A modified micrometeorological gradient method for estimating O₃ dry deposition over a forest canopy

Zhiyong Wu¹, Leiming Zhang¹, Xuemei Wang², J. William Munger³

¹Air Quality Research Division, Science and Technology Branch, Environment Canada, Toronto, Canada
²School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
³School of Engineering and Applied Sciences and Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA

Correspondence to: L. Zhang (leiming.zhang@ec.gc.ca)
Abstract: Small pollutant concentration gradients between levels above a plant canopy result in large uncertainties in estimated air-surface exchange fluxes when using existing micrometeorological gradient methods, including the aerodynamic gradient method (AGM) and the modified Bowen-Ratio method (MBR). A modified micrometeorological gradient method (MGM) is proposed in this study for estimating O$_3$ dry deposition fluxes over a forest canopy using concentration gradients between a level above and a level below the canopy top, taking advantage of relatively large gradients between these levels due to significant pollutant uptake at top layers of the canopy. The new method is compared with the AGM and MBR methods and is also evaluated using eddy-covariance (EC) flux measurements collected at the Harvard Forest Environmental Measurement Site, Massachusetts during 1993-2000. All the three gradient methods (AGM, MBR and MGM) produced similar diurnal cycles of O$_3$ dry deposition velocity (V_d(O$_3$)) to the EC measurements, with the MGM method being the closest in magnitude to the EC measurements. The multi-year average V_d(O$_3$) differed significantly between these methods, with the AGM, MBR and MGM method being 2.28, 1.45 and 1.18 times of that of the EC. Sensitivity experiments identified several input parameters for the MGM method as first-order parameters that affect the estimated V_d(O$_3$). A 10% uncertainty in the wind speed attenuation coefficient or canopy displacement height can cause about 10% uncertainty in the estimated V_d(O$_3$). An unrealistic leaf area density vertical profile can cause an uncertainty of a factor of 2.0 in the estimated V_d(O$_3$). Other input parameters or formulas for stability functions only caused an uncertainty of a few percent. The new
method provides an alternative approach in monitoring/estimating long-term deposition fluxes of similar pollutants over tall canopies.

1. Introduction

Quantifying atmospheric dry and wet deposition of critical pollutants is important in assessing their life time in air and their potential impact on various ecosystems. In chemical transport models and in monitoring networks, dry deposition is commonly estimated using the so-called inferential method, which requires a parameter - dry deposition velocity (V_d) typically calculated using empirically developed dry deposition algorithms (Wesely and Hicks, 2000; Pleim and Ran, 2011). Existing dry deposition algorithms have large uncertainties, e.g., a factor of 2.0 on long-term basis for several commonly studied species (Flechard et al., 2011; Schwede et al., 2011; Wu et al., 2011; Wu et al., 2012; Matsuda et al., 2006). Field flux measurements are still needed to reduce these uncertainties.

Measurements of O$_3$ dry deposition flux mostly rely on micrometeorological methods (Wesely and Hicks, 2000). Two types of methods are commonly used: the eddy-covariance technique and the flux-gradient methods. Eddy-covariance (EC) is a direct measurement method determining turbulent fluxes without application of any empirical assumption (Baldocchi et al., 1988; Stella et al., 2012). It has been extensively used to estimate turbulent fluxes of momentum, heat, and trace gases (e.g., CO$_2$, H$_2$O, SO$_2$, O$_3$) (Baldocchi et al., 2001; Turnipseed et al., 2009; Guenther et al., 2011). However, application of EC is often limited by the difficulty of making
high-quality measurements at sufficiently high frequencies (i.e. >1 Hz) to resolve the covariance between vertical wind velocity and scalar concentration fluctuation (Jacob, 1999). Besides, EC method is costive and complex for maintenance.

A flux-gradient theory approach, also known as K-theory, was used as an alternative method to determine fluxes of gases which lack the fast response instrument for the EC measurement (Meyers et al., 1996; Park et al., 2014). Flux-gradient theory assumes that the turbulence flux is proportional to the product of the mean vertical concentration gradient and an eddy diffusivity (K) (Baldocchi et al., 1988). The derivation of eddy diffusivity for air pollutants currently relies on the similarity assumption which needs more verification from field measurements.

Another critical aspect when employing the flux-gradient theory is to measure the concentrations of gases at different heights with sufficient accuracy and precision (Stella et al., 2012; Loubet et al., 2013). Usually measurements at two adjacent levels above a canopy are used to derive the gradient, e.g., the aerodynamic gradient method (AGM) and the modified Bowen-Ratio approach (MBR). Due to the small concentration gradient above the canopy and the instrument measurement uncertainties, using the flux-gradient method can cause larger uncertainties in estimated dry deposition fluxes.

