Dear Editor,

please find below our detailed answers to the comments by both reviewers and the manuscript where each deletion is marked in red (and striked out) and new text in blue color.

Best regards,

Michael Höpfner and co-authors
Interactive comment on “Sulfur dioxide (SO$_2$) from MIPAS in the upper troposphere and lower stratosphere 2002–2012” by M. Höpfner et al.

M. Höpfner et al.
michael.hoepfner@kit.edu

Received and published: 21 May 2015

We thank referee 1 for the valuable comments regarding clarification of the calculation of total masses for SO$_2$. Below we address the comment which is quoted in bold face.

a) The only change I would request prior to publication is that the authors explain in (some) detail the calculation of total masses/columns. Since the daily spatial coverage is very sparse, it is not clear how reliable daily masses are calculated for large volcanic plumes.

As an explanation we have added the following text. (Mind also that for the calculation of masses from which the entries of Tab. 3 are derived, we have used mean values over five days to obtain a better coverage - as already mentioned in the text.)

‘For the calculation of masses, the MIPAS retrievals of SO$_2$ volume mixing ratios have been combined with the pressure-temperature dataset also derived from MIPAS (von Clarmann et al., 2003) to obtain vertical profiles of number densities. These profiles have been integrated in the vertical over the respective layer thickness to obtain partial column amounts. Subsequently, these data have been integrated over 10deg latitude bins to obtain zonal masses of SO$_2$. For this integration the profiles have been assumed to be equally distributed within each latitude band.’

References

Interactive comment on Atmos. Chem. Phys. Discuss., 15, 5801, 2015.
We thank referee 2 for detailed comments - especially regarding the differences between derived e-folding lifetimes from limb and nadir sounding instruments. Below we address all comments (bold face) one by one.

We have added this reference.

Table 2 should be extended for higher SO2 columns (a maximum of 10 DU is not enough). How this error can influence the lifetime estimates?

As suggested by the reviewer, we have redone the simulation for a five times enhanced value (500 ppbv) of the maximum SO2 volume mixing ratio (vmr) reported in the original table (in comparison MLS observed maximum vmr values of about 400 ppbv after the eruption of Kasatochi in 2008). As expected the underestimation of the resulting vmr error increased further to -77% (-54% for the 10-25 km layer column amount). These results are appended to Table 2. We judge the influence of the saturation error on the estimates of SO2 lifetime to be small. For determination of lifetimes we use data only starting some weeks after the eruptions when observed SO2 volume mixing ratios are below about 4 ppbv and, thus, well in the region where saturation errors are below 10% for maximum vmr values and less than 1% when considering partial column amounts.

Section 2.4.1 a short paragraph introducing ACE-FTS would be useful, including references. Please define ACE-FTS and its satellite platform. Please provide general information on instrument characteristics (e.g., spectral resolution).

The following description of the ACE-FTS instrument has been added to the manuscript:

‘ACE-FTS is one of the instruments belonging to the Atmospheric Chemistry Experiment (ACE) space mission launched in August 2003 (Bernath et al., 2005). The Fourier transform spectrometer measures infrared solar occultation spectra from 750–4400 cm−1 with a spectral resolution of 0.02 cm−1 at sunrise and sunset during each orbit. The vertical resolution of the retrieved profiles of atmospheric traces gases is about 3–4 km as set by the instrument’s field-of-view. More specific information on the reconstruction of SO2 vertical distributions from ACE-FTS measurements can be found

We have added this reference.
Section 2.5.1: please rename 2.6 (there is no section 2.5.2) The significance of this section is limited compared to the other sections. It has the merit to exist but no conclusions can really be drawn notably for P2 because of the remaining bias (Fig 5).

The chapter has been renamed.

Page 5, l 419: Please recall what is the typical value for the half-width of the averaging kernel.

We have repeated the information (3-5 km) at this text passage.

Page 5, l 460-473: it would be good to assess the importance (in %) of the 3 effects. At least the second effect (saturation) could be evaluated (see previous comment on Table 2). Is the use of alternative spectral windows (less affected by saturation) feasible?

To realistically disentangle and quantify the three effects would require an extensive study: in a kind of Monte-Carlo simulation one would have to calculate realistic volcanic eruptions including the effect of the inhomogeneity along the limb line-of-sight of MIPAS. In addition to the SO2 plume, the volcanic aerosol distribution for various scenarios would have to be simulated. This kind of study reaches by far beyond the scope of the actual paper since it also would not help in a straightforward manner to improve the MIPAS observations directly following the volcanic eruption.

One argument why we think that the MIPAS cloud clearing is the most important reason for the differences between MLS and MIPAS directly after strong volcanic eruptions are the maximum vmr-values of SO2 retrieved from MIPAS spectra: around 13 ppbv. A comparison with Table 2 shows that in case of saturation effects this would amount in about 18 ppbv of SO2 in reality. Such a relatively small difference cannot explain the large difference between MIPAS and MLS directly after the eruption when MLS observes maximum concentrations of around 400 ppbv of SO2 (e.g. Figs. 1 and 2 in Pumphrey et al., 2015). Since the difference in sampling geometry between MIPAS and MLS is also not so large that it could easily explain the observed differences, the strongest effect is most probably the applied MIPAS cloud/aerosol clearing. We have stated this more clearly in the text.

With regard to the comment on spectral windows: the retrieval has been set up using the spectral region around 1370 cm-1 which contains the strongest signatures of SO2 in the spectral range of MIPAS, like in Höpfner et al., 2013. However, in order to reduce saturation effects, for the single retrievals we have added lines from the region around 1130 cm-1 where the intensity of the SO2 lines is weaker. This information has been added within the chapter 2.2 where the set-up of the retrieval is described.

Section 3.2 : My main point of criticism on this study is related to the lifetime estimates.

a) P6, l491: it is unclear what is done to appreciate the “linear behavior”. A fitting line could be added on Fig 13 for illustration purpose.

