Sources, transport and deposition of iron in the global atmosphere

R. Wang1,2,3, Y. Balkanski1,3, O. Boucher4, L. Bopp1, A. Chappell5, P. Ciais1,3, D. Hauglustaine1, J. Peñuelas6,7, and S. Tao2,3

1 Laboratoire des Sciences du Climat et de l’Environnement, CEA CNRS UVSQ, Gif-sur-Yvette, France
2 Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
3 Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
4 Laboratoire de Météorologie Dynamique, IPSL/CNRS, Université Pierre et Marie Curie, France
5 CSIRO Land & Water National Research Flagship, GPO Box 1666, Canberra, ACT 2601, Australia
6 Consejo Superior de Investigaciones Científicas, Global Ecology Unit CREAF-CEAB-UAB, Spain
7 Centre de Recerca Ecologica i Aplicacions Forestals, Spain
Abstract

Atmospheric deposition of iron (Fe) plays an important role in controlling oceanic primary productivity. However, the sources of Fe in the atmosphere are not well understood. In particular, the combustion sources of Fe and their deposition over oceans are not accounted for in current biogeochemical models of the carbon cycle. Here we used a mass-balance method to estimate the emissions of Fe from the combustion of fossil fuels and biomass by accounting for the Fe contents in fuel and the partitioning of Fe during combustion. The emissions of Fe attached to aerosols from combustion sources were estimated by particle size, and their uncertainties were quantified by a Monte Carlo simulation. The emissions of Fe from mineral sources were estimated using the latest soil mineralogical database to date. As a result, the total Fe emissions from combustion averaged for 1960–2007 were estimated to be 5.1 Tg yr\(^{-1}\) (90 % confidence of 2.2 to 11.5). Of these emissions, 2, 33 and 65 % were emitted in particles <1 µm (PM\(_1\)), 1–10 µm (PM\(_{1-10}\)), and >10 µm (PM\(_{>10}\)), respectively, compared to total Fe emissions from mineral sources of 41.0 Tg yr\(^{-1}\). For combustion sources, different temporal trends were found in fine and medium-to-coarse particles, with a notable increase in Fe emissions in PM\(_1\) and PM\(_{1-10}\) since 2000 due to a rapid increase from motor vehicles. These emissions have been introduced in a global 3-D transport model run at a spatial resolution of 0.94° latitude by 1.28° longitude to evaluate our estimation of Fe emissions. The modelled Fe concentrations were compared to measurements at 825 sampling stations. The deviation between modelled and observed Fe concentrations attached to aerosols at the surface was within a factor of two at most sampling stations, and the deviation was within a factor of 1.5 at sampling stations dominated by combustion sources. We analyzed the relative contribution of combustion sources to total Fe concentrations over different regions of the world. The new mineralogical database led to a modest improvement in the simulation relative to station data even in dust dominated regions, but could provide useful information on the chemical forms of Fe in dust for coupling with ocean biota models. We estimated a total Fe deposition
sink of 8.4 Tg yr\(^{-1}\) over global oceans, 6.6\% of which originated from the combustion sources. The higher than previously estimated combustion-related Fe emissions implies a larger atmospheric input of soluble Fe over the northern Atlantic and northern Pacific Oceans, which is expected to enhance the biological carbon pump in those regions.

1 Introduction

Sea-water dissolved iron (Fe) concentration is a primary factor that limits or co-limits the growth of phytoplankton in large regions of the global oceans (Martin et al., 1991; Moore et al., 2013). As such, Fe availability influences the transfer and sequestration of carbon into the deep ocean (Boyd et al., 2000; Moore et al., 2004). Both ice-core and marine-sediment records indicate high rates of aeolian dust and hence Fe supply to the oceans at the Last Glacial Maximum, implying a potential link between Fe availability, marine productivity, atmospheric CO\(_2\) and climate through Fe fertilization (Martin, 1990; Ridgwell and Watson, 2002). Over the Industrial Era, the increase of Fe deposition in dust was estimated to be responsible for a decrease of atmospheric CO\(_2\) by 4 ppm (Mahowald et al., 2011), with a large uncertainty.

Atmospheric deposition provides an important source of Fe to the marine biota (Martin, 1990; Duce and Tindale, 1991; Johnson et al., 1997; Fung et al., 2000; Gao et al., 2001; Conway and John, 2014). Early studies of the effects of Fe fertilization, however, mostly focused on aeolian dust sources (Hand et al., 2004; Luo et al., 2003; Gregg et al., 2003; Moore et al., 2004; Mahowald et al., 2005; Fan et al., 2006). Observed concentrations of soluble Fe were not properly captured by the models simulating the atmospheric transport, chemical processing and deposition of Fe in aerosols (Hand et al., 2004; Luo et al., 2005; Fan et al., 2006), thus suggesting the existence of other sources. Guieu et al. (2005) proposed that the burning of biomass could be an additional source of soluble Fe in the Ligurian Sea. Chuang et al. (2005) reported that soluble Fe observed at an atmospheric deposition measurement station in Korea was not
dominated by mineral sources, even during dust storms. Sedwick et al. (2007) hypothesized that the anthropogenic emissions of Fe from combustion could play a significant role in the atmospheric input of bioavailable Fe to the surface of the Atlantic Ocean.

The first estimate of Fe emissions from fossil fuels and biomass burning reported a total Fe emission of 1.7Tgyr^{-1} (Luo et al., 2008). Ito and Feng (2010) subsequently obtained a lower estimate of 1.2Tgyr^{-1}. By prescribing a high emission factor of Fe from ships, Ito (2013) later derived a total Fe emission of 1.7Tgyr^{-1} and suggested a large contribution by shipping to the deposition of soluble Fe over the northern Pacific Ocean and the East China Sea. However, these authors suggested that more work was required to reduce the uncertainty in Fe emissions, particularly from the combustion of petroleum and biomass.

The mineral composition of dust is a key factor in the chemical forms of Fe, and it determines the solubility and thus the bioavailability of Fe. Nickovic et al. (2012) developed a global data set to represent the mineral composition of soil in arid and semi-arid areas. This mineralogical data set improved the agreement between simulated and measured concentrations of soluble Fe (Nickovic et al., 2013; Ito and Xu, 2014). More recently, Journet et al. (2014) developed a new data set of soil mineralogy (including soil Fe content) covering most dust source regions of the world at a resolution of $0.5^\circ \times 0.5^\circ$, with the aim to improve the modelling of the chemical forms of Fe in dust.

In this study, we estimated the emissions of Fe from combustion sources for 222 countries/territories over 1960 to 2007 period using a new method based on Fe content of fuel and Fe budget during combustion. We re-estimated Fe emissions from mineral sources based on the latest mineralogical database. Our estimates of Fe sources were evaluated by an atmospheric transport model at a fine resolution. The impact of the estimated combustion-related and mineral emissions of Fe on the model-data misfits at 825 stations measuring Fe concentration in surface aerosol and 30 stations measuring Fe deposition was investigated for different regions and stations.
2 Data and methodology

2.1 Emissions of Fe from combustion sources

A global emission inventory of Fe from combustion was developed, covering 222 countries/territories and the 1960 to 2007 period. The sources of Fe emission included the combustion of coal, petroleum, biofuel and biomass (55 combustion fuel types, defined in Wang et al., 2013). In contrast to previous studies (Luo et al., 2008; Ito, 2013), the emission of Fe was calculated based on the Fe content in each type of fuel, the partitioning of Fe between residue ash, cyclone ash and fly ash, the size distribution of Fe-contained particles, and the efficiency of removal by different type of control device. This method has been recently used to estimate the emission of phosphorus from combustion sources (Wang et al., 2015). Only the fly ash is emitted to the atmosphere but other types of ashes are not. For a specific combustion fuel type, the emission \((E)\) can be calculated as:

\[
E = a \cdot b \cdot c \cdot (1 - f) \cdot \sum_{x=1}^{4} J_x \cdot \left[\sum_{y=1}^{A_y} (1 - R_{x,y}) \right]
\]