On the other hand, gradients between levels above and below the canopy top are usually sufficiently large due to the significant sink at top layers of forest canopies. Thus, if concentration gradients at levels above and below the canopy top can be used for estimating dry deposition flux, the uncertainties might be smaller. The present
study aims to develop and evaluate such a method (hereafter referred to as the modified gradient method - MGM). It should be noted that this method is still based on the flux-gradient theory.

Long-term concurrent measurements of eddy-covariance fluxes and concentration profiles for O₃ and CO₂ have been conducted at the Harvard Forest Environmental Measurement Site (HFEMS) since 1990 (Munger et al., 1996; Urbanski et al., 2007). This data set enables us to estimate O₃ dry deposition using existing (AGM, MBR and EC) and newly proposed (MGM) methods and thus to evaluate the applicability and uncertainties in all the methods. The micrometeorological methods are briefly described in Section 2, the measurement data in Section 3, comparison results and sensitivity tests in Section 4, and major conclusions and recommendations in Section 5.

2. Micrometeorological methods of O₃ flux measurement

2.1. Eddy-covariance technique (EC)

EC determines the turbulent flux (F) by calculating the covariance between vertical wind velocity (w) and concentration of the gas (c):

$$ F = \overline{wc} $$
(1)

where the over-bar denotes the time average and the primes denote fluctuations from the mean ($x' = x(t) - \bar{x}$, $\bar{x} =$mean). By convention, a positive flux is upward (emission) and negative flux is downward (deposition).
2.2. Aerodynamic gradient method (AGM)

With an assumption that turbulent transport is analogous to molecular diffusion (Baldocchi et al., 1988), the flux-gradient theory is theoretically described as follows:

\[F = -K_c(z) \frac{dC}{dz} \] \hspace{1cm} (2)

where \(K_c \) is the eddy diffusivity for the gas, and \(\frac{dC}{dz} \) is the vertical concentration gradient of the gas. Two of the more popular methods for calculating \(K_c \) are the aerodynamic gradient method (AGM) and the modified Bowen-Ratio approach (MBR).

The AGM method assumes that heat and mass are transported in a similar way within a well-developed surface layer (Erisman and Draaijers, 1995). \(K_c \) is related to the interstitial aerodynamic resistance \(R_a \) (Baldocchi, 1988) as

\[R_a(z_1 : z_2) = \int_{z_2}^{z_1} dz / K_c(z) \] \hspace{1cm} (3)

where \(z_1 \) and \(z_2 \) indicate the heights of adjacent levels above canopy \((z_1 > z_2)\).

Using Eqs. (2) and (3), the deposition flux \((F) \) is determined as:

\[F = -\frac{\Delta C}{R_a(z_1 : z_2)} = -\frac{C_1 - C_2}{R_a(z_1 : z_2)} \] \hspace{1cm} (4)

where \(C_1 \) and \(C_2 \) indicate the gas concentrations at \(z_1 \) and \(z_2 \), respectively.

\(R_a \) is calculated as

\[R_a(z_1 : z_2) = (\kappa u_*)^{-1} \left[\ln \frac{z_1 - d}{z_2 - d} + \psi_h \left(\frac{z_1 - d}{L} \right) - \psi_h \left(\frac{z_2 - d}{L} \right) \right] \] \hspace{1cm} (5)

where \(\kappa \) is the von Karman’s constant \((0.4)\), \(u_* \) the friction velocity \((u_* \equiv \sqrt{-\frac{u}{w}})^{1/2} \) measured at the reference height, \(d \) the zero-plane displacement height, \(L \) the Obukhov length, and \(\psi_h \) the integrated stability correction function for heat using
those proposed by Businger et al. (1971) and modified by Högström (1988).

2.3. Modified Bowen-Ratio method (MBR)

The MBR method is also based on the flux-gradient theory (Eq. 2), but the eddy diffusivity (K_c) is derived from flux and gradient measurements of another scalar (e.g., sensible heat, CO$_2$, H$_2$O) and assumes it is equal to K_c of the gas of interest. In this study, the flux and gradient measurements of CO$_2$ are available at the same heights of O$_3$, so K_c of O$_3$ was calculated from the CO$_2$ measurements as follows:

$$K_c = K_{co2} = -\frac{F_{co2} \Delta z}{\Delta C(CO_2)}$$ \hspace{1cm} (6)

where K_{co2} is the eddy diffusivity of CO$_2$, F_{co2} is the eddy-covariance flux of CO$_2$, $\Delta C(CO_2)$ is the concentration gradient of CO$_2$ over the same height interval as $\Delta C(O_3)$, and Δz is the height interval of concentration measurements.

