Lagos) the standard simulation is within 1 DU of MOZAIC versus 6 DU for the original simulation. Over Central Africa the standard simulation is within 2 DU versus MOZAIC during DJF compared to 6 DU in the original simulation. The seasonal cycle is well reproduced, with maximum during JJA and minimum during MAM over Central Africa, maximum during DJF and minimum during JJA over West Africa. Over Windhoek the bias is within 1–2 DU for all the seasons. Over India modeled TOC is within 1–5 DU of MOZAIC during all seasons except JJA, reflecting the lower tropospheric bias.

Comparisons between GOME and GEOS-Chem TOC also show substantial improvements. Most of the differences between GOME and the standard GEOS-Chem TOC are within 3 DU. The largest differences appear in the northern tropics, with a negative bias of 5 to 8 DU between GOME and GEOS-Chem. Table 3 shows that the GOME TOC underestimate MOZAIC in this region, perhaps reflecting the low sensitivity of GOME to lower tropospheric O\(_3\), especially in the presence of aerosols from biomass burning or mineral dust. A retrieval of tropospheric O\(_3\) using the scan-angle method better captures lower tropospheric O\(_3\) (Kim et al., 2005). Instrument sensitivity may also play a role over Central Africa during JJA, when GOME TOC biased by 10 DU compared to MOZAIC at Brazzaville.

4.2.3 Biomass burning emission factors

We compare the standard simulation with a sensitivity simulation using a recent compilation of biomass burning emission factors (EF) from Andreae (Andreae and Merlet, 2001, personal communication, 2005), that were compiled from in situ measurements. The main differences versus the original simulation are a 23% lower NO\(_x\) EF for savannas/grassland and a 15% higher NO\(_x\) EF for tropical forest fires. The new EF for savanna and grassland also feature 100% higher values for HCHO and 200% for alkenes.

The green line in Fig. 8 shows the O\(_3\) simulation using the in-situ-based emission
factors. The in-situ-based emission factors reduce the original bias versus O$_3$ over West Africa but still yield insufficient O$_3$ in contrast with the top-down emissions. Over Central and South Africa, in-situ-based emission factors increase O$_3$ by 10–15 ppbv in JJA with respect to the original simulation, 5 ppbv more than the standard simulation. During DJF O$_3$ is 20 ppbv higher than the standard simulation. Over India during the biomass burning season, the new emission factors have no effect on the lower tropospheric O$_3$ distribution, in contrast with the space-based constraint, which decreases O$_3$ by 5 ppbv yielding a simulation more consistent with results to in situ measurements. The amount of biomass burned may be responsible for the bias in the original simulation as evident from a similar bias in CO (Heald et al., 2003).

In summary the recent compilation has similarities with the top-down emissions, but less successfully reproduces O$_3$ observations. We go on to infer regional NO$_x$ and VOC emission factors from the top-down inventory over Africa and the bottom-up estimate of biomass burned. The resulting emission factors for savanna/grassland fires are 2.9 gNO/kg over North Africa, 4.3 gNO/kg over Central/South Africa and 3.1 gNO/kg over the South American Cerrado. This leads to 3.4 gNO/kg mean for savanna/grassland, at the upper limit of the recommendation from Andreae (Andreae and Merlet, 2001, Andreae, personal communication, 2005) with 2.3±1.1 gNO/kg. For tropical forest fires the top-down EF are 2.3 gNO/kg over North Africa, 2.6 gNO/kg over Central/South Africa and 2.0 gNO/kg over South America leading to 2.3 gNO/kg mean versus 1.8±0.7 from Andreae (Andreae and Merlet, 2001, Andreae, personal communication, 2005).