where \(x\) is a given particle size discretized into \(n\) bins (two bins for petroleum and three bins for coal and biomass), \(y\) is a specific control device (cyclone, scrubbe, electrostatic precipitator, or no control), \(a\) is the consumption of fuel, \(b\) is the combustion rate, \(c\) is the Fe content of the fuel, \(f\) is the fraction of Fe retained in residue ash, \(J_x\) is the fraction of Fe emitted in particle size \(x\), \(A_y\) is the relative contribution of a given type of control device to the total fuel consumption, and \(R_{x,y}\) is the removal efficiency of control device \(y\) for particle size \(x\) (Table S1). The Fe in coal fly ash was divided into three size bins: 0.1–0.3 % in PM\(_1\) (diameter < 1 µm), 10–30 % in PM\(_{1-10}\) (diameter 1–10 µm), and the remainder in PM\(_{>10}\) (diameter > 10 µm) (Querol et al., 1995; Yi et al., 2008). The Fe in biomass fly ash was also divided into three size bins: 1–3 % in PM\(_1\), 50–60 % in PM\(_{1-10}\), and the remainder in PM\(_{>10}\) (Latva-Somppi et al., 1998; Valmari et al., 1999). The Fe
oil fly ash was divided into two size bins: 80–95 % in PM$_{1}$ and the remainder in PM$_{1–10}$ (Mamane et al., 1986; Kittelson et al., 1998). Fuel consumption data are distributed spatially at a 0.1° × 0.1° resolution in PKU-FUEL-2007 (Wang et al., 2013), established for year 2007, combined with country data to obtain temporal changes from 1960 to 2006 (Chen et al., 2014; Wang et al., 2014a). Fixed published combustion rates (b) were assigned to coal (98), petroleum (98 %), wood in stoves (88), wood in fireplaces (79), crop residues (92), and biomass burning (87–94) (Johnson et al., 2008; Lee et al., 2005; Zhang et al., 2008). The percentage of each control device (A_y) was calculated by year and country in our previous studies (Chen et al., 2013; Wang et al., 2014a, b) using a method based on S-shaped curves (Grubler et al., 1999; Bond et al., 2007).

2.2 Fe contents in fuel

Fe contents in coal were derived for 45 major coal-producing countries, such as China, US, Russia, India, Indonesia and Australia, from the World Coal Quality Inventory (Tewalt et al., 2010), which is based upon 1379 measured data in each country. The collected Fe content in coal followed log-normal distributions (Fig. S1), and the means and standard deviations (σ) of log$_{10}$-transformed Fe contents in coal were derived for each country (Table S2). Fe content of coal burned in each country was then calculated including imported coal using the coal-trading matrix among countries (Chen et al., 2014). The variation of Fe content among different coal types (which differs by 20 % between bituminous coal and lignite produced in Turkey as an example) is smaller than that of coal produced in different countries and thus ignored in our study. In addition to coal, Fe contents of wood, grass, and crop residues were taken from a review study (Vassilev et al., 2010), also following log-normal distributions (Fig. S1). The means and σ of the log$_{10}$-transformed Fe contents were thereby derived for wood, grass, and crop residues separately. In addition, the means and σ of Fe contents were 0.13±0.09 % for dung cakes (Sager et al., 2007) and 0.00024±0.00023 % for biodiesel (Chaves et al., 2011), 32±2 ppm for fuel oil (Bettinelli et al., 1995), 13±7 ppm for diesel, 3.3±2.6 ppm for gasoline, and 4.9±3.3 ppm for liquefied petroleum gas (Kim et al., 2013).
2.3 Partitioning of Fe in combustion

The fraction of Fe retained in residue ash (f in Eq. 1) during coal combustion has been measured for few real-world facilities: 43–45% in a power plant in India (Reddy et al., 2005), 30% in a power plant equipped with a bag-house in China (Yi et al., 2008), 40% in a fluidized bed boiler (Font et al., 2012), and 30–40% (measured for Mn, which is similar to Fe) in two power plants in China (Tang et al., 2013). We therefore applied a percentage of 30–45% for Fe retained in residue ash during the combustion of coal in industry and power plants. For the combustion of petroleum, 43 and 58% of the Fe in petroleum in a small-fire-tube boiler and a combustor representative for a larger utility boiler, respectively, were emitted in fly ash (Linak et al., 2000). A range of 43–58% was thus adopted for Fe emitted into fly ash for petroleum burned in power plants and industry. For solid biofuels burned in industry, 60–70% of the Fe was retained in the residue ash (Ingerslev et al., 2011; Narodoslawsky et al., 1996), which was the range adopted in this study.

The budget of Fe from the combustion of petroleum by motor vehicles has received little attention, likely due to the low Fe content in petroleum. Wang et al. (2003) reported that 93% Fe in petroleum was released into the atmosphere, and thus we applied a percentage of 93 ± 5% for Fe emitted into the atmosphere.

The partitioning of Fe from the combustion of various fuels in residential sector has not been studied. The concentrations of Fe in residue ash and fly ash are similar (Meji, 1994), so the fraction of Fe emitted into the atmosphere was derived from the ratio of the mass of Fe in fly ash to that in the fuel. We thereby derived the fraction of Fe retained in residue ash (f in Eq. 1) from the burning of anthracite coal (99.6 ± 0.4%) (Chen et al., 2006; Shen et al., 2010), bituminous coal (94 ± 3%) (Chen et al., 2006; Shen et al., 2010), straw (87 ± 8%) (Li et al., 2007), and wood (94 ± 5%) (Shen et al., 2012) burned in residential stoves or fireplaces.

Many studies measured the budget of elements other than Fe in the open burning of biomass. We collected the budget measured for elements whose physical and
chemical properties are similar to those for Fe (e.g. low volatility). For example, Raison et al. (1985) reported that 25–43% of the manganese was transferred to the atmosphere in 3 prescribed vegetation fires. Pivello and Coutinho (1992) reported that 44% of the potassium, 52% of the calcium and 42% of the magnesium were transferred to the atmosphere in a Brazilian savanna fire. Holscher et al. (1996) reported that 58% of the calcium and 41% of the magnesium in plants was transferred to the atmosphere during a deforestation fire in Brazil. Mackensen et al. (1996) reported that 16–31% of the potassium was transferred to the atmosphere for two plots of forest fires in eastern Amazonia. Obernberger et al. (1997) reported that 90–95% of the least volatile metals (cobalt, copper, and nickel) were retained in the residue ash in cereal fires. Chalot et al. (2012) reported that 70% of the copper and 55% of the zinc were bound in residue ash during the combustion of phytoremediated wood. Laclau et al. (2002) reported that 39% of the potassium, 21% of the calcium and 28% of the magnesium were transferred to the atmosphere in a savanna fire. In summary, we assumed that the partitioning of Fe is similar to these analogue elements, and applied ranges of 16–50% (forest fires), 21–55% (savanna fires), 41–58% (deforestation) and 25–43% (other wildfires) for the percentages of Fe emitted into the atmosphere.

2.4 Spatial allocation of Fe emissions from combustion

Iron emissions from combustion sources were allocated to 0.1° x 0.1° grids for 2007 and to 0.5° x 0.5° grids for 1960–2006. The annual emissions of Fe were estimated based on the 0.1° gridded fuel data in PKU-FUEL (Wang et al., 2013; available at http://inventory.pku.edu.cn/home.html) and on country-specific parameters for 2007. For other years, Fe emissions from fossil fuels and biofuel were first calculated at the national level and then allocated to 0.5° grids by sector (energy, residential, transportation, and industry) using the emission distribution of black carbon (BC) in each year for the same sector from the MACCity inventory (Lamarque et al., 2010; Granier et al., 2013) as a proxy. Gridded emissions from wildfires were estimated from carbon emission data at a resolution of 0.5° x 0.5° compiled by GFED3 (Global Fire Emissions Database).
Database version 3) (van der Werf et al., 2010) for 1997–2007 and by RETRO (REanalysis of the TROpospheric chemical composition over the past 40 years) for 1960–1996 (Schulz et al., 2008). RETRO does not provide data for deforestation fires separately, so that the average fractions of deforestation fires in total forest fires by GFED3 were applied for 1960–1996.

2.5 Uncertainty of Fe emissions from combustion

A Monte Carlo ensemble simulation was run 1000 times by randomly varying parameters in the model, including fuel consumption, the Fe content, the fraction of Fe retained in the residue ash, the size distribution of Fe emission, the technology division of control device. Normal (petroleum, biodiesel, and dung cake) or log-normal (coal, grass, wood, and crop residues) distribution was adopted for the Fe content of fuel, as described above. The fraction of Fe retained in the residual ash was assumed to be uniformly distributed with ranges summarized in Sect. 2.3. Uncertainties in the fuel-consumption data and the technology divisions were quantified by prescribing a uniform distribution with a fixed relative standard deviation, as introduced in the previous studies (Wang et al., 2013, 2014a; Chen et al., 2013).