For illustration, we have added a new Figure 14 (see Fig. 1 below) to the manuscript which shows the MIPAS data of Fig. 13 in logarithmic scale. In this Figure, several fits to the quasi-linearly descending region of the data are shown. The results for the lifetime are presented in the legend. Further we have added a line representing a lifetime of 10 days (bold grey line). From comparing these, it is clear that such a short lifetime is not compatible with the dataset.

b) The authors retrieve 13.3d, 23.6d and 32.3d which are really high values and are only supported by limb measurements from MLS but not by nadir sensors, except the estimation by Karagulian et al. (2010), which is also questionable (read below). Therefore my question is whether it could be that the limb lifetime estimates are biased high due to a different sampling/coverage of the volcanic plumes than the nadir sensors.
It is difficult to explain the longer lifetime which we obtain from the limb-measurements with sampling issues. E.g. from perspective of MIPAS, we generally use the measurements starting some weeks after the eruption, i.e. when the plume has already spread over a larger area. Also we see that our retrieved lifetimes are clearly dependent on the altitude, which is expected in the upper troposphere/lower stratosphere where SO2 concentrations are controlled by the availability of OH. At lower altitudes, additional removal through clouds should significantly reduce the lifetime. We propose two explanations for the SO2 lifetime differences between limb and nadir sounders: (1) the sensitivity of nadir viewing instruments to SO2 is much smaller compared to limb-sounders. When the plume becomes more and more diluted over the globe, the small concentrations get smaller than the nadir-sounders’ detection limit. In that way lifetimes are artificially shortened. This effect has already been discussed in Haywood et al. (2010) who derived from IASI observations of the Sarychev eruption a smaller lifetime of SO2 in comparison to model calculations. (2) Nadir sounders are vertically sensitive down to the middle troposphere where the lifetime of SO2 is much smaller compared to the UTLS region. This means that different lifetimes from very different altitudes are mixed, also from heights below the lowest point where limb-sounders deliver data.

c) Clarisse et al. (2012) presented new results for the Kasatochi case using IASI that are improved compared to Karagulian et al., 2010. Therefore the 18d estimation lifetime is probably outdated (read end of section 4.1 in Clarisse et al., 2012). Hence, lines 557-562 (P6) are probably not applicable anymore. Note also that Theys et al. inferred a lifetime of 7 days for the eruption of Puyehue, i.e. far from the estimate of 32d given in Table 3.

We agree with the reviewer that there is a disagreement between the SO2 lifetime estimates between the limb-sounders (MIPAS and MLS) and the nadir sounding instruments. We reformulated the discussion on this issue and added the information on lifetimes from Clarisse et al., 2012 and Theys et al., 2013 in Table 3.

d) It would be interesting to redo the lifetime calculation for the integrated total SO2 mass (not resolved for the 3 atmospheric layers). As it is now, the estimation of \(\tau \), assumes that there is no transport/exchange of SO2 between the different layers, which is not guaranteed.

We have performed the proposed calculations for Kasatoki, Sarychev, and Nabro and found a mean lifetime of 16 days. This is inside the range of lifetimes we get for the three altitude regions (13.3 d, 23.6 d, and 32.3 d for 10–14, 14–18, and 18–22 km, respectively) and slightly smaller than the mass-weighted mean lifetime of 19 days. This difference might point to an effect of mixing between the layers, but might also be due to an uncertainty caused by the single errors on mass and lifetime estimates.

e) Since the mass estimates are not independent of the lifetime which is assumed
(when not fitted from the time series), it would be good to use a lower lifetime value (say 10 d, ie in better agreement with the nadir estimates) and check if it improves the agreement with the nadir data for the total mass.

Given the fact that such small lifetimes like 10 d are far from being compatible with the limb-observations, as discussed above (see also Fig. 1), we do not think that such an exercise would deliver more insight.

P 7, I595-599: I think this is a quite unlikely explanation. The typical time scale for the atmospheric circulation is much larger than the SO2 lifetime.

We do not agree with the referee in this aspect. As has been shown in Höpfner et al., 2013, there is downwelling of high values of SO2 during polar night where its lifetime is much enhanced due to lack of OH. The conversion into H2SO4 aerosols starts during spring when sunlight and OH becomes available. This leads to the so-call 'Condensation Nuclei (CN)-explosion'.

Fig. 10: it might be better to use a non-linear color scale to better represent the range of values

We have decided to leave the plots with the linear colour scale in the paper. In addition, to be able to view the whole range of SO2 values, a supplement containing Figures 10-12 represented with a logarithmic colour scale will be added.

P 1, I 52 : SO2 should be in parenthesis (as a definition)

Done.

P 7, I650: 'depolsarisation'-> 'depolarisation'

Was already corrected in the published ACPD version of the manuscript.

References

Please also note the supplement to this comment: http://www.atmos-chem-phys-discuss.net/15/C2827/2015/acpd-15-C2827-2015-supplement.pdf

Interactive comment on Atmos. Chem. Phys. Discuss., 15, 5801, 2015.
Sulfur dioxide (SO$_2$) from MIPAS in the upper troposphere and lower stratosphere 2002–2012

M. Höpfner1, C. D. Boone2, B. Funke3, N. Glatthor1, U. Grabowski1, A. Günther1, S. Kellmann1, M. Kiefer1, A. Linden1, S. Lossow1, H. C. Pumphrey4, W. G. Read5, A. Roiger6, G. Stiller1, H. Schlager6, T. von Clarmann1, and K. Wissmüller6

1Institute for Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
2Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
3Instituto de Astrofísica de Andalucía, CSIC, Granada, Spain
4School of GeoSciences, The University of Edinburgh, Edinburgh EH9 3JN, UK
5Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109-8099, USA
6Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft und Raumfahrt, Oberpfaffenhofen, Germany