Using Eqs. (2) and (6), the O$_3$ flux (F) is calculated as:

$$F = F_{co2} \frac{\Delta C(O_3)}{\Delta C(CO_2)}$$ \hspace{1cm} (7)

2.4. Modified gradient method (MGM)

The newly proposed MGM method is also based on the flux-gradient theory (Eq. 2). It is noted that the flux-gradient theory has been long questioned within plant canopy environment due to infrequent but predominant large eddies within canopy (Wilson, 1989; Raupach, 1989). For example, Bache (1986) suggested that the flux-gradient theory was a reasonable assumption estimating wind profiles in the upper portion of canopy, but failed to reproduce the secondary wind maximum that was often observed.
within the trunk space of forests. It should also be noted that most of the O₃ uptake occurs in the upper layers of the canopy where most canopy leaves grow. Within these upper layers the vertical length scales of turbulence are probably smaller than the distance associated with changes in concentration and wind speed gradients (Baldocchi, 1988). Thus, the flux-gradient theory is likely applicable for estimating vertical flux distribution of air pollutants within a plant canopy, as has been used in previous studies (e.g., Baldocchi, 1988; Bash et al., 2010; Wolfe and Thornton, 2011).

Applying the flux-gradient theory within the canopy, a height-dependent flux \(F(z) \) can then be calculated as:

\[
F(z) = -K_c(z) \frac{dC}{dz}
\]

(8)

where \(z \leq h \), and \(K_c(z) \) is the vertical eddy diffusivity. Based on Eq. (8), the O₃ flux at canopy top \(F(h) \) is defined as

\[
F(h) = \frac{C_h - C_3}{R_a(h : z_3)}
\]

(9)

where \(C_h \) and \(C_3 \) are the concentrations at canopy top \((h) \) and the height of \(z_3 \) \((z_3<h)\), respectively. \(R_a(h : z_3) \) is related to \(K_c \) as

\[
R_a(h : z_3) = \int_{z_3}^{h} dz/K_c(z)
\]

(10)

According to the aerodynamic gradient method (Eq. 4), the O₃ flux above canopy can be calculated from the concentration gradient between the reference height \(z_l \) and the canopy top \(h \) \((z_l>h)\) as follows:

\[
F = -\frac{C_l - C_h}{R_a(z_l : h)}
\]

(11)

And based on the assumption of a constant flux layer above the canopy, the O₃ flux
above the canopy calculated in Eq. (11) should be equal to the O₃ flux at the canopy top derived from Eq. (9). Using Eqs. (9) and (11), we can derive that:

\[
F = -\frac{C_1 - C_3}{R_a(z_1 : h) + R_a(h : z_3)}
\]

(12)

\(R_a(z_1 : h)\) is calculated using Eq. (5). \(R_a(h : z_3)\) is integrated vertically between the two heights within the canopy using Eq. (10).

\(K_c(z)\) is assumed to equal \(0.8K_m(z)\), which is the within canopy eddy diffusivity for momentum transfer (Halldin and Lindroth, 1986). As described in Baldocchi (1988), \(K_m(z)\) is determined as

\[
K_m(z) = \frac{\int_0^z C_m(z) a(z) u(z)^2 \, dz}{du(z)/dz}
\]

(13)

where \(a(z)\) is the leaf area density at height \(z\), and \(u(z)\) is the horizontal wind speed within canopy. Similar to Baldocchi (1988), \(K_m(z)\) is assumed to be constant below crown closure (about \(0.7h\)) and equal to \(K_m\) at \(0.7h\). Thus we suggest here that the level of concentration measurement below canopy (\(z_3\)) should not be lower that the crown closure of canopy.

The effective drag coefficient \((C_m(z))\) is assumed to be constant with height (see Thom, 1975) following Baldocchi (1988):

\[
C_m(z) = \frac{C_{am}}{LAI\left[\frac{u_m}{u(z_1)}\right]^2}
\]

(14)

where \(LAI\) is the canopy leaf area index, \(u_m\) the mean wind speed within canopy, and \(u(z_1)\) the wind speed at the reference height \(z_1\). The bulk canopy drag coefficient \((C_{am})\) is computed as

\[
C_{am} = u_*^2 / u(z_1)^2
\]

(15)
The mean within canopy wind speed (u_m) is calculated as

$$u_m = \frac{1}{h} \int_0^h u(z) \, dz$$

(16)

Within canopy wind speed profile ($u(z)$) follows Cionco (1972):

$$u(z) = u_h e^{-\alpha(z/h)}$$

(17)

where u_h is wind speed at the canopy top, and α is wind speed attenuation coefficient.

The above canopy logarithmic wind profile is used to scale the wind speed measured at the reference height z_1 to the canopy height h:

$$u_h = u(z_1) \frac{\ln(h - d) - \ln(z_0) + \psi_m[(h - d)/L] - \psi_m[z_0/L]}{\ln(z_1 - d) - \ln(z_0) + \psi_m[(z_1 - d)/L] - \psi_m[z_0/L]}$$

(18)

where z_0 is the roughness length for momentum, and ψ_m is the integrated stability correction function for momentum as proposed by Businger et al. (1971) and modified by Högström (1988).