2.6 Emissions of Fe from mineral sources

We estimated the content of Fe in dust based on the largest mineralogical database to date (Journet et al., 2014). Journet et al. (2014) provided global 0.5° × 0.5° maps for six types of Fe-containing minerals (illite, smectite, kaolinite, chlorite, vermiculite, and feldspars) and two types of Fe oxides (hematite and goethite) in the clay (< 2.0 µm) and only goethite in the silt (> 2.0 µm) fraction. A global 0.5° × 0.5° map of Fe content in clay fraction was obtained (Fig. S2) by combining the Fe content of each mineral (Journet et al., 2008). The LMDz-INCA global model (Sect. 2.7) was run for 2000–2011 at a resolution of 0.94° latitude by 1.28° longitude to produce an averaged field of dust.
2.7 Modelling the atmospheric transport and deposition of Fe aerosols

We used the LMDz-INCA global chemistry-aerosol-climate model coupling on-line the LMDz (Laboratoire de Météorologie Dynamique, version 4) General Circulation Model (Hourdin et al., 2006) and the INCA (INteraction with Chemistry and Aerosols, version 4) model (Hauglustaine et al., 2004; Schulz, 2007; Balkanski, 2011) to simulate the atmospheric transport and distributions of Fe emitted from combustion and mineral sources. The interaction between the atmosphere and the land surface is ensured through the coupling of LMDz with the ORCHIDEE (ORganizing Carbon and Hydrology In Dynamic Ecosystems, version 9) dynamical vegetation model (Krinner et al., 2005). In the present configuration, the model was run at a horizontal resolution of 0.94° latitude by 1.28° longitude with 39 vertical layers from the surface to 80 km. In all simulations, meteorological data from the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis have been used. The relaxation of the GCM winds towards ECMWF meteorology was performed by applying at each time step a correction term to the GCM predicted u and v wind components with a relaxation time of 6 h (Hourdin and Issartel, 2000; Hauglustaine et al., 2004). The ECMWF fields are provided every 6 h and interpolated onto the LMDz grid.

In the model, the emissions of dust were calculated as a function of wind velocities at a height of 10 m (with a threshold value) and of the clay content from dust source locations (Schulz et al., 1998). The simulated concentrations and optical depths of dust have been validated by measurements (Schulz et al., 1998; Guelle et al., 2000; Balkanski et al., 2004, 2007). For transport, the model uses a computationally efficient scheme to represent the size distribution of dust. The tracer is treated as a log-normal distribution with a mass median diameter (MMD) and a fixed geometric σ (defined as the σ of log-transformed sizes). Hygroscopic growth and removal processes are assumed to affect the MMD rather than the width of the distribution (Schulz et al., 1998, 2007). After being emitted, dust with a MMD of 2.5 µm and a geometric σ of
2.0 is transported and removed by sedimentation (Slinn and Slinn, 1980), wet and dry deposition (Balkanski et al., 2004, 2010, 2011).

The emitted Fe from combustion sources were partitioned into three size bins, with Fe in PM$_1$ as a fine mode (MMD = 0.34 µm, geometric σ = 1.59), Fe in PM$_{1-10}$ as a coarse mode (MMD = 3.4 µm, geometric σ = 2.0), and Fe in PM$_{>10}$ as a super coarse mode (MMD = 34. µm, geometric σ = 2.) (Mamane et al., 1986; Querol et al., 1995; Valmari et al., 1999). Sedimentation, dry and wet deposition accounted for the Fe in PM$_{1-10}$ and PM$_{>10}$, as for dust, and the Fe in PM$_1$ as for BC (Balkanski et al., 2004, 2010, 2011). Approximately 25% of the Fe in fine particles (diameter < 0.61 µm) is bound to organic matter and thus insoluble (Espinosa et al., 2002), so we assumed that 25% of the Fe in PM$_1$ was simulated as hydrophobic and not subject to in-cloud scavenging, while the remainder was treated as hydrophilic BC. We did not account for the conversion from hydrophobic to hydrophilic Fe in the atmospheric transport, and the ratio between the two phases varied due to their different removal rates in the atmosphere.

A total of eight simulations were run for a typical year (2005) for the Fe emitted from the combustion of coal (three size classes), petroleum (two size classes), and biomass (three size classes). The gridded Fe emissions from combustion as monthly means averaged over 1990–2007 were used as an input to the model. Between 1990 and 2007, the modelled Fe concentrations attached to aerosols in the surface layer of the atmosphere at a measurement station was derived by scaling the modelled Fe concentrations for year 2005 by the ratio of the national Fe emission in the year to the 1990–2007 average in the country.
3 Emission sources of Fe

3.1 Emissions of Fe from combustion

Based on the fuel consumptions and Fe emission rates, the average global Fe emissions for 1960–2007 was 5.1 Tgyr\(^{-1}\) from combustion sources, with 0.041, 1.32, and 3.7 Tgyr\(^{-1}\) of Fe emitted in PM\(_1\), PM\(_{1-10}\), and PM\(_{>10}\), respectively. The Monte Carlo simulation of emission parameters shows that the Fe emissions were log-normally distributed (Fig. 1). The \(\sigma\) of log\(_{10}\)-transformed Fe emissions (log\(_{10}\)\(\sigma\)) was 0.22 for the global total, corresponding to a 90 % confidence range of 2.24 to 11.52 Tgyr\(^{-1}\), or −56 to +127 % relative to the central estimate. In addition, the log\(_{10}\)\(\sigma\) varied from 0.09 to 0.27 for the emissions from different fuels (Fig. 1a). Due to a relatively large error in the Fe content of coal, the range of uncertainty of Fe emission from coal was larger than that of other fuels. Removing the variations of Fe content in fuel reduced the overall variation (log\(_{10}\)\(\sigma\)) of Fe emissions by 66 % (coal), 34 % (petroleum) and 52 % (biomass). Consequently, a large contribution of uncertain Fe content in coal causes the range of uncertainty of Fe emissions in coarse particles to be larger than in fine particles (Fig. 1b).

The relative contributions of combustion sources to Fe emissions in different sizes are shown in Fig. 2. It shows that Fe emissions in medium-to-coarse particles (PM\(_{1-10}\) or PM\(_{>10}\)) are dominated by the combustion of coal in power plants and industry, followed by a notable contribution from the natural burning of biomass. By contrast, the combustion of petroleum (36 %), followed by coal (38 %) and biomass (26 %), contributed most to Fe emissions in fine particles (PM\(_1\)). The different source profiles are important for determining the Fe solubility and are discussed in Sect. 7. For example, the observed solubility of Fe might be primarily controlled by the particle size of dust (Baker and Jickells, 2006), but also varies in the fly ash from different fuels (Schroth et al., 2009; Bowie et al., 2009; Chen et al., 2012).
3.2 Spatial distributions of Fe emissions from combustion sources

Fe emissions for 2007 from combustion in fine (PM$_1$) and medium-to-coarse (PM$_{1-10}$ and PM$_{>10}$) particles are shown in Fig. 3. The spatial patterns were similar between Fe emitted in fine and medium-to-coarse particles, with high emission density in the populated regions of East Asia and South Asia, the industrialized regions of Europe and North America, and the frequently burned forests and savannas of South America and Africa. Some patterns, however, also differed between them regionally. For example, the Fe emission density of medium-to-coarse particles was much higher in Asia than in western Europe and eastern North America. By contrast, the Fe emission density of fine particles has similar high values among these regions, due to a large contribution by the burning of petroleum in motor vehicles and power plants in Europe and North America, and to a low removal efficiency for fine particles in industry (Yi et al., 2008). Particularly, there were notable high Fe emission density in fine particles in the northern Atlantic and northern Pacific Oceans from shipping, which can contribute to soluble Fe in the water through local deposition. The emission density of Fe in PM$_1$ is much lower than Fe in PM$_{1-10}$ and PM$_{>10}$, and but still importance due to a higher solubility and longer lifetime (Baker and Jickells, 2006).

3.3 Temporal trends of Fe emissions from combustion sources

The temporal changes of Fe emissions from combustion sources for 1960–2007 were derived for fine (PM$_1$) and medium-to-coarse (PM$_{1-10}$ and PM$_{>10}$) particles (Fig. 4). Changes in both fuel consumption and control devices together control the temporal trends. For example, Fe emissions of both fine and medium-to-coarse particles had decreased since 1990 in Europe due to the switch from coal to gas and other sources of energy (i.e. solar and nuclear energy, International Energy Agency, 2008), and also to policy regulations to implement emission control facilities (Vestreng et al., 2007). Similarly, the replacement of residential coal by petroleum or natural gas, and the implementation of policies enforcing control facilities around 1990 in China (Ministry
of Environmental Protection of the People’s Republic of China, 2008) together led to a slowdown or even a reversal of the increase of Fe emissions in the region.