Correspondence to: M. Höpfner (michael.hoepfner@kit.edu)
Abstract

Vertically resolved distributions of sulfur dioxide (SO₂) with global coverage in the height region from the upper troposphere to ∼ 20 km altitude have been derived from observations by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat for the period July 2002 to April 2012. Retrieved volume mixing ratio profiles representing single measurements are characterized by typical errors in the range of 70–100 pptv and by a vertical resolution ranging from 3–5 km. Comparison with ACE-FTS observations by the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) revealed a slightly varying bias with altitude of −20 to 50 pptv for the MIPAS dataset in case of volcanically enhanced concentrations. For background concentrations the comparison showed a systematic difference between the two major MIPAS observation periods. After debiasing, the difference could be reduced to biases within −10 to 20 pptv in the altitude range of 10–20 km with respect to ACE-FTS. Further comparisons of the debiased MIPAS dataset with in-situ measurements from various aircraft campaigns showed no obvious inconsistencies within a range of around ±50 pptv. The SO₂ emissions of more than thirty volcanic eruptions could be identified in the upper troposphere and lower stratosphere (UTLS). Emitted SO₂ masses and lifetimes within different altitude ranges in the UTLS have been derived for a large part of these eruptions. Masses are in most cases within estimations derived from other instruments. From three of the major eruptions within the MIPAS measurement period – Kasatochi in August 2008, Sarychev in June 2009 and Nabro in June 2011 – derived lifetimes of SO₂ for the altitude ranges 10–14, 14–18, and 18–22 km are 13.3 ± 2.1, 23.6 ± 1.2, and 32.3 ± 5.5 d, respectively. By omitting periods with obvious volcanic influence we have derived background mixing ratio distributions of SO₂. At 10 km altitude these indicate an annual cycle at northern mid- and high latitudes with maximum values in summer and an amplitude of about 30 pptv. At higher altitudes of about 16–18 km enhanced mixing ratios of SO₂ can be found in the region of the Asian and the North-American monsoon in summer – a possible connection to an aerosol layer discovered by Vernier et al. (2011b) in that region.
1 Introduction

The background aerosol loading of the stratosphere has been found to increase since about the year 2000 (Hofmann et al., 2009; Vernier et al., 2011b). Due to the negative radiative forcing of stratospheric sulfate aerosol this trend has been discussed as part of the explanation for a slowdown in the rise of global temperatures (the so-called global warming hiatus) since the turn of the millennium (Solomon et al., 2011; Fyfe et al., 2013a,b; Haywood et al., 2013; Santer et al., 2014). Hofmann et al. (2009) explained the rising stratospheric aerosol levels by an increase in the anthropogenic sulfur dioxide (SO$_2$) production in South East Asia while Vernier et al. (2011b) opposed this view by showing the increasing influence from sulfate injection of moderate tropical volcanic eruptions into the stratosphere. Recently, Ridley et al. (2014) have used ground-based and balloon-borne observations to demonstrate that especially at mid- and high latitudes the aerosol loading within the altitude range between the tropopause and 15 km contributes strongly to the volcanic aerosol forcing during the last decade.

As basis for studying these processes with the aid of atmospheric models, it is essential to get global information about the amount of SO$_2$ reaching stratospheric altitudes. Measurements of SO$_2$ in the upper troposphere and lower stratosphere (UTLS) are, however, sparse. In-situ observations from aircraft campaigns are highly accurate (see also Sect. 2.6). However, they provide mainly snapshots of the atmospheric state which might also be influenced by the sampling tailored specifically to the campaign objective. Global observations from satellite nadir sounding instruments provide horizontally highly resolved pictures of SO$_2$ distributions emitted by strong sources, like volcanoes (Theys et al., 2013 and references therein). While most analysis methods of nadir sounding observations provide vertical column amounts of SO$_2$, various recent studies indicate that volcanic plume heights can be derived (Yang et al., 2010; Van Gent et al., 2012; Rix et al., 2012; Carboni et al., 2012; Clarisse et al., 2014; Fromm et al., 2014).

Owing to their observation geometry, limb-sounding measurements are especially suited to obtain profile information of atmospheric constituents. In the microwave spectral region Read et al. (1993) retrieved SO$_2$ concentrations from the Microwave Limb Sounder (MLS) on the
Upper Atmosphere Research Satellite (UARS) in the aftermath of the eruption of Mt. Pinatubo and Pumphrey et al. (2015) analysed SO$_2$ signatures from various volcanic eruptions measured by the MLS instrument on the Aura satellite. In the mid-infrared, Doeringer et al. (2012) used solar occultation spectra measured by the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) to reconstruct vertical profiles of SO$_2$ following the eruption of the Sarychev volcano in June 2009.

In the following we present global altitude-resolved distributions of SO$_2$ between about 10 and 20 km as retrieved from infrared limb-emission observations by MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) between June 2002 and April 2012. This dataset is derived from single MIPAS limb spectra and complementary to the one presented in Höpfner et al. (2013) which was reconstructed from monthly and 10° zonally averaged spectra, covering the height region between 15–20 and 40 km altitude. Thus, the present dataset allows to exploit the full spatial and temporal coverage and resolution of the MIPAS observations.

In Sect. 2 we describe the measurements and the retrieval scheme and characterize the dataset comprising vertical resolution and error estimation. This is followed by a comparison with independent remote sensing and in-situ observations of SO$_2$ in the UTLS region. Beside an overview over the whole dataset, the main subject of Sect. 3 is the analysis of volcanic plumes with respect to the derivation of eruption masses and lifetimes of SO$_2$ from major volcanic events. The global non-volcanic background distribution of SO$_2$ is presented at the end of Sect. 3 and final conclusions are drawn in Sect. 4.