Assuming a zero concentration on the absorbing surface, the dry deposition velocity (V_d) of O3 can be determined as

$$V_d = -F / C(z_1)$$

(19)

where $C(z_1)$ is the O3 concentration measured at the reference height z_1.

3. Field measurements used in this study

3.1. Site description

The Harvard Forest Environmental Measurement Site (HFEMS) (42.54 N, 72.18 W) is located in central Massachusetts at an elevation of 340 m above sea level. The forest is 80-year-old on average, which consists of red maple (Acer rubrum) and red
oak (*Quercus rubra*) with scattered stands of Eastern hemlock (*Tsuga canadensis*), red
pine (*Pinus resinosa*) and white pine (*Pinus strobus*). The canopy height near the
observation tower is up to 23 m with a peak leaf area index (*LAI*) of ~5.0 m² m⁻²
during summer. The nearest sources of significant pollution are a secondary road
about 2 km to the west of the site and a main highway about 5 km to the north.

A permanent 30-m Rohn 25G tower has been utilized at HFEMS to measure
eddy-covariance fluxes of sensible heat, H₂O, momentum, CO₂, and O₃, along with
vertical profiles of CO₂ and O₃ since 1990 (Fig. 1). Eddy-covariance fluxes were
measured at a height of 29 m above the ground. For the profile measurements air was
continuously sampled from heights of 29, 24.1, 18.3, 12.7, 7.5, 4.5, 0.8, and 0.3 m
AGL to determine the concentrations of CO₂ and O₃. In this study, the upper three
levels were used to derive the gradients. Details on the site and the instrumental
methods can be found in Munger et al. (1996). Data used in this study are available
online at http://atmos.seas.harvard.edu/lab/data/nigec-data.html.

Zhao et al. (2011) retrieved the vertical profile of leaf area density at Harvard
Forest from a ground-based lidar scanning. Two tree species groups (i.e. Hardwood
and Conifer) were chosen. According to the species composition around the
measurement tower, the average leaf area density used in this study was calculated as
75% of that of Hardwood and 25% of that of Conifer from Zhao et al. (2011), as
shown in Fig. 1.

The monthly averaged leaf area index (*LAI*) at HFEMS was derived from the
ground-based measurements for most years between 1998 and 2013 using the LICOR
LAI-2000 system at 30-40 plots around the tower (Urbanski et al., 2007). As the measurements during January and February were not available, these values were obtained based on extrapolation (Fig. 2). The roughness length \(z_0 \) and displacement height \(d \) were calculated as a function of canopy height \(h \) and \(\text{LAI} \), following Meyers et al. (1998) (see Fig. 2):

\[
\begin{align*}
 z_0 &= h(0.215 - \text{LAI}^{0.25} / 10) \\
 d &= h(0.1 + \text{LAI}^{0.2} / 2)
\end{align*}
\]

3.2. Data selection

A total of 10,252 hourly measuring points, recorded at HFEMS during 1993-2000, were screened to eliminate the influence of periods associated with instrumental and measurement problems and violation of the use of the flux-gradient theory.

In order to reduce the random measurement error in the concentration gradient, \(\text{O}_3 \) concentrations below 1 ppbv were rejected, resulting in approximately 0.1% of the data being omitted. In addition, periods with \([\text{O}_3] < [\text{NO}_y]\) (1.9%) were excluded to avoid periods when \(\text{O}_3 \) chemical reactions may exceed \(\text{O}_3 \) deposition (Munger et al., 1996). Wind speed below 1.0 m s\(^{-1}\) (1.2%) and drag coefficient below 0.02 (6.6%) were removed because of probable invalid flux-gradient relationships (Feliciano et al., 2001). Outliers in the data (2.9%) were removed, omitting any deposition velocity exceeding the maximum achievable deposition velocity \(V_{d,\text{max}} \) \((V_{d,\text{max}} = 1/(R_u + R_v)) \), by more than a factor of 1.5 (Matsuda et al., 2006). Periods with counter-gradient profiles (69.8%) which represent a downward flux (from EC measurement) while
with a negative gradient (upper level minus lower level) or vice versa were rejected (Park et al., 2014). The counter-gradient transport should be mainly due to the non-local nature of turbulent transport within canopies. Large sweep-ejection air motions associated with coherent structures that can deeply penetrate into the canopy are believed to be largely responsible for the exchange of momentum, heat and mass between air above- and within-canopy (e.g., Shaw et al., 1983; Thomas and Foken, 2007). A total of 74.0% of the data was omitted in the following analysis. This percentage value is slightly smaller than the sum of those from all the criteria due to the overlap of some data points between the criteria.