The temporal trends of Fe emissions of fine and medium-to-coarse particles also notably differed. Before 1985, Fe emissions of fine and medium-to-coarse particles both increased, due to a rapid increase in fuel consumptions. After 1985, Fe emissions of fine particles first decreased and re-increased after 2000, while Fe emissions of medium-to-coarse particles continuously decreased. Two explanations can account for the decoupling. First, the control devices equipped in industry can remove Fe in medium-to-coarse particles more effectively than fine particles (Yi et al., 2008). Second, the consumption of petroleum has been increasing in both developed and developing countries, sustaining fine-particle Fe emissions. In particular, Fe emission in fine particles in Asia had increased recently after a respite in the 1990s. The spatial distributions of Fe emissions from combustion sources from 1960 to 2007 are shown in Fig. S3. The emission centers have shifted from Europe and North America to Asia over the past five decades, in agreement with the trends shown in Fig. 4.

3.4 Mineral sources of Fe

Based on the soil mineralogical data (Journet et al., 2014), the estimated global total emission of Fe from mineral sources ranged from 34.4 to 54.2 Tgyr\(^{-1}\) for 2000–2011, with an average emission of 41.0 Tgyr\(^{-1}\). The modelled average global total emission of dust for 2000–2011 was 1040 Tgyr\(^{-1}\), close to the median of 14 AeroCom Phase I models (1120 Tgyr\(^{-1}\)) (Huneeus et al., 2011). Our estimated Fe emission from dust is lower than the 55–74 Tgyr\(^{-1}\) reported by Luo et al. (2008) and Ito (2013), mainly because the emission of dust is larger in the models used by these authors. For example, the model used by Luo et al. (2008) simulated a total dust emission of 4313 Tgyr\(^{-1}\) higher than other 13 AeroCom Phase I models (Huneeus et al., 2011), including LMDz-INCA. However, the dust emission is very size-dependent, and the emissions should be evaluated by prescribing the size distribution in source regions to the transport models.
The average Fe emission density from mineral sources for 2000–2011 is mapped in Fig. 5a. The major source regions include the Sahara Desert, southern Africa, Middle East, northwestern China, southwestern North America, southern South America, and western Australia. The estimated Fe emission map based on the new soil mineralogical data set (Journet et al., 2014) is also compared to that derived using a constant Fe content (3.5 %) (Fig. 5b) as measured by Taylor and McLennan (1985) and widely used in other models (Luo et al., 2008; Mahowald et al., 2009; Ito, 2013). The new mineralogical data set led to a larger Fe emission density over the Sahara, Arabian, and Takla-Makan Deserts, and a lower Fe emission density over the Gobi Desert, reflecting the difference of Fe content of dust relative to 3.5 % (Fig. S2).

3.5 Comparison of Fe emissions with previous studies

Table 1 summarizes the comparison of our estimations of Fe emissions with previous studies (Bertine and Goldberg, 1971; Luo et al., 2008; Ito, 2013). Bertine and Goldberg (1971) estimated the emissions of fifty-one trace elements into the atmosphere from fossil fuel combustion based on a mass-balance method similar to ours. However, due to a lack of data at the time, they assumed that 10 % of all trace elements in fuels was transferred to the atmosphere. This rate is lower than the 30–45 % measured for Fe in recent studies (Yi et al., 2008; Font et al., 2012; Tang et al., 2013). Our estimated Fe emission is approximately twice that the amount found by Bertine and Goldberg (1971) for the same year (1967) after accounting for different removal efficiencies by particle size and control device.

Luo et al. (2008) and Ito (2013) have estimated Fe emissions from the combustion of fossil fuels, biofuels and biomass burning in fine (PM\textsubscript{1}) and medium particles (PM\textsubscript{1–10}). Their estimates of the total Fe emissions (1.7 Tgyr-1 for 1996 and 2001) are close to our estimations (1.48 Tgyr-1 for 1996 and 1.18 Tgyr-1 for 2001). For fossil fuels, Luo et al. (2008) and Ito (2013) estimated Fe emissions based on the particle emission factors and the Fe contents of particles. Their estimates of fossil fuel emissions (0.51 Tgyr-1 for 1996 to 0.66 Tgyr-1 for 2001) are lower than our estimates (1.18 and 7660...
0.86 Tg yr\(^{-1}\) for the two years, respectively) for the same size class (Table 1). In the method used by Luo et al. (2008) and Ito (2013), the Fe contents of particles are measured in very few studies. For example, for coal burnt in power plants and industry, there are only three measurements in the USA which were used by Luo et al. (2008), reporting an Fe content of 4.5–7.6 % in fine particles and 8.1–9.4 % in coarse particles (Olmez et al., 1988; Smith et al., 1979; Mamane et al., 1986). In addition to large uncertainty in sample collection (Hildemann et al., 1989), the variation of Fe content in particles is large. The measured Fe content in coal fly ash generated by the combustion of bituminous coal in Shanxi Province, China is 10.2–11.9 % (Fu et al., 2012), 40 % higher than the values used by Luo et al. (2008) and Ito (2013). A larger Fe content than that used by Luo et al. (2008) and Ito (2013) was also found for oil/biofuel fly ashes in the measurement by Fu et al. (2012). The large variation of Fe content of particles explains part of the underestimation in the estimates by Luo et al. (2008) and Ito (2013). In addition, Luo et al. (2008) and Ito (2013) estimated that the Fe emission ratio between PM\(_1\) and PM\(_{1–10}\) is 1 : 6, compared to 1 : 24 in this study. The emission ratios used by Luo et al. (2008) and Ito (2013) were taken from Bond et al. (2004), which pertained to carbonaceous matter in fine particles but was not justified for Fe (mainly in coarse particles). For biomass burning, our estimates of the total Fe emissions are lower than that by Luo et al. (2008) and Ito (2013). Luo et al. (2008) applied a globally constant Fe : BC emission ratio based on the slope of Fe and BC concentrations observed for aerosols in the Amazon Basin. They assumed that Fe was originated from biomass burning. Note that dust and plant material entrained in fires can also contribute to Fe concentrations, causing a likely overestimation in their estimates according to Luo et al. (2008). Our estimation seems to confirm this fact.

In a recent study focused on East Asia (Lin et al., 2015), the emission of Fe from combustion sources in East Asia in 2007 was estimated to be 7.2 Tg yr\(^{-1}\), far higher than all other studies (Luo et al., 2008; Ito, 2013) and our work (1.6 Tg yr\(^{-1}\)). The authors used an alternative method to estimate the emission of Fe based upon the sulfur dioxides (SO\(_2\)) emission and the ratio of sulfur and Fe content in fuels. As pointed out by the
authors, the emission of Fe from iron and steel industries is likely to be more important than previously thought. However, the authors also pointed out a notable uncertainty in their estimate because some parameters (e.g., the ratio of bottom ash to fly ash) are very uncertain due to the lack of measurements (Lin et al., 2015). The value taken for the ratio of bottom ash to fly ash in that study is from a single measurement that took place in Taiwan (Yen, 2011). Due to the lack of a sufficient number of measurements for some parameters, our method cannot be applied to estimate the global Fe emission from the individual sector of iron and steel industries. These remarks show that measurements are urgently needed to constrain the iron content of aerosols emitted from the iron and steel industries as well as other sectors.

4 Modelling of Fe concentrations

4.1 Spatial distribution of Fe concentrations in surface air

Based on the emissions of Fe from combustion sources as an average for 1990–2007 and mineral sources as an average for 2000–2011, the global distribution of annual mean Fe concentrations attached to aerosols in surface air was derived (Fig. 6).

Globally, Fe emissions were much higher from mineral sources (41.0 Tgyr\(^{-1}\)) than from combustion sources (5.1 Tgyr\(^{-1}\)). The modelled spatial distribution of Fe concentrations in surface air was thus dominated by mineral sources, in agreement with previous studies (Luo et al., 2008; Mahowald et al., 2009; Ito, 2013). Large Fe concentrations (> 1.0 µgm\(^{-3}\)) are simulated over northwestern Africa, southwestern North America, western China, the Middle East, southwestern Africa and central to northern Australia. In addition to these continent regions, large Fe concentrations (> 0.1 µgm\(^{-3}\)) are found over a large region of the Atlantic Ocean from 0 to 30° N due to the outflow of dust from the Sahara Desert, and large Fe concentrations (> 0.5 µgm\(^{-3}\)) are found over the Arabian Sea and the Indian Ocean due to the outflow of dust from the Arabian, Lut and Thar Deserts.
4.2 Evaluation of Fe concentrations in surface air

The Fe concentrations attached to aerosols in surface air simulated for pixels of 0.94° latitude by 1.28° longitude were evaluated by 529 measurements obtained between 1990 to 2007. These measurements include data compiled by Mahowald et al. (2009) and Sholkovitz et al. (2012) and our collation of data from peer reviewed studies (Table S3). The modelled Fe concentrations attached to aerosols in surface air, averaged for the months in the year of measurements, are plotted against the measured concentrations (Fig. 7a). The simulated Fe concentrations were grouped into same size range as measurements if the size was specified in the measurements and otherwise they were computed as total concentrations. The modelled spatial pattern matched the observations ($r^2 = 0.52$). Mahowald et al. (2009) compared modelled annual mean Fe concentrations to measurements. They pointed out that the daily measurements from cruises are not as representative as the long-term station measurements. Similarly, a better agreement can be achieved if all cruise measurements are excluded in the comparison ($r^2 = 0.68$) in our study (Fig. 7b).