2 The MIPAS SO$_2$ dataset

2.1 Instrument

MIPAS (Fischer et al., 2008) was operated on the sun-synchronous polar orbiting satellite Envisat. Envisat was launched on 1 March 2002 and lost ground contact on 8 April 2012. The MIPAS instrument is a limb-sounder measuring the thermal radiation emitted by the atmosphere in the region 685–2410 cm$^{-1}$ by means of a Fourier Transform spectrometer (ESA, 2000).
Two main periods of MIPAS operation can be distinguished: period 1 (P1) lasted from June 2002 until April 2004 and period 2 (P2) from January 2005 until April 2012. During P1 the spectral resolution was 0.025 cm\(^{-1}\) (unapodized) and the latitudinal distance between subsequent limb-scans 530 km, each consisting of 17 tangent views with 3 km sampling steps in the UTLS region. During P2 the spectral resolution was set to 0.0625 cm\(^{-1}\) (unapodized), thereby reducing the measurement time per spectrum. This led to finer horizontal (420 km) and vertical (1.5 km in the UTLS region) sampling patterns.

For the retrieval of SO\(_2\) described in this paper level-1b calibrated spectra version 5 as provided by ESA have been used (Nett et al., 2002).

2.2 Retrieval

In contrast to the MIPAS dataset of SO\(_2\) published by Höpfner et al. (2013), which was reconstructed from monthly and zonal averaged spectra, the present retrieval has been performed on basis of single limb-scans. The standard MIPAS IMK-IAA data processing scheme has been applied as described in detail by von Clarmann et al. (2003) and von Clarmann et al. (2009). The retrieval method is a constrained non-linear least squares multi-target fitting procedure of measured limb radiances. Spectral fitting intervals which have been applied for the reconstruction of SO\(_2\) are listed in Table 1. In addition to the spectral region of the \(\nu_3\) band around 1370 cm\(^{-1}\) (Höpfner et al., 2013) we have used lines from the weaker \(\nu_1\) band around 1130 cm\(^{-1}\) to minimize errors due to saturation in case of enhanced concentrations. Beside the volume mixing ratios of SO\(_2\), jointly retrieved parameters are altitude profiles of the main spectrally interfering species H\(_2\)O, O\(_3\), N\(_2\)O, and CH\(_4\). Height distributions of further trace gases exhibiting minor signatures in the spectral region of interest are taken either from previous steps in the retrieval chain (HNO\(_3\), N\(_2\)O\(_5\), CFC–12, HCN, PAN, C\(_2\)H\(_2\)) or are based on climatological profiles (HCFC–22, CFC–113, CFC–114, HCFC–142b). The atmospheric temperature profile, the instrumental line-of-sight and spectral calibration correction are likewise imported from previous retrieval steps.

Regularization of the retrieval is necessary since the altitude grid distance of the atmospheric profiles is 1 km and, thus, smaller than the vertical tangent point spacing of 1.5–3 km. Here
we have applied a standard first order Tikhonov regularization scheme (Tikhonov, 1963;Steck, 2002). This scheme constrains the reconstructed profiles by minimizing along with the spectral residual also the first derivative of the vertical profile. Thus, the regularization introduces a smoothness of the result but avoids any biasing with respect to some absolute vmr value. The resulting vertical resolution varies from 3 to 5 km in the altitude range between 10 and 20 km.

The IMK-IAA MIPAS data which are used in this work are versions V5H_SO2_20, V5R_SO2_220, and V5R_SO2_221.

2.3 Error estimation

An estimate of altitude-dependent retrieval errors of various sources has been performed separately for different locations belonging to both measurement periods and for volcanically perturbed and unperturbed atmospheric situations. Figure 1 shows the resulting mean error profiles for each of the four categories. Estimated errors are split into a purely random term due to measurements noise and “systematic” terms due to instrumental, spectroscopic and errors in pre-determined parameters, like temperature and line-of-sight pointing. Note, however, that the “systematic” error term contains also random contributions with different time-scales, like e.g. radiometric calibration. The random error due to measurement noise leads to vmr errors which are at first order independent of the \(\text{SO}_2 \) amount in the atmosphere. With around 70–100 pptv it is the dominant error contribution when single (non-averaged) profiles are considered. In the case of averaging systematic errors become more important. These are estimated to about 10–75 pptv (10–180 %) for cases without volcanic influence and 10–110 pptv (10–75 %) in volcanically enhanced conditions (Fig. 1).

In contrast to other trace gases measured with MIPAS, the dynamic range of \(\text{SO}_2 \) vmr values in the atmosphere can vary significantly because of volcanic activity. This can introduce errors in the retrieved profiles due to saturation effects in the radiative transfer. We have estimated these uncertainties by sensitivity studies. Table 2 shows the results depending on the value of the maximum of the assumed \(\text{SO}_2 \) vmr profile. The retrieved vmr values show maximum concentrations underestimated by \(-13\%\) for 5 ppbv and \(-50\%\) for a reference of 100 ppbv. Partial column amounts over a certain altitude range around the maximum of the vmr profile
are much less affected. The underestimation here reaches from -0.1% for the profile with a maximum of 5 ppbv to -14% for 100 ppbv at the maximum. This result indicates that the error of the maximum vmr value is mainly caused by the regularization smoothing constraint while saturation effects appear for profiles with vmr values above 50–100 ppbv.

2.4 Validation

2.4.1 Comparison with ACE-FTS

We have performed a comparison of MIPAS altitude profiles of SO$_2$ with those of the ACE-FTS instrument (research product version 3.0). ACE-FTS is one of the instruments belonging to the Atmospheric Chemistry Experiment (ACE) space mission launched in August 2003 (Bernath et al., 2005). The Fourier transform spectrometer measures infrared solar occultation spectra from 750–4400 cm$^{-1}$ with a spectral resolution of 0.02 cm$^{-1}$ at sunrise and sunset during each orbit. The vertical resolution of the retrieved profiles of atmospheric traces gases is about 3–4 km as set by the instrument’s field-of-view. More specific information on the reconstruction of SO$_2$ vertical distributions from ACE-FTS measurements can be found in Doeringer et al. (2012).