Fig. 3 shows the mean diurnal cycles of O₃ concentration at different heights derived from the original dataset and from the data after selection. The O₃ concentration increased during the early morning to reach a daily maximum of over 40 ppbv in the early afternoon and then decreased to ~30 ppbv at night. As shown in Fig. 3a, the gradient between the two heights above canopy (i.e. 29 and 24.1 m) was only about 0.4 ppbv on average, smaller than that between the levels above canopy (24.1 m) and inside canopy (18.3 m) (~0.8 ppbv). The gradients were relatively small during the morning (e.g., 0.1 ppbv at 11 LST) compared to the other periods of the day. In the morning, the most effective turbulent exchange between the air above- and within-canopy would substantially reduce the gradients (Sörgel et al., 2011). It is worth to mention that many earlier studies suggested that the effects of chemistry on O₃ flux divergence in the near surface were generally small, likely because the chemical reactions for O₃ have larger time scales than the turbulent transport (e.g.,
Gao et al., 1991; De Arellano and Duynkerke, 1992; Duyzer et al., 1997; Padro et al., 1998; Stella et al., 2012). After screening the data with the criteria, the gradients among these three levels were significantly larger, reaching up to 1.0 ppbv and 1.6 ppbv, respectively (see Fig. 3b).

4. Results and Discussion

4.1 Comparison of \(V_d(O_3) \) by the eddy-covariance and gradient methods

\(O_3 \) dry deposition velocity (\(V_d(O_3) \)) measured by the eddy-covariance (EC) technique at Harvard Forest typically ranged from 0.14-0.53 cm \(s^{-1} \), with a median value of 0.30 cm \(s^{-1} \) during the study period (Table 1). Since the screened deposition velocities still include certain outlying data, the mean value was calculated using data between 10\(^{th}\) and 90\(^{th}\) percentiles in order to reduce the influence of the outlying data. Following this approach, the mean \(V_d(O_3) \) by the EC technique was 0.34 cm \(s^{-1} \), which was significantly smaller than those by the gradient methods (Table 1). The ratios of mean \(V_d(O_3) \) by the modified gradient (MGM), modified Bowen-Ratio (MBR), and aerodynamic gradient (AGM) methods to that by the EC technique were 1.18, 1.45 and 2.28, respectively. Previous studies on the inter-comparisons of these methods for \(O_3 \) are few and the results varied. Muller et al. (2009) found that the mean \(V_d(O_3) \) by the AGM method was 1.60-3.47 times those by the EC technique at a grassland in Southern Scotland. Loubet et al. (2013) showed that the AGM method gave 40% larger \(V_d(O_3) \) than the EC technique over a mature maize field in Paris. Keronen et al. (2003) found that \(V_d(O_3) \) by the AGM and EC methods generally agreed well at a
Nordic pine forest, and so did Stella et al. (2012) over a bare soil in Paris. Droppo (1985) found close $V_d(O_3)$ values with the MBR and EC methods at a Northeastern U.S. grassland site.

Fig. 4 shows the diurnal cycles of $V_d(O_3)$ by the EC and gradient methods. Although the trends were similar, the MBR and AGM $V_d(O_3)$ were consistently larger than the EC $V_d(O_3)$. The EC $V_d(O_3)$ was about 0.2 cm s$^{-1}$ on average during night and reached a daily maximum of 0.5 cm s$^{-1}$ around noon. The $V_d(O_3)$ by the MBR and AGM methods reached around 0.8 and 1.3 cm s$^{-1}$ during the daytime, respectively and remained about 0.4 cm s$^{-1}$ during night. The MGM $V_d(O_3)$ agreed well with the EC $V_d(O_3)$ during the daytime but was slightly larger at night. This discrepancy has been identified in previous studies (Keronen et al., 2003; Stella et al., 2012) and could be due to the fact that nocturnal conditions affect both EC and gradient measurements. The EC technique is found to underestimate flux during calm night-time periods at Harvard Forest (Goulden et al., 1996). The stability correction functions used in the gradient methods (AGM and MGM) are subject to large uncertainties under stable conditions (Högström, 1988).

The very large differences in $V_d(O_3)$ between the AGM and EC methods should be caused by a combination of various factors. As can be seen from Eq. (4), any underestimation in the calculation of aerodynamic resistance (R_a) would directly transfer to the overestimation of V_d. Uncertainties in R_a from using different formulas are generally on the order of 30% over a whole canopy (Zhang et al., 2003). In the case of Eq. (4), uncertainties can be larger than 30% if other uncertainties from the
related parameters are larger. The potential underestimation in R_a (Eq. 4) also explains the small overestimation in V_d from the MGM method, in which the same R_a formula is used, although plays a second role. Measurement uncertainties in concentration gradients could also cause big discrepancies between the AGM and EC methods, especially under small gradient conditions. This is supported by the finding that the MBR method also overestimated V_d when compared with the EC measurements.