The resulting emission factors for savanna/grassland fires are 0.96 g/kg for alkenes, and 0.7 g/kg for HCHO close to the recommendation by Andreae (Andreae and Merlet, 2001, Andreae, personal communication, 2005) with 1.1±0.6 g/kg and 0.7±0.4 g/kg for HCHO.
4.2.4 Sensitivity to biogenic emissions

We explore whether the HCHO bias in the original simulation could be related to isoprene emissions by conducting a sensitivity simulation using the recent Model Emissions of Gases and Aerosols from Nature (MEGAN) inventory (Guenther et al., 2006). This inventory yields 600 Tg C/yr of isoprene emissions and has improved the HCHO simulation over the United States (Palmer et al., 2006). However the simulation using MEGAN (not shown) increases HCHO columns over the Amazonian and Equatorial African forest, for all seasons. The general effect is to introduce an overestimate of the tropospheric HCHO columns outside of the wet and biomass burning seasons. Moreover the MEGAN inventory generally decreases O₃ in the lower and middle troposphere by 3–5 ppbv, reducing agreement with in situ O₃ data. In summary there is a higher consistency in the comparison of GOME vs. GEOS-Chem standard simulation than in the comparison of GOME vs. GEOS-Chem simulation using MEGAN, supporting the previous conclusion of an underestimate of biomass burning VOCs in the bottom-up emission inventory.

4.3 Sensitivity to heterogeneous chemistry

Here we examine the implications of the heterogeneous chemistry updates described in Sect. 3.2.4, specifically the neglect of HO₂ uptake on biomass burning aerosols, and the uptake of HNO₃ on mineral dust. We also explore the effect of direct O₃ destruction on mineral dust. This section provides a first overall evaluation of these processes, through comparison with in situ O₃ measurements over a broad area.

The exclusion of HO₂ uptake on biomass burning aerosols in our standard simulation systematically increases modeled O₃ over biomass burning regions by 5–7 ppbv, improving the consistency with in situ measurements as shown in Fig. 8. Elsewhere no effect is found over the Tropics.

Figure 10 shows vertical profiles of O₃ at locations and seasons in which HNO₃ uptake had a large effect. As found by Bauer et al. (2004) heterogeneous uptake of HNO₃...
reduces O₃ primarily over and downwind of deserts, i.e. northern Africa and South America, the Arabic peninsula, and India. We find that the reduction in O₃ reduces model biases compared to in situ measurements. There is significant improvement over Dubai and Bombay during March to November, when O₃ is reduced by 10–15%. The simulated O₃ column maximum over the Middle East is reduced by this process. Over Caracas, there is a 3–5 ppbv (10%) O₃ decrease below 800 hPa from November to August, when there is a long range transport from the Sahara. Over Lagos HNO₃ uptake reduces O₃ by a maximum of 5%.

The uptake of HNO₃ on mineral dust implemented here, using a reaction probability formulation for convenience, likely represents an upper limit. The particle alkalinity would likely be consumed during continued exposure to HNO₃ and H₂SO₄ and would be better represented in an equilibrium partitioning. Aerosol nitrate could photolyze to regenerate NOₓ (Anastasio and McGregor, 2001). Nonetheless, we find observational evidence in support of the reaction.

We also explored the effect of direct O₃ destruction on mineral dust using \(\gamma(O₃) = 10^{-5} \) as recommended from recently laboratory measurements by Hanisch and Crowley (2003). The effect of this reaction on O₃ is smaller than that of HNO₃ uptake as found by Bauer et al. (2004). However O₃ uptake had a large negative role over Lagos during DJF in the lower troposphere, leading to a 15–20% reduction of the O₃ biomass burning enhancement.

In summary, HNO₃ uptake on mineral dust and the exclusion of HO₂ uptake on biomass burning aerosols improves the simulation versus MOZAIC and SHADOZ sites. This is not the case for O₃ uptake, which had no effect over the Middle East and India, and a negative effect over West Africa.