Three statistical metrics were used to evaluate the model performance (Table 2): the fraction of stations with a deviation within a factor of two (F_2) or five (F_5) and the normalized mean bias (NMB). Globally, 57 and 77 % of the stations were associated with deviations within factors of two and five, respectively, with an NMB of -14%. The model and observations agreed well for East Asia and the Atlantic Ocean, with deviations within a factor of two for 84 and 64 % of stations, respectively. The model overestimated Fe concentrations at some stations over the Atlantic Ocean and the Mediterranean Sea. The model used only one major mode for dust (an initial MMD of 2.5 µm, and a fixed geometric $\sigma = 2.0$), which reproduces the long-range transport and dust optical thickness over the ocean (Schulz et al., 1998). Without more detailed size bins, we assumed that the Fe content of dust and the Fe content of soil in the clay fraction is the same. This assumption is a reasonable approximation for dust transported hundreds of kilometers away from the dust source regions (Formenti et al., 2014), because the lifetime
of dust is much longer for the clay fraction (up to 13 days) than for the silt (4 to 40 h) and sand (approximately 1 h) fraction (Tegen and Fung, 1994). However, the mineralogy and therefore the density of material is not considered in this simplification. This assumption would lead to an overestimation of the Fe content of dust near the source regions due to the ignored contribution of Fe in the silt and sand fractions (which have lower Fe contents than clay) (Formenti et al., 2014). The overestimation occurs only at stations near continents and downwind of deserts in Fig. 6, indicating that the modelled Fe concentrations over the ocean were not excessively influenced. The model also underestimated Fe concentrations over the Pacific and Southern Oceans, likely due to the uncertainty in dust emissions and to the transport errors in the Southern Hemisphere, which was documented previously (Huneeus et al., 2011; Schulz et al., 2012). Dust emissions over regions of the Southern Hemisphere, such as southern South America and southeastern Africa, require additional investigations.

One should note that modelled monthly mean concentrations were compared to daily measurements (e.g. measured by cruises) due to a lack of detailed date information in measurements. It also caused some discrepancies between model and observations. As pointed out by Mahowald et al. (2009), some cruise measurements were sensitive to episodic dust events. Mahowald et al. (2009) compared the modelled annual mean Fe concentrations to daily measurements, leading to a potential deviation by a factor up to 10. We also expected such a bias in this study, even though we were comparing modelled monthly Fe concentrations to all measurements. To address this influence, we compared modelled daily Fe concentrations to those from some cruise measurements with detailed date information available (Baker et al., 2006; Chen and Siefert, 2004). As illustrated in Fig. 8, particularly in Fig. 8a and b, the variation of daily concentrations could be well captured by the model. These variations were attenuated when using modelled monthly mean Fe concentrations. This agreement lends support to the estimation of annual mean Fe concentrations and thus Fe deposition in our study.
4.3 Fe concentrations over the Atlantic Ocean

The modelled Fe concentrations attached to aerosols in air near the Atlantic Ocean were compared against 296 transect cruise measurements for 2003–2008 (Baker et al., 2013) (Fig. 9). The zonal distribution of Fe concentrations was generally captured by the model ($r^2 = 0.50$). However, the model overestimated the Fe concentrations in the band between 10 and 20° N, because Fe content of the clay fraction was extrapolated to all dust types, leading to an overestimation of Fe concentrations at locations near dust source regions (see the discussion above). In addition, the model underestimated Fe concentrations by a factor of two at stations in the band between 40 and 70° S, and this model-data misfit could be reduced when the modelled concentrations were scaled by a higher dust emission in a sensitivity test (Fig. 9), confirming the high degree of uncertainties in dust emissions and transport in the Southern Hemisphere.

The seasonality of modelled Fe concentrations at two long-term monitoring stations on the western margin of the Atlantic Ocean (Bermuda and Barbados) was compared to the observations, collected between 1988 to 1994 during the AEROCE program (Arimoto et al., 1992, 1995, 2003; Huang et al., 1999) and compiled by Sholkovitz et al. (2009). As shown in Fig. 10, the observed seasonal variations of Fe concentrations at these two stations were well represented by the model, with peaks in summer corresponding to dust storms in the Sahara Desert.

4.4 Role of the combustion sources

The estimated total emissions and the spatial distributions of Fe from combustion sources differed from those of previous studies (Table 1 and Fig. 3). The contribution of combustion sources to the Fe concentrations attached to aerosols in surface air is shown in Fig. 11. Large contribution of combustion sources (> 80%) is found in western Europe, southeastern and northeastern China, southern Africa, central South America and eastern and northern North America, in agreement with the spatial distribution of combustion emissions.
To evaluate our estimation of the combustion sources of Fe, we divided all stations used in Sect. 4.2 into four groups based on the combustion contribution. We plotted the modelled Fe concentrations with or without combustion sources against the observations (Fig. 12). The model can capture the observed Fe concentrations at 53 stations with combustion contributions larger than 50% well, with an average deviation of a factor of 1.5. The spatial pattern of Fe concentrations at these 53 stations is also well captured ($r^2 = 0.74$), lending good support to our new estimation of Fe emissions from combustion sources. The scatter for stations with a smaller combustion contribution indicates a higher uncertainty in mineral sources of Fe than combustion sources.

4.5 Effect of the new mineralogical database

Figure 13 shows the difference in modelled Fe concentrations using the new mineralogical data (Journet et al., 2014) relative to that using a constant Fe content in dust (3.5%), as widely adopted (Luo et al., 2008; Ito, 2013). The new mineralogical data increased the global total Fe emission from mineral sources from 38.5 to 41.0 Tg yr$^{-1}$, with a relative difference ranging from −60 to +30% regionally (Fig. 5). Fe emissions were lower over the Takla-Makan and Gobi Deserts (Fig. 5), leading to lower Fe concentrations over East Asia and the downwind regions over the northern Pacific Ocean. In contrast, Fe emissions were higher over the Sahara Desert and the deserts in the Middle East, southern Africa and central Australia (Fig. 5), leading to higher Fe concentrations over the Atlantic and Southern Oceans.

The effect of the new mineralogical database on the model-observation comparison at all stations used in Sect. 4.2 is shown in Fig. 14. All stations were divided into four groups based on the relative differences in Fig. 13. The influence was not very significant. There are 49 stations with a relative difference larger than 30%, where the model bias was reduced from 40 to 20%. The new mineralogical data also led to modest improvements in the comparison of modelled and observed Fe concentrations in surface air over the Atlantic Ocean at all stations used in Fig. 9 of Sect. 4.3, with a slight improvement of the underestimation at latitudes between 40 and 70° S (Fig. S4). The
limited improvement obtained using the state-of-the-art mineralogical database implied that other factors, such as the dust emission uncertainties and the transport errors, influenced the estimation of Fe from mineral sources. Further studies are needed to constrain the dust emissions in the Southern Hemisphere in the model (Tagliabue et al., 2009; Schulz et al., 2012). The new mineralogical data provided information on the chemical form of the Fe in dust (Journet et al., 2014), which will help the modelling of Fe solubility.

4.6 Size distributions of Fe-containing particles

The particle size of Fe-containing particles is an important factor controlling the lifetime and solubility of Fe (Baker and Jickells, 2006; Mahowald et al., 2009). In LMDZ-INCA, the size distribution of Fe-containing particles was treated as a log-normal distribution with a varied MMD and a fixed geometric σ. Figure 15 shows the spatial distribution of modelled wet MMD of Fe-containing particles in surface air from combustion and mineral sources. The global average wet MMD of Fe-containing particles is 2.60 μm. The figure illustrates that the Fe was mainly attached to coarse particles (> 5 μm) in regions dominated by combustion sources, such as in East Asia, South Asia, Europe, eastern and northern North America, South America and southern Africa. By contrast, the wet MMD of Fe-containing particles is 2.2–2.4 μm over the deserts dominated by mineral sources, such as in northern Africa, western Asia and southeastern North America, slightly smaller than the initialized wet MMD for dust.