As shown in Fig. 5, the EC $V_d(O_3)$ exhibited a significant seasonal pattern with peak values in summer (~0.5 cm s$^{-1}$) and small values in winter (0.15-0.28 cm s$^{-1}$). Both the MGM and MBR methods captured this seasonal cycle, but the MGM method produced a higher $V_d(O_3)$ than the EC technique during winter (December-February) and the MBR method gave a significant overestimation in summer (June-September). The monthly AGM $V_d(O_3)$ was consistently larger than the EC $V_d(O_3)$ and exhibited a less clear seasonal pattern with alternating increases and decreases in the $V_d(O_3)$.

4.2 Sensitivity of $V_d(O_3)$ by the modified gradient method to the key parameters/formulas

As shown in Section 4.1, the MGM method performed better than the MBR and AGM methods. This improvement should mainly be attributed to reductions in errors of O$_3$ concentration gradients. However, the MGM method increased the complexity in the algorithm and added more model parameters, which may in turn increase the uncertainty in the estimated $V_d(O_3)$.

To test the sensitivity of the estimated $V_d(O_3)$ by the MGM method to the key
parameters/formulas, calculations were conducted by changing the parameters/formulas within a reasonable range. For some single-value parameters (i.e. roughness length, displacement height, wind speed attenuation coefficient, and leaf area index), sensitivity tests were conducted by increasing or decreasing the value by 10%.

As shown in Fig. 6 and Table 2, the MGM $V_d(O_3)$ was highly sensitive to the changes in wind speed attenuation coefficient and displacement height. Higher wind speed attenuation coefficient could result in lower within-canopy wind speed (Eq. 17) and thus lower eddy exchange coefficient and $V_d(O_3)$ (Table 2). Based on a least-square fitting of within-canopy wind profiles measured at Harvard Forest for noon-periods in summer, the attenuation coefficient was estimated to be ~10.6 at Harvard Forest. Cionco (1972) suggested that the attenuation coefficient varies with leaf area. Therefore, the application of this value throughout the whole year could produce a certain uncertainty in the estimated $V_d(O_3)$.

The MGM $V_d(O_3)$ increased when the displacement height increased or vice versa (Fig. 6, Table 2). Sakai et al. (2001) calculated the displacement height at Harvard Forest using noon-period measurements and indicated the ratio of displacement height to canopy height was 0.77 in summer with foliated canopy and 0.6 in winter with leafless canopy. In this study, we estimated a close value in summer (0.79) and a slightly higher value in winter (0.66) using the method proposed by Meyers et al. (1998) (Fig. 2). The overestimation of the displacement height could partly explain the overestimation of $V_d(O_3)$ by the MGM method during December to
February (Fig. 5).

Fig. 6 shows that the MGM $V_d(O_3)$ was less sensitive to the changes of roughness length and leaf area index. The relative differences in the estimated $V_d(O_3)$ were less than 2% when roughness length and leaf area index varied by 10% (Table 2).

Meyers et al. (1998) provided three typical types of leaf area density profiles, which are significantly different in shape from the profile in Harvard Forest used in this study (see Fig. 7). We conducted sensitivity experiments by replacing the Harvard Forest profile with those in Meyers et al. (1998) to assess the impact of vertical profile of leaf area density on the determination of $V_d(O_3)$. As shown in Fig. 6 and Table 2, the vertical profile of leaf area density impacted the estimated $V_d(O_3)$ greatly, with a relative difference in $V_d(O_3)$ of above 50%. The profile with higher leaf density in the upper canopy (profile 3) resulted in a higher $V_d(O_3)$ while the profile with abundant understory plants (profile 1) led to a lower $V_d(O_3)$.

In this study, the stability correction functions proposed by Businger et al. (1971) and modified by Högström (1988) were used, but several others exist, such as those by Dyer (1974), Paulson (1970), and Webb (1970). Fig. 6 indicated that uncertainties in the stability correction functions for heat (Ψ_h) and momentum (Ψ_m) had little impact on the MGM $V_d(O_3)$ values. The relative difference of V_d was less than 4% for different Ψ_h and less than 1% for different Ψ_m. Stella et al. (2012) found that the variation of $V_d(O_3)$ on different Ψ_h was roughly 10% on average when using the AGM method. Ψ_h influences the estimation of V_d due to the impact on the calculation of
turbulent transfer above the canopy. As the MGM method considered both the above-
and within-canopy turbulence transfer, the MGM $V_d(O_3)$ values were thus less
sensitive to the choice of Ψ_h.