4.4 Sensitivity to dynamics

Convective transport has considerable implications for upper tropospheric O₃ (Lelieveld and Crutzen, 1999; Lawrence et al., 2003; Diab et al., 2004; Folkins and Martin, 2005; Rasch et al., 1997). The Goddard Earth Observing System data assimilation system
at the NASA Global Modeling and Assimilation office provides two different assimilated meteorological datasets, GEOS-3 and GEOS-4, for the year 2000. Three major differences between the two assimilations are the convective parameterization, the cloud optical depths, and cloud top heights. GEOS-3 uses the Relaxed Arakawa Schubert (Moorthi and Suarez, 1992) convective parameterization, and GEOS-4 uses the Zhang and McFarlane (Zhang and McFarlane, 1995) convective parameterization. As discussed by Folkins et al. (2006) the tropical cloud divergence is quite weak at all altitudes with GEOS-3, and is stronger in the upper troposphere with GEOS-4 model. Cloud optical depths are smaller in GEOS-4 than GEOS-3 leading to more active photochemistry (Liu et al., 2006). Cloud top heights are higher in GEOS-3 than GEOS-4 (Wu et al., 2006). We compare our standard simulation driven with GEOS-4 meteorological fields with one driven with GEOS-3 at the MOZAIC and SHADOZ sites for O$_3$ (Fig. 10); and also for CO and RH (Fig. 9). For clarity Fig. 10 contains sites and seasons that exhibited a high sensitivity to the dynamical scheme.

As shown in Fig. 10, the main differences in O$_3$ between the standard simulation using GEOS-4 and GEOS-3 are found in the middle and upper troposphere. GEOS-3 substantially overestimates O$_3$ compared to measurements, over all continental and oceanic regions, by 10–25 ppbv (15%–50%) with even higher overestimates over South America, the Middle East, and the Pacific. The main discrepancy above 400 hPa likely reflects an underestimate of convective detrainment which injects O$_3$ depleted air as shown by Folkins et al. (2006) with SHADOZ measurements. As a consequence, RH and CO modeled with GEOS-3 are generally more underestimated compared to MOZAIC at those levels (Fig. 9), than with the GEOS-4 standard simulation. These effects are apparent in a meridional average.

Figure 11 shows a meridional average (5° W–30° E), along MOZAIC flight altitudes, 200–300 hPa, during the monsoon season (JJA). MOZAIC data depict the ITCZ position over Africa (0–10° N) with depleted O$_3$ and enhanced RH and CO. GEOS-3 underestimates O$_3$ and overestimates RH in contrast with GEOS-4. However GEOS-4 overestimates the CO gradient versus the few CO measurements that are available.
There are few instances where MOZAIC measurements are more consistent with GEOS-3 than with GEOS-4. For example during SON over Lagos, Ascension (Fig. 10), and Reunion, upper tropospheric O$_3$ measurements are better reproduced with GEOS-3, than with GEOS-4. This bias at Ascension appears to reflect the low altitude of convective outflow in GEOS-4, as supported by the improvement in the simulation with enhanced intracloud lightning.

The two assimilation schemes also affect trace gases in the lower troposphere at some locations (Fig. 10, Lagos, Ascension, Bombay). The GEOS-3 simulation exhibits lower O$_3$ concentrations than with GEOS-4 and in situ measurements. In contrast both GEOS-3 and GEOS-4 underestimate lower tropospheric CO at Lagos and Delhi (Fig. 9), but the simulation is within one standard deviation of the measurements and the CO seasonal cycle well reproduced. Both simulations are able to capture the lower tropospheric maximum in CO associated with the biomass burning season, in DJF and MAM over Lagos, and MAM over Delhi. CO is more sensitive than O$_3$ to dynamics in the lower troposphere, reflecting the stronger gradients in CO. In the lower troposphere GEOS-4 CO is lower than GEOS-3, likely reflecting lower cloud optical depth that results in more active chemistry and more active convection that would transport CO from the lower troposphere.

The lower tropospheric CO underestimate with both GEOS-3 and GEOS-4, suggests an underestimate of CO emissions. We examine the possible implications in our O$_3$ simulation by increasing CO biomass burning emissions by a factor 2. However the effect on O$_3$ is negligible, increasing the O$_3$ background by 3 ppbv.

More than a simple overview of two different meteorological datasets, this comparison clearly shows convection and clouds as major processes driving tropospheric O$_3$. These processes may be as important as the remaining uncertainties in chemical processes and emissions sources.
5 Conclusions

We used a global chemical transport model (GEOS-Chem) to evaluate the consistency of satellite measurements and to examine the processes affecting tropospheric O$_3$ over the Tropics. Space-based observations from the Global Ozone Monitoring Experiment (GOME), Optical Transient Detector (OTD) and Lightning Imaging sensor (LIS) instruments are used to constrain the model emissions necessary for an accurate estimation and understanding of processes affecting tropical tropospheric ozone. In-situ measurements from the Measurements of ozone and water vapor by in-service Airbus aircraft (MOZAIC) aircraft program and the Southern Hemisphere Additional Ozonesondes (SHADOZ) ozonesonde network, were subsequently used to evaluate the simulation.