After particles are emitted into the atmosphere, the size would increase due to uptake of water in hygroscopic growth (Schulz, 2007) and decrease due to preferential sedimentation and wet scavenging of larger particles (Schulz, 2007). For example, the size of Fe in PM$_1$ emitted from coal combustion increased from 0.3 μm to > 2 μm after being transported away from the source regions. In contrast, the size of Fe in PM$_{1-10}$ emitted from coal combustion in East Asia would increase over the northern Pacific Ocean and decrease over the southern Pacific Ocean, depending on the relative importance of two mechanisms. The size of Fe in PM$_{>10}$ from coal combustion would
decrease from 33 µm in the source regions to < 10 µm over the oceans. In general, the size of Fe was larger over the tropical ocean than over the sub-tropical ocean, due to more precipitation over the tropical regions.

There are limited measurements of size distributions of Fe-containing particles. Sun et al. (2004) measured the Fe concentrations in PM$_{2.5}$ and PM$_{10}$ at three stations in Beijing. The mean ±σ of the PM$_{2.5}$/PM$_{10}$ ratios of Fe was 28.1 ± 7.8%, compared to 33.5 ± 1.6% in our simulation. Chen and Siefert (2004) measured the Fe concentrations in PM$_{2.5}$ and total suspended particles (TSP) over the North Atlantic Ocean. The mean ±σ of the PM$_{2.5}$/TSP ratios of Fe was 55.2 ± 16.8%, compared to the 49.9 ± 0.5% in our simulation.

5 Global Fe deposition

The distribution of annual mean Fe deposition is shown in Fig. 16. Similar to the distribution of annual mean Fe concentrations attached to aerosols in surface air (Fig. 6), the spatial distribution of Fe deposition was dominated by mineral sources. High Fe deposition rates over the ocean were found over the Arabian Sea and the Indian Ocean (> 100 mg m$^{-2}$ yr$^{-1}$), followed by the Atlantic Ocean (10–100 mg m$^{-2}$ yr$^{-1}$) and the northern Pacific Ocean (5–30 mg m$^{-2}$ yr$^{-1}$). Mahowald et al. (2009) pointed out that directly measured Fe deposition rates are very limited. We compared the modelled Fe deposition with in situ measurements compiled by Mahowald et al. (2009). The spatial pattern of measured Fe deposition can be generally represented by the model ($r^2 = 0.88$) (Fig. S5). The limited data, however, prevented us from evaluating the modelled deposition rates globally.

6 Global atmospheric Fe budget

The atmospheric Fe budgets from different emission sources are summarized in Table 3. The atmospheric lifetime of Fe is highly dependent on the particle size, emission...
source and climate. For example, the atmospheric lifetime changes from 0.08 days for Fe of PM$_{10}$ from biomass burning to 4.1 days of PM$_{1-10}$ and 9.4 days of PM$_1$, because larger particles can be more efficiently removed by sedimentation than smaller ones. The atmospheric lifetime also differs for Fe from different emission sources. For example, the atmospheric lifetime of Fe of PM$_1$ emitted from biomass burning is twice that for Fe of PM$_1$ emitted from coal combustion. For the wet deposition only, the atmospheric lifetime of Fe of PM$_1$ emitted from biomass burning was 15.2 days, compared to 9.4 days for Fe of PM$_1$ emitted from coal combustion. Less precipitation and scavenging over the dryer African savanna, the major region of Fe emissions from biomass burning, can explain this difference. The atmospheric burden of Fe and the atmospheric deposition of Fe over oceans are both dominated by mineral sources, due to a larger total emission flux.

We estimate that the annual deposition of total Fe over global oceans is 8.4 Tgyr$^{-1}$ over the studied period. Among the total Fe deposition over the oceans, 93, 6, 1, 0.1 % was originated from dust, coal combustion, biomass burning and oil combustion. In another global modelling study, Ito (2015) estimated a higher deposition flux (13 Tgyr$^{-1}$) due to a larger emission of Fe from mineral dust. Meanwhile, we predict a larger contribution from combustion source (7 vs. 2 %) than Ito (2015), mainly due to a higher Fe emission estimated for combustion sources (Table 1).

7 Influence of different Fe solubilities from different sources

The form and chemical properties of Fe vary greatly among different sources, which determine the solubility and bioavailability of Fe (Boyd et al., 2000; Moore et al., 2004). Measured Fe solubility is 77–81 % in oil fly ash (Schroth et al., 2009) against only 20–25 % in coal fly ash (Chen et al., 2012), and approximately 18 % in biomass fly ash (Bowie et al., 2009). Note that solubility of Fe from any combustion sources is much larger than the 0.44 % in dust from the Sahara Desert (Sedwick et al., 2007). One of the key findings of this study is the identification of Fe emissions from combustion
sources. As shown in Fig. 17, the contribution by the combustion of petroleum and coal to the total Fe deposition exceeds 1 and 3 %, respectively, over many oceans such as the northern Atlantic and northern Pacific Oceans. Considering their relatively high Fe solubility, the contribution of combustion sources to soluble Fe supply for these oceanic ecosystems could be amplified by 1–2 magnitudes. The additional input of soluble Fe from combustion sources may lead to profound biological effects over the northern Pacific, northern Atlantic and Southern Oceans, where Fe is identified as the primary limiting nutrient for the growth of phytoplankton (Moore et al., 2013). As a preliminary study, we calculated the deposition of soluble Fe from different sources using constant Fe solubilities (0.44 % for dust, 22.5 % for coal fly ash, 79 % for oil fly ash and 18 % for biomass fly ash). Fig. 18 shows the relative contribution of combustion-related Fe emissions to total soluble Fe deposition over global oceans. With a larger Fe solubility, the effective contribution of combustion sources is larger despite their smaller mass contribution than dust over most oceanic regions. The produced maps of Fe deposition from different fuel types and from different sizes will help simulate the chemical processing of Fe in the atmosphere.

According to our estimation, combustion-related sources contribute 75 % to the total deposition of soluble Fe over the oceans. Note that this estimate is dependent on the Fe solubility prescribed for different sources, and the influences by chemical, physical or photochemical factors have not been considered in our estimate. As a result, the predicted contribution by combustion-related sources to soluble Fe deposition over global oceans is 5 factors higher than the 15 % estimated in a recent study (Ito, 2015). In that work, Ito has explicitly modelled the dissolution of Fe in fly ash due to photochemical reactions with inorganic and organic acids in solution. It results in a global average Fe solubility of 2 % for dust, 21 % for biomass fly ash, 8 % for coal fly ash, and 65 % for oil fly ash, which differs from the measurements used in our estimate (Sedwick et al., 2007; Bowie et al., 2009; Schroth et al., 2009; Chen et al., 2012). However, as also pointed out by Ito (2015), there is a large uncertainty in the modelled Fe solubility due to large uncertainties associated with prescribed Fe solubility at emission, which
is dependent on the condition of combustion sources (Ito, 2015). More measurements of Fe solubility at various sources and open oceans should be conducted to simulate and constrain the Fe solubility in the future work.

In addition, the study by Lin et al. (2015) predicted that 87 and 41% of the deposition of soluble Fe over the Northwestern Pacific Ocean could be attributed to combustion-related sources when prescribing a solubility of 40 and 4% for Fe in fly ash, respectively. Their upper estimate agrees well with our prediction that combustion-related sources would contribute 80–95% to soluble Fe deposition in this region (Fig. 18).

8 Summary and conclusion

We developed a new emission inventory of Fe from combustion sources using Fe contents of fuel and Fe partitioning during combustion, and estimated the emissions of Fe from mineral sources based on a new soil mineralogical database. We calculated the global total Fe emissions of 0.04, 1.32, and 3.72 Tgyr⁻¹ in PM₁, PM₁–10 and PM₁₀ from combustion sources, respectively. Although the total Fe emissions are similar, the size distributions and the source profiles differ from those in previous studies, which substantially influenced the Fe solubility in aerosols.

We evaluated the estimated new emissions of Fe from combustion and mineral sources. We introduced the estimated Fe emissions in a global transport model running at a resolution of 0.94° latitude by 1.28° longitude. The modelled Fe concentrations attached to aerosols in surface air were compared with 825 measurements worldwide. The measured Fe concentrations were generally predicted by the model, including the spatial distributions of Fe concentrations in each region, the zonal distributions of Fe concentrations over the Atlantic Ocean, and the seasonality of Fe concentrations on the western margin of the Atlantic Ocean. Importantly, agreement was good at stations where the Fe concentrations were dominated by combustion sources, supporting our new estimations of Fe emissions from combustion sources. The new mineralogical data produced modest improvements but provided useful information on the chemical form
of Fe. An underestimation of Fe concentrations over the oceans in the Southern Hemisphere, however, may confirm the high uncertainty in dust emissions, which deserves further study.