In Fig. 2 the comparison of SO$_2$ profiles between MIPAS and ACE-FTS is shown for collocated observations using a match-criterion of 500 km and 5 h. Further, the profiles have been grouped into one representing background conditions with mixing ratios smaller than 50 pptv (top row in Fig. 2) and two groups representing enhanced mixing ratios with at least one vmr value up to 20 km larger than 50 and 200 pptv, respectively (middle and bottom row of Fig. 2). In the case of the background conditions, there is a clear bias with larger MIPAS mixing ratios of up to 30 pptv below 18 km and up to 15 pptv lower MIPAS values for altitudes between 18 and 20 km. The combined precision estimates of both instruments (blue curves in the third column) are slightly smaller than the SD of the differences. As will be shown below, this is caused by the residual atmospheric variability within the limits of the collocation criterion. In the case of enhanced SO$_2$ vmr values, differences between MIPAS and ACE-FTS are generally in the range of ±30 pptv reaching values of ±50–100 pptv only at a few altitudes. However,
as shown by the error bars in the second row of Fig. 2, these differences lie mostly inside the SD of the differences and, thus, are not significant. The large difference between the black and blue curves in the middle and bottom plot of the third column (Fig. 2) is very probably due to the strong atmospheric variability of SO$_2$ under volcanic influence.

Figure 3 presents a closer look at the comparison of collocated measurements for the background case. Here we have distinguished matches during MIPAS periods P1 (top) and P2 (bottom). Additionally, during P2 only profiles during periods of low volcanic activity have been selected which was not necessary for P1 since there was no significant volcanic influence when both instruments measured simultaneously. This representation reveals that the typical bias of up to 30 pptv for the SO$_2$ background only appears during period P2 while during P1 no significant bias between the two instruments can be detected. We suppose that this fact is due to the higher spectral resolution during P1 which makes the retrieval of small spectral signatures more robust. Furthermore, there is a very good agreement between the combined estimated instrument precision and the SD of the profile differences (third column in Fig. 3). This is due to the selection of periods with very low volcanic activity which reduces the atmospheric variability additionally to the criterion on small vmr-values of SO$_2$. This demonstrates that the combined precision estimates of MIPAS and ACE-FTS are realistic.

2.4.2 Comparison with retrievals from mean MIPAS spectra and the monthly averaged ACE-FTS dataset

Here we analyse the agreement between the MIPAS SO$_2$ data retrieved from monthly zonal mean spectra (Höpfner et al., 2013) (called MIPASmon in the following) and the present single scan dataset. Figure 4 shows the comparison of average monthly mean profiles between the two MIPAS datasets and ACE-FTS for background (top) and volcanically perturbed cases (bottom). For the background situation, MIPAS monthly mean profiles from single scan retrievals show similar differences either to MIPASmon or the ACE-FTS dataset. This is in agreement with the comparisons of collocated profiles between MIPAS and ACE-FTS described in the previous section. The background profiles of MIPASmon and ACE-FTS compare very well. In contrast, the comparison of volcanically enhanced monthly mean profiles (Fig. 4, bottom) reveals a good
agreement between ACE-FTS and MIPAS single scan retrievals while MIPASmon seems to underestimate the atmospheric SO\textsubscript{2} content by up to 100 pptv. Such an underestimation of SO\textsubscript{2} in MIPASmon for volcanically enhanced periods has already been suspected when comparing the SO\textsubscript{2} distribution of July 2009 between ACE-FTS and MIPASmon retrievals (Höpfner et al., 2013).

When comparing MIPAS and MIPASmon profiles of SO\textsubscript{2} separately for MIPAS periods P1 and P2 and, additionally excluding volcanically enhanced periods (see Fig. 5) we reach the same conclusion as from the comparison with ACE-FTS in Fig. 3: in P1 the background distribution compares well between both datasets while during P2 a typical bias of the MIPAS single scan retrieved data of up to 30 pptv is apparent.

2.5 Debiasing

The presented comparisons have revealed a distinct height-dependent bias between the SO\textsubscript{2} retrievals from MIPAS periods P1 and P2 of up to about 30 pptv down to about 12 km. Most observations further indicate that this bias affects the observations during measurement period P2. Thus, for the subsequent discussion of the whole dataset from 2002–2012 we have applied an altitude- and latitude-dependent bias-correction to the data from period P2. This 2D correction pattern has been determined as the difference between the mean SO\textsubscript{2} distributions (height vs. latitude) of period P1 and period P2 where for both periods months of major volcanic influence have been excluded. The spatial correction pattern as shown in Fig. 6 does not vary strongly with latitude down to about 10 km altitude. Above 17–18 km it is generally positive and negative below – reaching values of −150 pptv at lowest altitudes between 6 and 10 km.

The comparisons with ACE-FTS and MIPAS monthly mean retrievals as discussed above and as shown in Figs. 2–5 have been repeated for the debiased dataset (bold dotted lines in these figures). The results now show a much better consistency between the two measurement periods with remaining maximum differences of about 10–15 pptv at 13–14 km and of a few 10ths of pptv at lowest altitudes. In the following we will restrict the discussion to altitudes above 10 km where remaining differences between the datasets of P1 and P2 are around 10 pptv.
2.6 Comparison of the debiased dataset with in-situ observations

The comparison of MIPAS SO$_2$ with ACE-FTS and MIPASmon is only possible for altitudes above 12.5 and 15 km, respectively. The altitude region between about 8 and 12 km has been covered mainly by in-situ observations from aircraft.

