Interactive comment on “Seasonal and diurnal characteristics of water soluble inorganic compounds in the gas and aerosol phase in the Zurich area” by R. Fisseha et al.

R. Fisseha et al.

Received and published: 27 March 2006

We thank both referees for their helpful comments. Here are our replies.

Referee 1:

The referee mentioned that an influence of carbonate on the nitrate detection was not observed previously. Indeed for only inorganic anion measurements, carbonate does not interfere with nitrate. However, we optimized the method for organic and inorganic anion measurements with a gradient in eluent strength which results in a nitrate interference with carbonate. Further optimization procedures may reduce this interference in the future, however, the performance was considered to be sufficient
for the current application. The referee was furthermore astonished to see an over-
estimation of the SO$_2$ fluorescence data compared to the WEDD data, and expected
the opposite to be true, with a denuder sampling efficiency for SO$_2$ of about 80-90%.
This is indeed contrary to the expectation, but we explain this with the fact that the
UV fluorescence has a higher detection limit (1.05µg/m3 according to the instrument
specification) than the WEDD/AC (20ng/m3). The concentration of SO$_2$ in some cases
was lower than the detection limit of the UV fluorescence. Therefore we believe that
the WEDD/AC results are more reliable than the UV fluorescence measurement. In
addition we believe that we don’t have a major breakthrough of SO$_2$ from the denuder
under the environmental conditions since the diurnal variation of the denuder is sub-
stantially different from the one of the aerosol collector. The referee indicated that Fig.
1 is unnecessary if the general good agreement is mentioned. We will remove Fig.
1 in the final version, and mention the correlation equation along with the correlation
coefficient. We agree that ammonium data would have been beneficial; however, no
ammonium measurements were performed for this study. The referee also indicated
the assumption that all PM10 nitrate (or TSP nitrate) in Zurich occurs as ammonium
nitrate seems to be uncertain and mentioned that according to Hueglin and Gehrig
(2000), part of the nitrate is expected to be present in the coarse mode. An excerpt
of the data of Hueglin and Gehrig (2000) is now also available as a paper (Hueglin et
al., 2005). According to this paper, most of the nitrate was present in the PM2.5 at this
site in Zurich in 1989/90, and thus as the fraction of nitrate salts in the coarse mode
was negligible. Since 1999, sulfate values have further decreased in Switzerland, fur-
ther enhancing the chance that particulate nitrate is associated with ammonium. In
addition EMEP data indicate that ammonia is generally in excess in Switzerland (see
http://www.nilu.no/projects/ccc/emepdata.html). We will change the labeling of the y-
axes in Fig. 3 to make it clear that the concentrations of the ammonium salts are
presented. Furthermore the difference between Figure 2 (Figure 1 in the new version)
and Table 3 are due to the fact that Figure 2 is related to the ammonium salts of nitrate
and sulfate while Table 3 relates to the sulfate and nitrate concentrations. The referee
suggested to add the HCl/Cl⁻ distribution, however, we decided to skip this because it was not relevant to the topic we discussed. We do not see the significance of adding a time serious of gaseous HNO₃ in Fig. 6, as suggested by the referee, since in March the fraction of gaseous HNO₃ is very low as indicated in the mean diurnal variation of nitric acid in Fig. 4. In addition, the discussion of specific events in Fig. 6 would be speculation and is beyond the scope of this paper. The dates mentioned in the paper indicate only examples which show similar behavior of the model and the measurements. We will add a short summary of the importance of HONO for atmospheric chemistry in the introduction. However, we prefer to keep Fig. 8 in spite of the referee’s suggestion to cancel it because it also shows variability of data for different regimes of HONO concentrations. We will add a comparison of the sulfate values for the year 1999 and 2002/2003. However, this is not possible for nitrate values because of the much greater seasonal variation and of the potential artifact involved in the filter nitrate measurements. Furthermore the reviewer mentioned several minor editorial points, which we will be happy to follow in the final version.

Referee 2:
The reviewer suggested that, if ammonium data were available, it would be interesting to see if a similar relationship as Pathak and Chan (2005) could be found between excess ammonium and nitrate in the samples. We did not measure ammonia during this study, and therefore an analysis of excess ammonia following the work of Pathan and Chan (2005) was not possible. The referee also suggested the presence of sea salt and crustal aerosols that act as a sink of nitrate as a possible reason for the under prediction of nitrate. However, the possibility of nitrate reaction with sea salt is very unlikely in Zurich aerosol as Zurich is situated on the mainland of Europe. The possibility of nitrate binding with crustal aerosol was not completely excluded in our study. However, in an earlier study, Hueglin et al. (2005) showed that more than 85

Interactive comment on Atmos. Chem. Phys. Discuss., 5, 5809, 2005.