We estimated a total Fe deposition sink of 7.7 Tg yr\(^{-1}\) over global oceans, 7.1 % of which originated from combustion sources. The modelled Fe deposition rates were confirmed by a limited number of in situ measurements. Fe deposition rates over most oceanic regions, however, have not been widely measured. The combustion of coal, petroleum and biomass, all with a much higher Fe solubility than dust, contributed considerably to the deposition of Fe over the northern Atlantic and northern Pacific Oceans. We speculate that this large amount of additional input of soluble Fe may have had an impact on the oceanic carbon cycle and the global climate.

The Supplement related to this article is available online at doi:10.5194/acpd-15-7645-2015-supplement.

Acknowledgements. The authors thank Ether/ECCAD for distribution of emission data used in this study. R. Wang was supported by the “FABIO” project, a Marie Curie International Incoming Fellowship from the European Commission. This work was also supported by the European Research Council Synergy Grant IMBALANCE-P (ERC-SyG-2013-610028). The simulations in this work were performed using DSM-CCRT resources under the GENCI (Grand Equipement National de Calcul Intensif) computer time allocation (grant 2014-t2014012201).

References

Sources, transport and deposition of iron in the global atmosphere

R. Wang et al.

Li, X. G., Wang, S. X., Duan, L., Hao, J., Li, C., Chen, Y. S., and Yang, L.: Particulate and trace
gas emissions from open burning of wheat straw and corn stover in China, Environ. Sci.

Lin, Y. C., Chen, J. P., Ho, T. Y., and Tsai, I. C.: Atmospheric iron deposition in the northwest-
ern Pacific Ocean and its adjacent marginal seas: the importance of coal burning, Global

Linak, W. P. and Miller, C. A.: Comparison of particle size distributions and elemental partitioning
from the combustion of pulverized coal and residual fuel oil, J. Air Waste Manage., 50, 1532–

Luo, C., Mahowald, N. M., and del Corral, J.: Sensitivity study of meteorological parameters
on mineral aerosol mobilization, transport, and distribution, J. Geophys. Res.-Atmos., 108,

Luo, C., Mahowald, N. M., Meskhidze, N., Chen, Y., Siefert, R. L., Baker, A. R., and Joh-
ansen, A. M.: Estimation of iron solubility from observations and a global aerosol model, J.

Luo, C., Mahowald, N., Bond, T., Chuang, P. Y., Artaxo, P., Siefert, R., Chen, Y., and
Schauer, J.: Combustion iron distribution and deposition, Global Biogeochem. Cy., 22,

Mackensen, J., Holscher, D., Klinge, R., and Folster, H.: Nutrient transfer to the atmo-
sphere by burning of debris in eastern Amazonia, Forest Ecol. Manag., 86, 121–128,

Mahowald, N. M., Baker, A. R., Bergametti, G., Brooks, N., Duce, R. A., Jickells, T. D., Kubi-
lay, N., Prospero, J. M., and Tegen, I.: Atmospheric global dust cycle and iron inputs to the

Mahowald, N. M., Engelstaedter, S., Luo, C., Sealy, A., Artaxo, P., Benitez-Nelson, C., Bon-
net, S., Chen, Y., Chuang, P. Y., Cohen, D. D., Dulac, F., Herut, B., Johansen, A. M., Kubi-
Atmospheric iron deposition: global distribution, variability, and human perturbations, Annu.

Mahowald, N., Lindsay, K., Rothenberg, D., Doney, S. C., Moore, J. K., Thornton, P., Rand-
erson, J. T., and Jones, C. D.: Desert dust and anthropogenic aerosol interactions in the Com-

7679

Olmez, I., Shefield, A. E., Gordon, G. E., Houck, J. E., Pritchett, L. C., Cooper, J. A., Dzubay, T. G., and Bennett, R. L.: Compositions of particles from selected sources in

Table 1. Comparison of Fe emissions from combustion and mineral sources (Tg yr\(^{-1}\)) in the present work and previous studies. The Fe content of dust used to estimate Fe emissions from mineral sources (\(F_c\)) is given in brackets.

<table>
<thead>
<tr>
<th>Study</th>
<th>Year(s)</th>
<th>Fossil fuels</th>
<th>Biomass burning</th>
<th>Mineral source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bertine and Goldberg (1971)</td>
<td>1967</td>
<td>1.4 (all sizes)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luo et al. (2008)</td>
<td>1996</td>
<td>0.56 (PM({1-10})) 0.10 (PM({1}))</td>
<td>0.86 (PM({1-10})) 0.21 (PM({1}))</td>
<td>55 ((F_c = 3.5%))</td>
</tr>
<tr>
<td>Ito (2013)</td>
<td>2001</td>
<td>0.44 (PM({1-10})) 0.07 (PM({1}))</td>
<td>0.92 (PM({1-10})) 0.23 (PM({1}))</td>
<td>74 ((F_c = 3.5%))</td>
</tr>
<tr>
<td>Present study</td>
<td>1967</td>
<td>3.0 (all sizes)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1996</td>
<td>1.14 (PM({1-10})) 0.036 (PM({1}))</td>
<td>0.31 (PM({1-10})) 0.012 (PM({1}))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2001</td>
<td>0.83 (PM({1-10})) 0.035 (PM({1-10}))</td>
<td>0.31 (PM({1-10})) 0.012 (PM({1}))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2000–2011</td>
<td></td>
<td></td>
<td>38.5 ((F_c = 3.5%))</td>
</tr>
<tr>
<td></td>
<td>2000–2011</td>
<td></td>
<td></td>
<td>41.0 ((F_c) using new mineralogical data)</td>
</tr>
</tbody>
</table>
Table 2. Statistics for the comparison of modelled and observed Fe concentrations. N, sample size; F_2 and F_5, fractions of stations with deviations within a factor of two or five, respectively; NMB, normalized mean bias. The values in brackets show the indicators when the combustion sources are not included.

<table>
<thead>
<tr>
<th>Region</th>
<th>N</th>
<th>F_2 (%)</th>
<th>F_5 (%)</th>
<th>NMB (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indian Ocean</td>
<td>61</td>
<td>30 (30)</td>
<td>75 (75)</td>
<td>−68 (−68)</td>
</tr>
<tr>
<td>Atlantic Ocean</td>
<td>224</td>
<td>64 (63)</td>
<td>82 (79)</td>
<td>15 (14)</td>
</tr>
<tr>
<td>Pacific Ocean</td>
<td>126</td>
<td>52 (48)</td>
<td>69 (67)</td>
<td>−66 (−69)</td>
</tr>
<tr>
<td>South Ocean</td>
<td>47</td>
<td>43 (36)</td>
<td>53 (43)</td>
<td>−48 (−79)</td>
</tr>
<tr>
<td>East Asia</td>
<td>32</td>
<td>84 (13)</td>
<td>100 (31)</td>
<td>−2 (−78)</td>
</tr>
<tr>
<td>South America</td>
<td>4</td>
<td>50 (50)</td>
<td>75 (50)</td>
<td>−78 (−91)</td>
</tr>
<tr>
<td>North America</td>
<td>12</td>
<td>83 (33)</td>
<td>100 (67)</td>
<td>−40 (−66)</td>
</tr>
<tr>
<td>Mediterranean</td>
<td>23</td>
<td>61 (57)</td>
<td>87 (87)</td>
<td>24 (16)</td>
</tr>
<tr>
<td>All regions</td>
<td>529</td>
<td>57 (49)</td>
<td>77 (70)</td>
<td>−14 (−32)</td>
</tr>
</tbody>
</table>
Table 3. Global Fe budgets from various sources and from different particle size classes. The total deposition of Fe was calculated over land and oceans separately, and was also calculated for the dry deposition (DRY), wet deposition (WET), and sedimentation (SED), respectively.