In Fig. 7 we show a collection of published airborne measurements of SO$_2$ mainly observed before the year 2000 (Jaeschke et al., 1976; Inn and Vedder, 1981; Meixner, 1984; Möhler and Arnold, 1992; Reiner et al., 1998; Thornton et al., 1999; Jaeschke et al., 1999; Curtius et al., 2001). These are compared to MIPAS data of similar geographic range and season excluding periods of strong volcanic influence. Further, the MIPAS data are subdivided into measurement periods P1 (green) and P2 (blue, solid) because of the debiasing of measurement period P2 with respect to P1 as described above. In general the MIPAS data are in the range of in-situ observations. In the northern high- and mid-latitudes e.g. in Meixner (1984); Möhler and Arnold (1992), and Reiner et al. (1998) the values increase with lower altitudes, which is reflected in the MIPAS dataset. At more remote regions like over the equatorial and southern Pacific Ocean, Thornton et al. (1999) observed in general lower SO$_2$ mixing ratios than in the Northern Hemisphere (bottom row in Fig. 7). This is reflected mainly by the MIPAS data which show a weaker vertical gradient compared to the observations in the north and which are in magnitude similar to the Thornton et al. (1999) observations in the equatorial region. However, at southern subtropical and mid-latitudes MIPAS values are higher than the in-situ data by 20–30 pptv.

A comparison with a more recent set of in-situ observations is presented in Fig. 8. The data have been collected by DLR-IPA (Deutsches Zentrum für Luft-und Raumfahrt – Institute für Physik der Atmosphäre) and MPI-K (Max-Planck-Institut für Kernphysik) using a jointly developed Ion Trap Chemical Ionization Mass Spectrometer (ITCIMS), described in Speidel et al. (2007), during several measurement campaigns (Schlager et al., 2006; Fiedler et al., 2009b, 2011; Waddicor et al., 2012; Barth et al., 2014; Roiger et al., 2014).

In contrast to the behaviour of SO$_2$ with altitude shown before, this time the vmr values in the northern mid- to high-latitudes (first two rows in Fig. 8) do not show a distinct increase towards lower altitudes, which is different from MIPAS. Also the absolute in-situ measured vmr
values are in most cases smaller than MIPAS, especially at altitudes below 10 km. In contrast, the equatorial and southern hemispheric ITCIMS data from AMMA, SCOUT-O3 and TROCCINOX are higher compared to MIPAS. The in-situ data from the ESMVal-Antarktis campaign are with around 10 pptv comparable to the S-Pacific data of Thornton et al. (1999) and lower than MIPAS up to 13 km by up to 40 pptv. Above 13 km differences are reduced to about 10 pptv.

Obviously, it is difficult to gain a coherent picture of the uncertainty of the MIPAS background SO₂ dataset in the lowermost stratosphere/upper troposphere from comparison with in-situ measurements. First, the variability of SO₂ in the UTLS is quite large. We have tried to restrict the MIPAS data to background situations while the in-situ data might contain cases where volcanic plumes are sampled. Unfortunately, the real matches between in-situ and MIPAS data are too sparse to get robust statistics – so we had to compare with seasonal mean MIPAS data. Second, aircraft campaigns are snapshots and even are often dedicated to specific objectives which might not be representative for the atmospheric situation in general. And, third, even the atmospheric background situation might be different due to changes in industrial emission patterns influencing the UTLS distributions of SO₂.

In summary, for the region between 7 and 15 km the MIPAS dataset of SO₂ (especially above 10 km) seems to be in accordance with the set of in-situ observations within its estimated systematic error of a few tens of ppt. Thus, in the following we will restrict the discussion to the debiased dataset and to altitudes above 10 km where also remaining differences between the debiased data of P1 and P2 are around 10–20 pptv.

3 Results and discussion

3.1 SO₂ distributions

As an example for daily distributions from MIPAS Fig. 9 shows volume mixing ratios of SO₂ at the altitude levels 18, 20, and 22 km for three days after the eruption of the Nabro volcano on 12 June 2011. The plume of enhanced concentrations is clearly visible on 17 June reaching from northern Africa over the mid-East to S-E Asia at 18 and 20 km while at 22 km altitude no clear
enhancements are visible. This global dispersion is similar to observations by IASI (Clarisse et al., 2014; Fromm et al., 2014). One week later, on 24 June, the plume filled a large area of the Asian monsoon region. Its extension towards the west reached zero degrees longitude over northern Africa. Even at 22 km, enhanced values of SO$_2$ could be observed within a restricted area reaching from the Arabian Peninsula over India and S-China. One month later, on 22 July, the plume at 18 km extended around the globe from the tropics to high northern latitudes while at 20 km it remained within the tropics/subtropics and at 22 km no clear enhancements could be observed any more. In the MIPAS dataset enhanced values of lower stratospheric SO$_2$ over the Northern Hemisphere can be observed even until mid/end of September 2011. Of course it must be kept in mind that due to the limited vertical resolution, high volume mixing ratios in the retrieved profiles detected up to 22 km altitude do not guarantee that volcanic SO$_2$ actually reached these heights. Taking into account, however, the half-width of the averaging kernel (3–5 km) it is very probable that the plume extended at least to heights of 20 km.

To give an overview over the whole measurement period, Figs. 10–12 show the dataset grouped as bins of 2 day and 10° zonal means. The most obvious signals influencing the time series are due to volcanic eruptions which have been indicated by triangles and abbreviations (see Table 3). A quantitative analysis of the emitted masses of SO$_2$ from these volcanic events is discussed in Sect. 3.2. In the subsequent Sect. 3.3 we try to extract the global distribution and the temporal behavior of the non-volcanic background of SO$_2$ in the UTLS.

3.2 Volcanic SO$_2$ mass and lifetime

As noticed above, the strongest contribution to the variability of SO$_2$ volume mixing ratios in our dataset is caused by volcanoes. Though not as strong as the one of Pinatubo in 1992, many mid-scale volcanic eruptions occurred in the period 2002–2012. Partly overlapping the measurement period of MIPAS there exist observations of volcanic SO$_2$ by the microwave limb-emission sounder MLS on Aura (Pumphrey et al., 2015). Though not being as sensitive to SO$_2$ as the mid-infrared observations, measurements in the microwave have the advantage of being less affected by particles, like aerosols or thin clouds in the line-of-sight.
In Fig. 13 we show an example of the development of the total mass of SO$_2$ as calculated from MLS and MIPAS volume mixing ratios during a period of time around the eruption of Sarychev on 12 June 2009. Directly after the eruption, total SO$_2$ masses of both instruments increase. However, MLS shows a faster rise and larger maximum values. After a few weeks, the global SO$_2$ masses of the instruments start to agree showing a similar decline afterwards.