5. Conclusions and Recommendations

A modified micrometeorological gradient method was developed to quantify O$_3$ dry
deposition over a forest canopy making use of concentration gradients between levels
above and below the canopy top. The MGM method produced close $V_d(O_3)$ to the
eddy-covariance measurements at Harvard Forest during daytime, although slightly
overestimated the measurements at night. The modified method seemed to be an
improvement compared to the two existing flux-gradient methods (AGM and MBR)
in terms of predicted long-term mean, diurnal and seasonal cycles of $V_d(O_3)$.

Sensitivity tests show that model parameters for MGM including wind speed
attenuation coefficient, canopy displacement height and vertical distribution of leaf
density were first-order parameters affecting the estimated $V_d(O_3)$. Model results were
less sensitive to roughness length, leaf area index, and stability function for heat and
momentum.

The newly-developed MGM method has potential to be applied routinely to
monitor/estimate long-term deposition fluxes of O$_3$ and other similar pollutants over
tall canopies. The within-canopy measurement should be close to but not lower than
the canopy closure height where most of the flux exchange occurs. Key model
parameters mentioned above need to be characterized as accurate as possible. For
example, seasonal profiles of vertical distribution of leaf area density, canopy
displacement height, and vertical wind profile related parameters are needed.

Acknowledgments

This work is funded by the Clean Air and Regulatory Agenda program. X. Wang is
supported by the Natural Science Foundation of China (grant 41275018).

References

Bache, D. H.: Momentum transfer to plant canopies: influence of structure and

Baldocchi, D.: A multi-layer model for estimating sulfur dioxide deposition to a

Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P.,
Bernhofer, C., Davis, K., and Evans, R.: FLUXNET: A new tool to study the
temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor,

exchanges of biologically related gases with micrometeorological methods,

fluxes and O$_3$ deposition velocity over maize as measured by the
eddy-covariance and the aerodynamic gradient methods, Agr. Forest Meteorol.,

Matsuda, K., Watanabe, I., Wingpud, V., Theramongkol, P., and Ohizumi, T.:
Deposition velocity of O3 and SO2 in the dry and wet season above a tropical

Bowen-ratio technique to measure fluxes of trace gases, Atmos. Environ., 30,
3321-3329, 1996.

model for inferring dry deposition using standard meteorological measurements,

Muller, J., Coyle, M., Fowler, D., Gallagher, M. W., Nemitz, E. G., and Percival, C.
J.: Comparison of ozone fluxes over grassland by gradient and eddy covariance

C., Goldstein, A. H., Moore, K. E., and Fitzjarrald, D. R.: Atmospheric
deposition of reactive nitrogen oxides and ozone in a temperate deciduous forest
and a subarctic woodland: 1. Measurements and mechanisms, J. Geophys. Res.,
101, 12639-12657, 1996.

Padro, J., Zhang, L., and Massman, W. J.: An analysis of measurements and
modelling of air-surface exchange of NO-NO$_2$-O$_3$ over grass, Atmos. Environ.,

Stella, P., Loubet, B., Laville, P., Lamaud, E., Cazaunau, M., Laufs, S., Bernard, F.,

Figure Captions

Fig. 1. Schematic of flux and concentration gradient measurements at Harvard Forest Environmental Measurement Site.

Fig. 2. Monthly variation of leaf area index (LAI), the displacement height(d) to canopy height (h) ratio, and the roughness length (z_0) to canopy height ratio at Harvard Forest.

Fig. 3. Mean diurnal cycles of O_3 concentration at heights of 29, 24.1, and 18.3 m above ground level at Harvard Forest during 1993-2000. (a) was derived from the original data, and (b) was from the data after selection.

Fig. 4. (a) The box-plot of hourly $V_d(O_3)$, and (b) diurnal average cycles of $V_d(O_3)$ at Harvard Forest during 1993-2000 as measured by the eddy-covariance (EC) and three gradient methods (MGM: the modified gradient method; MBR: the modified Bowen-Ratio method; AGM: the aerodynamic gradient method). In each box, the central mark is the median, and the edges of the box are the 10th and 90th percentiles. Note that the average is the arithmetical mean of data between 10th and 90th percentiles.

Fig. 5. Monthly average of $V_d(O_3)$ at Harvard Forest during 1993-2000 as measured by the eddy-covariance (EC) and three gradient methods (MGM: the modified gradient method; MBR: the modified Bowen-Ratio method; AGM: the aerodynamic gradient method). Note that the average is the arithmetical mean of data between 10th
and 90th percentiles.

Fig. 6. Diurnal average cycles of $V_d(O_3)$ over Harvard Forest during 1993-2000 by the modified gradient method (MGM) with different parameter/formula changes and compared with that by the eddy-covariance (EC) technique: (a) roughness length, (b) displacement height, (c) wind speed attenuation coefficient, (d) leaf area index, (e) vertical profile of leaf area density, (f) stability correction functions for heat, and (g) stability correction functions for momentum.