Our standard simulation featured substantial modifications over the original simulation. A climatology of flash counts from the OTD and LIS instruments are used to improve the spatial distribution of lightning NO$_x$ emissions in the model. Tropospheric NO$_2$ and HCHO columns retrieved from GOME are applied to provide top-down constraints on emission inventories of NO$_x$ (biomass burning and soils) and VOCs (biomass burning). We remove HO$_2$ uptake on biomass burning aerosols, and implement HNO$_3$ uptake on mineral dust.

Upper tropospheric O$_3$ is highly sensitive to the spatial distribution of lightning NO$_x$ emissions. The lightning rescaling improves the simulation of middle and upper tropospheric O$_3$ for tropical sites, by 5–15 ppbv (10%–45%) versus in situ measurements from SHADOZ and MOZAIC. Biases in the simulation of tropospheric ozone columns are reduced by 1–6 DU versus GOME, MOZAIC and SHADOZ measurements. We evaluate lightning emissions in terms of intensity, by testing ± 2 Tg N/yr around the 5 Tg N/yr used in the standard simulation; and in term of distribution by increasing the NO$_x$ emitted from intracloud lightning. A lightning source strength of 5± 2 Tg N/yr best represents in situ observations from MOZAIC and SHADOZ. Increasing the ratio of intra-cloud (IC) to cloud-ground (CG) lightning NO emissions from 0.1 to 0.75 generally introduces an O$_3$ overestimate compared to in situ measurements. However,
substantial improvements are found at Ascension and Reunion during SON. A global mean increase in intra-cloud lightning NO$_x$ is not supported by in situ O$_3$ profiles. Prognostic determination of the IC/CG ratio could yield an improved simulation of tropical ozone.

The top-down constraints on NO$_x$ emissions inferred from GOME NO$_2$ columns increase biomass burning emissions, by a factor of 1.1 over Central Africa and by a factor of 2.6 over North Africa. The NO$_x$ emission factor inferred from GOME NO$_2$ columns over savanna/grassland is 3.4 gNO/kg dm, 40% higher than the recommendation by Andreae (Andreae and Merlet, 2001, personal communication, 2005) but within the given range. The GOME HCHO columns provide a measure of reactive VOC emissions. An increase in HCHO and alkenes emissions by a factor of 2 over biomass burning regions is necessary to reproduce GOME observations of HCHO columns. The top-down emissions increase the simulation of tropospheric ozone by 5–20 ppbv, improving the simulation versus MOZAIC in situ measurements, mainly over Africa where O$_3$ is most sensitive to surface sources. The improvement in simulated O$_3$ provides an indirect validation of the retrieved tropospheric NO$_2$ and HCHO columns. The modeled TOC are within 1–3 DU of GOME, and within 1–4 DU compared to in situ measurements. The seasonal variations are well reproduced.

We evaluate the biogenic a posteriori NO$_x$ emission inventory (Jaeglé et al., 2005) versus in situ O$_3$ measurements. The largest influence appears over Africa and adjacent regions in MAM/JJA, with O$_3$ increasing by 5–7 ppbv, and reducing a regional model bias.

We drive GEOS-Chem with two different assimilation schemes, GEOS-3 and GEOS-4, that feature different convective parameterizations and cloud fields. The two different dynamical schemes have considerable effect on the ozone simulation. GEOS-4 better represents O$_3$ observations by 5–20 ppbv due to enhanced convective detrainment in the upper troposphere, compared to GEOS-3 which overestimates O$_3$. The role of enhanced convective outflow is particularly apparent in relative humidity and O$_3$ in the upper troposphere across the ITCZ over Africa. The two assimilated fields most affect
carbon monoxide in the lower troposphere, and observations are better reproduced with GEOS-3 which has higher cloud optical depths.