We interpret this behavior as an underestimation of the MIPAS SO$_2$ masses directly after strong volcanic eruptions. This is supported by the assumption that the major mass of SO$_2$ is injected into the UTLS region during the eruption and decreasing afterwards, as observed e.g. by various nadir sounding satellite instruments. One of the main reasons for this underestimation is the influence of volcanic particles on the MIPAS measurements: spectra strongly affected by aerosols or clouds are excluded from the retrieval. As described in Höpfner et al. (2013) the cloud clearing algorithm excludes tangent views with a particle volume density of about 1–2 μm3cm$^{-3}$ along the line of sight. This causes a sampling artifact where non-plume air-masses are favored. Second, the presence of largely enhanced concentrations of SO$_2$ leads to saturation of the spectral lines and, thus, to an underestimation in the retrieval as described in Sect. 2.3. Maximum volume mixing ratios derived from MIPAS after strong volcanic eruptions are around 13 ppbv of SO$_2$. These are concentrations where saturation effects, especially when considering partial column amounts, are in the range of a few percent (c.f. Tab. 2). Thus, we do not consider saturation as important as the cloud clearing for the underestimation of SO$_2$ masses. Third, the sampling of the horizontally restricted plume directly after the eruption by limb-sounding instruments results in errors in total mass estimation which might be slightly worse in case of MIPAS due to a less dense along-track sampling compared to MLS.

In order to compile a climatology of SO$_2$ masses emitted by volcanoes, we have fitted the MIPAS observations to a parametric model with exponential decay, similar as in Pumphrey et al. (2015):

$$M_{\Delta h_i}(t) = M_{\Delta h_i}(t_0) \times \exp\left(-\frac{t - t_0}{\tau_{\Delta h_i}}\right).$$

(1)

$M_{\Delta h_i}(t)$ are the background-subtracted zonal mean masses of SO$_2$ observed by MIPAS binned over five days within the latitude range where elevated signals are observed and within the
altitude range Δh_i. The background values have been determined using the observations just before the eruption time t_0. The fitting parameter $M_{\Delta h_i}(t_0)$ denotes the emitted mass at time t_0 and $\tau_{\Delta h_i}$ the e-folding lifetime of SO$_2$ at Δh_i.

For the calculation of masses, the MIPAS retrievals of SO$_2$ volume mixing ratios have been combined with the pressure-temperature dataset also derived from MIPAS (von Clarmann et al., 2003) to obtain vertical profiles of number densities. These profiles have been integrated in the vertical over the respective layer thickness to obtain partial column amounts. Subsequently, these data have been integrated over 10° latitude bins to obtain zonal masses of SO$_2$. For this integration the profiles have been assumed to be equally distributed within each latitude band.

Thus, unlike Pumphrey et al. (2015) we have chosen to perform an altitude-dependent fit within three atmospheric layers ($\Delta h_1 = 10–14$ km, $\Delta h_2 = 14–18$ km, $\Delta h_3 = 18–22$ km). Further, due to the underestimated SO$_2$ masses directly after a volcanic eruption, as discussed above, the fitting period initiates not at t_0 but when linear behavior of $\ln(M_{\Delta h_i}(t))$ starts and ends when no enhanced signal compared to the background is detected.

In the fifth row of Table 3 the resulting values of $M_{\Delta h_i}(t_0)$ and $\tau_{\Delta h_i}$ for all volcanic eruptions which could be detected within the MIPAS dataset are presented for each of the three atmospheric layers. The total masses are indicated in bold face. An independent fit of $M_{\Delta h_i}(t_0)$ and $\tau_{\Delta h_i}$ has only been possible for the eruptions with the largest signals: Kasatochi (August 2008), Redoubt (March 2009), Sarychev (June 2009), Merapi (November 2010), Puyehue-Cordón Caulle (June 2011), and Nabro (June 2011). This is indicated as extrapolation method “c” in Table 3. For the other eruptions typical lifetimes have been assumed as the average lifetimes of Kasatochi, Sarychev and Nabro ($\bar{\tau}_{\Delta h_1} = 13.3$ d, $\bar{\tau}_{\Delta h_2} = 23.6$ d, $\bar{\tau}_{\Delta h_3} = 32.3$ d). Thus, in those cases only the SO$_2$ masses $M_{\Delta h_i}(t_0)$ have been fitted. In Table 3 this is marked as extrapolation methods “a” or “b” where “a” means that only one enhanced value of $M_{\Delta h_i}(t)$ has been used after the eruption while “b” indicates that more than one values of $M_{\Delta h_i}(t)$ have been fitted.

Uncertainties, which are given in brackets in Table 3 have been estimated by variation of the fitting interval time in case of methods “b” and “c”. Additionally, for the cases “a” and “b” where lifetimes have not been derived simultaneously, an error of 20% in the assumed values of $\bar{\tau}_{\Delta h_i}$ has been applied. The table also presents results of SO$_2$ mass and lifetime from previous
studies. These are mainly based on nadir sounding satellite observations with the exception of
Pumphrey et al. (2015) who discuss Aura/MLS limb measurements.

For an easier overview, a graphical representation of MIPAS total masses in comparison with
external work is given in Fig. 15 where black symbols indicate MIPAS, red ones MLS and
other colors the nadir observations. From a total of 42 pairs of MIPAS/external observations,
18 compare well within 1-σ and 28 within 2-σ error bars. Further, about 2/3rd (28 of 42) of
the MIPAS derived SO$_2$ masses are lower than those derived from other sources. This might
be explained by the fact that nadir instruments sample the whole column of SO$_2$ while the
MIPAS altitude range considered here starts at 10 km, which leads to low MIPAS columns in
cases where the bulk of SO$_2$ remains in the troposphere. Regarding only limb-sounders, MIPAS
total masses compare within the uncertainties with MLS for So06, Ra06, Sa09 (retrieval above
215 hPa) and Na11 while MIPAS values are lower for Ka08 and higher for Ma05 and Gr11.
However, under consideration of the lower pressure level given for the MLS dataset, MIPAS
data of Ma05, So06 and Ra06, would be outside the estimated error range and lower than MLS.