Fig. 7. Vertical profiles of leaf area density in Harvard Forest and those used in sensitivity experiments.
Table 1. Statistics on hourly $V_d(O_3)$ (cm s$^{-1}$) at Harvard Forest during 1993-2000 as measured by the eddy-covariance (EC) and three gradient methods (MGM: the modified gradient method; MBR: the modified Bowen-Ratio method; AGM: the aerodynamic gradient method).

<table>
<thead>
<tr>
<th>Percentile</th>
<th>EC</th>
<th>MGM</th>
<th>MBR</th>
<th>AGM</th>
</tr>
</thead>
<tbody>
<tr>
<td>10th</td>
<td>0.05</td>
<td>0.09</td>
<td>0.03</td>
<td>0.11</td>
</tr>
<tr>
<td>25th</td>
<td>0.14</td>
<td>0.19</td>
<td>0.12</td>
<td>0.26</td>
</tr>
<tr>
<td>Median</td>
<td>0.30</td>
<td>0.35</td>
<td>0.35</td>
<td>0.62</td>
</tr>
<tr>
<td>75th</td>
<td>0.53</td>
<td>0.61</td>
<td>0.85</td>
<td>1.27</td>
</tr>
<tr>
<td>90th</td>
<td>0.83</td>
<td>0.96</td>
<td>1.86</td>
<td>2.28</td>
</tr>
<tr>
<td>Meana</td>
<td>0.34</td>
<td>0.40</td>
<td>0.49</td>
<td>0.77</td>
</tr>
</tbody>
</table>

a the arithmetical mean of data between 10th and 90th percentiles
Table 2. Relative difference between $V_d(O_3)$ determined by the modified gradient method with different parameters/formulas (%)\(^\text{a}\)

<table>
<thead>
<tr>
<th></th>
<th>z_0</th>
<th>d</th>
<th>α</th>
<th>LAI</th>
<th>LAD(^b)</th>
<th>Ψ_h(^c)</th>
<th>Ψ_m(^c)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-10%</td>
<td>+10%</td>
<td>-10%</td>
<td>+10%</td>
<td>-10%</td>
<td>Prf 1</td>
<td>Prf 2</td>
</tr>
<tr>
<td>Median</td>
<td>-1.1</td>
<td>1.1</td>
<td>-4.8</td>
<td>10.8</td>
<td>10.1</td>
<td>-9.3</td>
<td></td>
</tr>
<tr>
<td>Mean(^d)</td>
<td>-1.0</td>
<td>1.1</td>
<td>-4.7</td>
<td>10.4</td>
<td>10.2</td>
<td>-9.6</td>
<td>-0.6</td>
</tr>
</tbody>
</table>

\(^a\) Relative difference = (Sensitivity – Base) / Base × 100%

\(^b\) Vertical profile of leaf area density from Meyers et al. (1998) as shown in Fig. 7

\(^d\) the arithmetical mean of data between 10\(^{th}\) and 90\(^{th}\) percentiles
Fig. 1. Schematic of flux and concentration gradient measurements at Harvard Forest Environmental Measurement Site.
Fig. 2. Monthly variation of leaf area index (LAI), the displacement height(d) to canopy height (h) ratio, and the roughness length (z_0) to canopy height ratio at Harvard Forest.
Fig. 3. Mean diurnal cycles of O$_3$ concentration at heights of 29, 24.1, and 18.3 m above ground level at Harvard Forest during 1993-2000. (a) was derived from the original data, and (b) was from the data after selection.
Fig. 4. (a) The box-plot of hourly $V_d(O_3)$, and (b) diurnal average cycles of $V_d(O_3)$ at Harvard Forest during 1993-2000 as measured by the eddy-covariance (EC) and three gradient methods (MGM: the modified gradient method; MBR: the modified Bowen-Ratio method; AGM: the aerodynamic gradient method). In each box, the central mark is the median, and the edges of the box are the 10th and 90th percentiles. Note that the average is the arithmetical mean of data between 10th and 90th percentiles.
Fig. 5. Monthly average of $V_d(O_3)$ at Harvard Forest during 1993-2000 as measured by the eddy-covariance (EC) and three gradient methods (MGM: the modified gradient method; MBR: the modified Bowen-Ratio method; AGM: the aerodynamic gradient method). Note that the average is the arithmetical mean of data between 10th and 90th percentiles.
Fig. 6. Diurnal average cycles of $V_{d}(O_{3})$ over Harvard Forest during 1993-2000 by the modified gradient method (MGM) with different parameter/formula changes and compared with that by the eddy-covariance (EC) technique: (a) roughness length, (b) displacement height, (c) wind speed attenuation coefficient, (d) leaf area index, (e) vertical profile of leaf area density, (f) stability correction functions for heat, and (g) stability correction functions for momentum.
Fig. 7. Vertical profiles of leaf area density in Harvard Forest and those used in sensitivity experiments.