Recent laboratory and field measurements provide evidence for uptake of HNO$_3$ ($\gamma_{\text{HNO}_3}=0.1$) on mineral dust, and the absence of HO$_2$ uptake on biomass burning aerosols. We evaluate those processes with in situ measurements of O$_3$. HNO$_3$ uptake reduces a regional model bias by 5–15% downwind of deserts. The neglect of HO$_2$ uptake on biomass burning aerosols increases simulated O$_3$ by 5 ppbv, improving our simulations versus in situ measurements in biomass burning regions. Direct uptake of O$_3$ ($\gamma_{\text{O}_3}=10^{-5}$) on mineral dust introduces a large model bias compared to MOZAIC O$_3$ measurements over West Africa.

We have shown that satellite observations of lightning and O$_3$ precursors improve substantially the simulation of tropical tropospheric O$_3$ with a global chemical transport model due to better representation of emissions. The most prominent outstanding issues are related to lightning and convection. Future development of a prognostic parameterization of lightning that reproduces observed flash counts, should improve the accuracy of O$_3$ simulations. In-situ measurements of trace gases in close proximity to deep convection in the Tropics would enable disentangling of issues related to lightning vertical profile and convective transport. Forthcoming high resolution space-based data, such as from Aura (Schoeberl et al., 2004), or GOME-2 and IASI should continue to provide additional insight into tropical tropospheric ozone.

Acknowledgements. The authors acknowledge MOZAIC funding agencies, the European Commission, CNRS (France), Forschungszentrum Jülich (Germany), Météo France, EADS (Airbus) and the airlines (Air France, Lufthansa, Austrian Airlines, and former Sabena who carry free of charge the MOZAIC equipment and perform the maintenance). We also acknowledge the European Agency, ESA/ERIN. SHADOZ is supported by NASA’s Atmospheric Chemistry and Analysis Program (ACMAP), Aura Validation, and the TOMS and OMI projects. We thank D. Boccippio for providing the lightning flash counts used in this analysis. We thank M. O. Andreae for providing his biomass burning emission factors data base. This work was supported by the Atmospheric Composition Program of NASA’s Earth-Sun System Division.
References

Chatfield, R. B. and Delany, A. C.: Convexion links biomass burning to increased tropical ozone: However, models will tend to overpredict O3, J. Geophys. Res., 95, 18 473–18 488, 1990. 11467
Christian, H. J., Blakeslee, R. J., and Goodman, S. J.: The Detection of Lightning from Geosta-

Nesbitt, S. W., Zhang, R., and Orville, R. E.: Seasonal and Global NO_3 production by lightning estimated from the Optical Transient Detector (OTD), Tellus, 52B, 1206–1215, 2000.

Pickering, K. E., Wang, Y. S., Tao, W. K., Price, C., and Muller, J. F.: Vertical distributions of

Tabazadeh, A., Jacobson, M. Z., Singh, H. B., Toon, O. B., Lin, J. S., Chatfield, R. B., Thakur, A. N., Talbot, R. W., and Dibb, J. E.: Nitric acid scavenging by mineral and biomass burning...
Wang, Y., Jacob, D. J., and Logan, J. A.: Global simulation of tropospheric O\textsubscript{3}-NO\textsubscript{x}-hydrocarbon chemistry, 1 – Model formulation, J. Geophys. Res., 103, 10 713–10 726, 1998. 11473

Table 1. Characteristics of the MOZAIC and SHADOZ sites. Abbreviations are given in parenthesis. Number of CO measurements are given in parenthesis where available.