<table>
<thead>
<tr>
<th>Source (Tgyr⁻¹)</th>
<th>Burden (Gg)</th>
<th>Lifetime (days)</th>
<th>Deposition (Tgyr⁻¹) over land</th>
<th>Deposition (Tgyr⁻¹) over ocean</th>
<th>Deposition (Tgyr⁻¹) DRY</th>
<th>Deposition (Tgyr⁻¹) WET</th>
<th>Deposition (Tgyr⁻¹) SED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal PM₁</td>
<td>0.018</td>
<td>0.262</td>
<td>5.28</td>
<td>0.013</td>
<td>0.005</td>
<td>0.008</td>
<td>0.010</td>
</tr>
<tr>
<td>PM₁–₁₀</td>
<td>1.025</td>
<td>6.437</td>
<td>2.30</td>
<td>0.807</td>
<td>0.215</td>
<td>0.310</td>
<td>0.331</td>
</tr>
<tr>
<td>PM₁₅–₁₀</td>
<td>3.167</td>
<td>0.431</td>
<td>0.05</td>
<td>2.905</td>
<td>0.235</td>
<td>0.142</td>
<td>0.026</td>
</tr>
<tr>
<td>Total</td>
<td>4.210</td>
<td>7.131</td>
<td>0.26</td>
<td>3.724</td>
<td>0.455</td>
<td>0.460</td>
<td>0.367</td>
</tr>
<tr>
<td>Petroleum PM₁</td>
<td>0.020</td>
<td>0.289</td>
<td>5.20</td>
<td>0.010</td>
<td>0.010</td>
<td>0.007</td>
<td>0.013</td>
</tr>
<tr>
<td>PM₁–₁₀</td>
<td>0.002</td>
<td>0.014</td>
<td>2.22</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Total</td>
<td>0.022</td>
<td>0.303</td>
<td>4.79</td>
<td>0.011</td>
<td>0.011</td>
<td>0.008</td>
<td>0.014</td>
</tr>
<tr>
<td>Biomass PM₁</td>
<td>0.012</td>
<td>0.312</td>
<td>9.39</td>
<td>0.008</td>
<td>0.004</td>
<td>0.004</td>
<td>0.007</td>
</tr>
<tr>
<td>PM₁₅–₁₀</td>
<td>0.324</td>
<td>3.660</td>
<td>4.13</td>
<td>0.253</td>
<td>0.071</td>
<td>0.090</td>
<td>0.127</td>
</tr>
<tr>
<td>PM₁₅–₁₀</td>
<td>0.251</td>
<td>0.057</td>
<td>0.08</td>
<td>0.243</td>
<td>0.009</td>
<td>0.012</td>
<td>0.003</td>
</tr>
<tr>
<td>Total</td>
<td>0.587</td>
<td>4.030</td>
<td>1.27</td>
<td>0.503</td>
<td>0.083</td>
<td>0.101</td>
<td>0.130</td>
</tr>
<tr>
<td>Dust</td>
<td>41.0</td>
<td>442</td>
<td>3.95</td>
<td>33.0</td>
<td>7.82</td>
<td>15.3</td>
<td>15.1</td>
</tr>
</tbody>
</table>
Figure 1. Frequency distributions of Fe emissions from different fuel types (a) and particle sizes (b). The distributions are derived from 1000 Monte Carlo simulations. The standard deviation of log\textsubscript{10}-transformed Fe emissions is shown for each distribution. The x axes are plotted on a log scale.
Figure 2. Source profiles of Fe from combustion for PM$_1$ (a), PM$_{1–10}$ (b), and PM$_{>10}$ (c) as an average for 1960–2007. The total Fe emission for each size class is provided under its pie chart.
Figure 3. Spatial distributions of Fe emissions from combustion sources in 2007 at a resolution of 0.1° × 0.1° for fine (PM$_{1}$) (a) and medium-to-coarse (PM$_{1-10}$ and PM$_{>10}$) (b) particles.
Figure 4. Temporal trends of Fe emissions of fine (PM$_1$) (a) and medium-to-coarse (PM$_{1-10}$ and PM$_{>10}$) (b) particles from combustion sources from 1960 to 2007. Fe emissions from wildfires are shown separately with energy-related activities separated by region (NA for North America and SA for South America).
Figure 5. Average Fe emission from dust sources for 2000–2011 using the new mineralogical data set (a) and the difference of average Fe emission from dust sources for 2000–2011 using the new mineralogical data set relative to that using a constant Fe content (3.5 %) (b). A positive value in (b) indicates a larger emission density by using the new mineralogical data set.
Figure 6. Distribution of annual mean concentrations of Fe attached to aerosols in surface air. A total of 529 measured Fe concentrations compiled by Mahowald et al. (2009) and Sholkovitz et al. (2012) and collected in this study (Table S3) are shown as circles, and a total of 296 Fe concentrations measured by Baker et al. (2013) over the Atlantic Ocean are shown as triangles.
Figure 7. Comparisons of modelled and observed Fe concentrations by region (a) and measuring type (b). The modelled concentrations are averaged for the months in the year of measurements. The fitted curves for all stations in (a) and long-term measurement stations in (b) are shown as red dashed lines, with coefficients of determination (r^2) listed. The 1:1 (solid), 1:2 and 2:1 (dashed), and 1:5 and 5:1 (dotted) lines are shown.
Figure 8. Comparisons of modelled and measured Fe concentrations. The Fe concentrations were derived as monthly (blue triangles) or daily (orange triangles) means from the model. (a) Fe measured in autumn 2001 (James Clark Ross (JCR) cruise) by Baker et al. (2006). (b) Fe measured in winter 2001 by Chen and Siefert (2004). (c) Fe measured in summer 2001 by Chen and Siefert (2004). (d) Fe measured in spring 2003 by Chen and Siefert (2004). (e) Locations of the cruise measurements (a–d).
Figure 9. Zonal distribution of modelled (blue dots) and measured (black dots) Fe concentrations attached to aerosols in surface air over the Atlantic Ocean from 70° S to 60° N. The blue and black lines show the modelled and measured Fe concentrations as geometric means in each band with error bars for the geometric standard deviations. As sensitivity tests, Fe concentrations from mineral sources were scaled by factors of 0.32 and 2.12 as 90% uncertainties in dust emissions (Huneeus et al., 2011) and Fe concentrations from combustion sources were scaled by factors of 0.44 and 2.27 as 90% uncertainties in Fe emissions from combustion.
Figure 10. Seasonality of Fe concentrations attached to aerosols in surface air at Bermuda (32.2° N, 64.5° W) (a) and Barbados (13.2° N, 59.3° W) (b) on the western margin of the Atlantic Ocean. Modelled Fe concentrations are derived from all sources (Fe_total) and from mineral sources only (Fe_dust). Measured Fe concentrations are shown as the medians (circles) for 1988–1994 with the ranges between the 10th and 90th percentiles (error bars).
Figure 11. Relative contribution of combustion sources to the modelled Fe concentrations attached to aerosols in surface air.
Figure 12. Plots of modelled and measured Fe concentrations attached to aerosols in surface air with (a) or without (b) combustion sources. All stations were divided into four groups based on the contribution of combustion sources: G1, contribution $\geq 50\%$ (blue triangles); G2, $30\% \leq$ contribution $< 50\%$ (red triangles); G3: $15\% \leq$ contribution $< 30\%$ (green triangles); G4, contribution $< 15\%$ (grey squares). The ratios between measured and modelled concentrations as geometric means are listed with the number of stations in the brackets for each group. The fitted curves for the G1 stations are shown as blue lines with coefficients of determination (r^2).
Figure 13. Relative differences in simulated Fe concentrations attached to aerosols in surface air when using the new mineralogical data and prescribing a constant Fe content in dust (3.5%). A positive difference indicates a higher Fe concentration when using the new mineralogical data.
Figure 14. Plots of modelled and measured Fe concentrations attached to aerosols in surface air. The Fe content of dust was calculated from the new mineralogical data (a) or prescribed as 3.5% (b). All stations were divided into four groups based on the relative differences between (a) and (b): G1, difference ≥ 30% (blue triangles); G2, 20% ≤ difference < 30% (red triangles); G3: 10% ≤ difference < 20% (green triangles); G4, difference < 10% (grey squares). The ratios between measured and modelled concentrations as geometric means are listed with the number of stations in brackets for each group.
Figure 15. Spatial distributions of the wet mass median diameter (µm) of Fe-containing particles in surface air. (a) Fe from all combustion and mineral sources. (b–d) Fe from coal combustion in PM$_1$ (b), PM$_{1-10}$ (c), and PM$_{>10}$ (d). The global mean is provided in each panel.
Figure 16. Global distribution of modelled annual mean Fe deposition rates. The observed Fe deposition rates from in situ measurements compiled by Mahowald et al. (2009) are shown as diamonds of the same color as the scale.
Figure 17. Relative contributions of atmospheric Fe deposition over oceans by mineral sources (a) and combustion of coal (b), oil (c), and biomass (d). The average contribution over the oceans and the measured Fe solubility are provided in the panel descriptions. Color scales differ on each plot.
Figure 18. Relative contribution of combustion-related emissions to atmospheric soluble Fe deposition over oceans. Constant Fe solubilities (0.44 % for dust, 22.5 % for coal fly ash, 79 % for oil fly ash and 18 % for biomass fly ash) were applied to calculate the deposition of soluble Fe from the deposition of total Fe.