<table>
<thead>
<tr>
<th>Site</th>
<th>Lon/Lat</th>
<th>Total number of O₃ and RH profiles</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caracas (CAR)</td>
<td>67.0°W/10.5°N</td>
<td>651</td>
<td>northern South America</td>
</tr>
<tr>
<td>Cayenne (Cay)</td>
<td>52.3°W/4.9°N</td>
<td>175</td>
<td>northern South America</td>
</tr>
<tr>
<td>Bogota (Bog)</td>
<td>74.0°W/4.5°N</td>
<td>220</td>
<td>northern South America</td>
</tr>
<tr>
<td>San Cristobal (San C)</td>
<td>89.6°W/0.9°S</td>
<td>256</td>
<td>northern South America</td>
</tr>
<tr>
<td>Paramaribo (Par)</td>
<td>55.2°W/5.8°N</td>
<td>230</td>
<td>northern South America</td>
</tr>
<tr>
<td>Rio de Janeiro (Rio)</td>
<td>43.2°W/22.8°S</td>
<td>551</td>
<td>South America</td>
</tr>
<tr>
<td>Sao Paolo (SAO)</td>
<td>46.6°W/23.5°S</td>
<td>979</td>
<td>South America</td>
</tr>
<tr>
<td>Dakar (Dak)</td>
<td>17.4°W/14.5°N</td>
<td>89</td>
<td>north Africa</td>
</tr>
<tr>
<td>Lagos (LAG)</td>
<td>3.3°E/6.5°N</td>
<td>354 (139)</td>
<td>West Africa</td>
</tr>
<tr>
<td>Abidjan (Abi)</td>
<td>4.0°W/5.4°N</td>
<td>178</td>
<td>West Africa</td>
</tr>
<tr>
<td>Douala (Dou)</td>
<td>9.7°E/4.0°N</td>
<td>185</td>
<td>West Africa</td>
</tr>
<tr>
<td>Brazzaville (BRA)</td>
<td>15.3°E/4.2°S</td>
<td>114</td>
<td>Central Africa</td>
</tr>
<tr>
<td>Luanda (Lua)</td>
<td>13.2°E/8.5°S</td>
<td>48</td>
<td>Central Africa</td>
</tr>
<tr>
<td>Windhoek (Win)</td>
<td>17.4°E/22.4°S</td>
<td>138</td>
<td>South Africa</td>
</tr>
<tr>
<td>Johannesburg (Joh)</td>
<td>28.0°E/26.2°S</td>
<td>574</td>
<td>South Africa</td>
</tr>
<tr>
<td>Nairobi (Nai)</td>
<td>36.7°E/1.1°S</td>
<td>116</td>
<td>East Africa</td>
</tr>
<tr>
<td>Abu Dhabi (Abu)</td>
<td>54.6°E/24.4°N</td>
<td>215</td>
<td>Middle East</td>
</tr>
<tr>
<td>Dubai (DUB)</td>
<td>55.3°E/25.2°N</td>
<td>559 (89)</td>
<td>Middle East</td>
</tr>
<tr>
<td>Bombay (BOM)</td>
<td>72.8°E/19.0°N</td>
<td>145</td>
<td>India</td>
</tr>
<tr>
<td>Delhi (DEL)</td>
<td>77.3°E/28.5°N</td>
<td>678 (274)</td>
<td>India</td>
</tr>
<tr>
<td>Madras (Mad)</td>
<td>80.0°E/13.0°N</td>
<td>246</td>
<td>India</td>
</tr>
<tr>
<td>Bangkok (BAN)</td>
<td>100.5°E/13.9°N</td>
<td>659</td>
<td>Thailand</td>
</tr>
<tr>
<td>Natal (Nat)</td>
<td>35.3°W/5.4°S</td>
<td>253</td>
<td>Atlantic</td>
</tr>
<tr>
<td>Ascension (ASC)</td>
<td>14.4°W/7.9°S</td>
<td>305</td>
<td>Atlantic</td>
</tr>
<tr>
<td>Reunion Island (REU)</td>
<td>55.4°E/21.0°S</td>
<td>146</td>
<td>Indian Ocean</td>
</tr>
<tr>
<td>Kuala Lumpur (Kua)</td>
<td>112.6°E/-7.5°S</td>
<td>160</td>
<td>Pacific</td>
</tr>
<tr>
<td>Fiji (Fij)</td>
<td>178°E/18.0°S</td>
<td>229</td>
<td>Pacific</td>
</tr>
<tr>
<td>Samoa (SAM)</td>
<td>170.5°W/14.2°S</td>
<td>263</td>
<td>Pacific</td>
</tr>
</tbody>
</table>
Table 2. Annual NO$_x$ emissions in the GEOS-Chem simulations for the year 2000. The tropical emissions are over 20° S–20° N.

<table>
<thead>
<tr>
<th>Source</th>
<th>Original, Global/Tropics (Tg N/yr)</th>
<th>Standard, Global/Tropics (Tg N/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomass Burning</td>
<td>5.9/4.0</td>
<td>7.0/5.0</td>
</tr>
<tr>
<td>Lightning</td>
<td>5.0/3.3</td>
<td>5.0/3.3</td>
</tr>
<tr>
<td>Soils</td>
<td>6.0/2.3</td>
<td>8.9/3.1</td>
</tr>
<tr>
<td>Anthropogenic</td>
<td>23.9/2.1</td>
<td>23.9/2.1</td>
</tr>
<tr>
<td>Biofuels</td>
<td>2.2/0.7</td>
<td>2.2/0.7</td>
</tr>
<tr>
<td>Aircraft</td>
<td>0.5/0.1</td>
<td>0.5/0.1</td>
</tr>
</tbody>
</table>
Table 3. Seasonal tropospheric O\textsubscript{3} column (DU) from GEOS-Chem standard simulation (difference with original simulation is given in parenthesis)/MOZAIC or SHADOZ (standard deviation 1\sigma is in parenthesis)/and GOME. For MOZAIC we complete the column between the aircraft ceiling of 185 hPa and the tropopause with a fixed ozone mixing ratio of 70 ppbv.

<table>
<thead>
<tr>
<th>Regions</th>
<th>DJF (\pm)</th>
<th>MAM (\pm)</th>
<th>JJA (\pm)</th>
<th>SON (\pm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caracas</td>
<td>26.6 ((-4.2)/22.2)</td>
<td>29.6 ((-3.1)/28.8)</td>
<td>27.6 ((-1.8)/26.3)</td>
<td>25.3 ((-2.5)/25.2)</td>
</tr>
<tr>
<td>Sao Paolo</td>
<td>32.7 ((-0.5)/29.4)</td>
<td>29.4 ((-4.1)/24.7)</td>
<td>30.1 ((-0.2)/29.4)</td>
<td>37.4 ((-0.6)/34.7)</td>
</tr>
<tr>
<td>Dubai</td>
<td>40 (\pm0.1)/38.8)</td>
<td>43.9 ((-1.7)/41.6)</td>
<td>50.1 ((-2.7)/45.2)</td>
<td>40.9 ((-2.2)/36)</td>
</tr>
<tr>
<td>Samoa</td>
<td>17.4 (\pm1.8)/18.4)</td>
<td>19 (\pm0.9)/17.9)</td>
<td>20.4 (\pm1)/20.2)</td>
<td>22.1 (\pm3.2)/23)</td>
</tr>
<tr>
<td>Reunion</td>
<td>32.6 (\pm2.2)/32.4)</td>
<td>31 (\pm1)/32.6)</td>
<td>34.1 (\pm0.4)/34.7)</td>
<td>43.4 (\pm1.1)/45.2)</td>
</tr>
<tr>
<td>Ascension</td>
<td>36 (\pm3.2)/35.4)</td>
<td>31 ((-1)/30.9)</td>
<td>38.2 ((-0.6)/40.6)</td>
<td>40.7 ((-0.9)/44)</td>
</tr>
<tr>
<td>Natal</td>
<td>34.3 (\pm2.5)/34.2)</td>
<td>27.2 (-1.2)/26)</td>
<td>33.8 ((-0.4)/36.2)</td>
<td>37.3 (-0.7)/41)</td>
</tr>
<tr>
<td>Lagos</td>
<td>40.1 (\pm5.9)/40.5)</td>
<td>36 (\pm2.7)/37.5)</td>
<td>32.5 (\pm2.4)/33)</td>
<td>32 (-0.1)/32.5)</td>
</tr>
<tr>
<td>Brazzaville</td>
<td>34.5 (\pm4.8)/36.7)</td>
<td>31.5 (\pm2)/32.5)</td>
<td>48.8 (+6.3)/49)</td>
<td>40.3 (+1)/43)</td>
</tr>
<tr>
<td>Windhoek</td>
<td>32.8 (\pm0.9)/31.5)</td>
<td>29.3 (-0.1)/28.7)</td>
<td>33.3 (+0)/32.4)</td>
<td>41.2 (+1.3)/42.1)</td>
</tr>
<tr>
<td>Bombay</td>
<td>40.7 (\pm0.4)/40.1)</td>
<td>41.6 (-2.5)/40.3)</td>
<td>34.9 (-2.1)/30.3)</td>
<td>36.1 (+1.1)/35.6)</td>
</tr>
<tr>
<td>Average</td>
<td>31.8 (\pm3.9)/30.7)</td>
<td>31.7 (\pm30.94.1)</td>
<td>34.8 (\pm34.3/32.3)</td>
<td>36.0 (\pm36.5/33.9)</td>
</tr>
</tbody>
</table>
Fig. 1. MOZAIC (blue) and SHADOZ (black) sites used in this study. Capital letters refer to sites that represent the rectangular region. Abbreviations are defined in Table 1.
Fig. 2. Seasonal biomass burning emissions \((10^9 \text{ molec N cm}^{-2} \text{s}^{-1})\) for December-February (DJF) and June-August (JJA). The left panels represent emissions used in the original simulation. The right panels represent top-down emissions determined from GOME observations of tropospheric \(\text{NO}_2\) columns.
Fig. 3. Seasonal average lightning emissions (10^9 molec N/cm2/s). The left panels show lightning emissions calculated from GEOS dynamics in the original version. The right panels show lightning emissions scaled to OTD/LIS measurements of flash rates as used in the standard (improved) simulation.
Fig. 4. Seasonal average GOME (left) and (middle) GEOS-Chem (convolved with GOME averaging kernels) tropospheric ozone columns for 2000. The right column represent difference between standard and original simulation of tropospheric ozone columns (TOC). The arrows in the middle column represent the horizontal ozone flux integrated from the surface to the tropopause.
Fig. 5.
Fig. 5. Seasonal vertical profiles of O$_3$ in ppbv. The plain black line indicates MOZAIC and SHADOZ measurements of O$_3$. Horizontal bars represent one standard deviation of measurements. O$_3$ simulations are in blue (original) and red (standard). The solid green line indicates a simulation with enhanced intracloud NO$_x$ emissions. The dashed green lines show simulation with L-NO$_x$ emissions of 3 TgN/yr and 7 TgN/yr.
Fig. 6. Seasonal averaged tropospheric NO$_2$ columns (10^{15} molec cm$^{-2}$) during the year 2000. The left panels are for GOME, the middle for GEOS-Chem standard and the right for GEOS-Chem original. White areas indicate regions with persistent clouds.
Fig. 7. Seasonal averaged tropospheric HCHO columns (10^{16} molec cm$^{-2}$). The left panels are for GOME, the middle are for GEOS-Chem standard and the right for GEOS-Chem original. White areas represent persistent clouds.
Fig. 8. Seasonal vertical profiles of O$_3$ in ppbv. The plain black line indicates in situ O$_3$. Horizontal bars represent one standard deviation of measurements. O$_3$ simulations are in blue (original), red (standard), and in green for in-situ-based on NO$_x$ emission factors.
Fig. 9. Seasonal vertical profiles of relative humidity (RH) and CO. Black lines are for MOZAIC RH, dashed-lines are for CO. GEOS-4 simulations are in solid lines, GEOS-3 in dashed lines, with blue for RH and red for CO.
Fig. 10.
Fig. 10. Vertical profiles of O_3 at MOZAIC and SHADOZ sites that exhibit a large sensitivity to either dynamics and heterogeneous chemistry. The red line is for the standard simulation (GEOS-4), the blue line for GEOS-3, and the green line for HNO_3 uptake turned off.
Fig. 11. Meridional average (5°W–30°E) of CO (top left), RH (top right) and O$_3$ (bottom) at flight altitude (200–300 hPa) for MOZAIC (black line, squares), GEOS-4 standard (red line, circle) and GEOS-3 standard (blue line, triangle) simulations during JJA.