For some of the volcanic eruptions detected in the MIPAS dataset (see Table 3), no published
values of emitted SO$_2$ abundances have been found. We attributed those SO$_2$ plumes to specific
volcanic eruptions by comparison with measurements from nadir sounding satellites given at
http://so2.gsfc.nasa.gov or at http://sacs.aeronomie.be. Further, in two cases (mid-July and mid-
August 2005) enhanced values of SO$_2$ have been detected, but due to the sparse data coverage
by MIPAS during this time, it was not possible to directly attribute those to specific eruptions.

Regarding the retrieved atmospheric e-folding lifetimes of SO$_2$ we could detect a clear de-
pendence on altitude. Considering the major eruptions of Kasatochi in 2008 (Ka08), Sarychev
in 2009 (Sa09) and Nabro in 2011 (Na11) these vary from 11–15 d at 10–14 km via 23–25 d at
14–18 km to 27–38 d at 18–22 km. These values are similar to those of MLS (Pumphrey et al.,
2015) who derived in case of Sa09 17 d above 215 hPa (11–12 km) and 27 d above 147 hPa
(13–14 km). From nadir sounders in case of Ka08, Karagulian et al. (2010) derived a lifetime of
18 d. This value, however, has been challenged by Clarisse et al. (2012) who determined sim-
ilar values as reported by Krotkov et al. (2010): 8–9 d. For Sa09 Clarisse et al. (2012) showed
a comparable time dependence as Haywood et al. (2010) pointing to a lifetime of around 10
days. Thus, there is a clear difference between \(\text{SO}_2 \) lifetime estimates from nadir and from limb-sounding instruments. Figure 14 illustrates this discrepancy by comparing a decay time of 10 days to the MIPAS observations from Fig. 13 in logarithmic representation. Haywood et al. (2010) have noted a similar difference between their nadir sounding observations and results from model runs. These differences have partly been explained by the \(\text{SO}_2 \) detection limit of the nadir measurements leading to lower lifetime estimates upon dispersion of the plume. A further contribution might also stem from the vertical sensitivity of nadir sounding instruments in combination with vertically varying decay times of \(\text{SO}_2 \): nadir sounders also sample air from altitudes lower in the troposphere which are not seen by the limb-instruments and where the lifetime of \(\text{SO}_2 \) is probably smaller than at higher altitudes.

which would fit to our results taking into consideration the altitude dependence, while the 8–9 d by Krotkov et al. (2010) are rather low and seem to represent values at lower altitudes.

3.3 Global variability of background \(\text{SO}_2 \)

A modulation of the \(\text{SO}_2 \) time series which seems not to be caused by volcanic activity appears in the Northern Hemisphere at mid- and high-latitudes (see the top row in Fig. 10): in summer the \(\text{SO}_2 \) volume mixing ratios at 10 km altitude are enhanced with monthly mean values reaching 80–100 pptv. This feature can best be detected during years when volcanic influence was comparably small, such as 2003, 2007 or 2010. In comparison, northern wintertime volume mixing ratios of \(\text{SO}_2 \) are around 40–50 pptv. An annual cycle of \(\text{SO}_2 \) is also slightly visible at mid-latitudes in the Southern Hemisphere, however, with strongly reduced amplitude compared to the north (10 pptv in winter vs. 40 pptv in summer).

A globally resolved view on the seasonal variability of the \(\text{SO}_2 \) non-volcanic “background” is provided in Fig. 16. Here we have tried to exclude periods of direct volcanic \(\text{SO}_2 \) influence by visual inspection of single observations (as in Fig. 9) and of the overview plots (Figs. 10–12). Time periods which have been excluded from the analysis are reported in the caption of Fig. 16. Certainly it is not possible to exclude any volcanic influence. However, we tried to avoid the signals of the larger volcanic eruptions in order to get a picture of possible non-volcanic impact, its global distribution and its temporal modulation.
The most obvious temporal variability in background SO$_2$ is an annual cycle at 10 km altitude with maxima during summer over northern mid- to high- and southern mid-latitudes as already mentioned above. Further, at 12 km one can observe highest values of SO$_2$ over the western Pacific and Atlantic at northern sub-tropical and middle latitudes in June/July/August (JJA). Enhanced values spread within this latitude band eastward over the Pacific and the Atlantic. Higher up, at 14 and 16 km, localized regions with enhanced SO$_2$ mixing ratios can be found over SE-Asia, the Arabian Peninsula and middle America. At 18 km these locations of slightly enhanced values are still visible in JJA. Further, at this altitude there appear enhanced mixing ratios over the Antarctic region which are probably connected to the downwelling of SO$_2$-rich air within the Antarctic polar vortex as described by Höpfner et al. (2013).

Comparison of these global structures and temporal variations in the UTLS with previous in-situ measurements is difficult due to their sparsity and the variability of the observed SO$_2$ concentrations. The main feature of the MIPAS dataset at lowest altitudes of 10 km, the annual variation with maximum values in JJA, cannot clearly be identified in available airborne in-situ measurements (c.f. Figs. 7 and 8). In-situ campaigns providing data in northern mid-latitudes during summer have been e.g. ACCESS, ITOP, TACTS and DC3 (Fig. 8). During ACCESS and TACTS mean volume mixing ratios in the order of 30 pptv have been detected at around 10 km altitude while the corresponding MIPAS data show about 50–70 pptv. During ITOP and DC3, however, the MIPAS values are more similar to the airborne averaged data of around 40–70 pptv. Thus, at the present stage, we cannot decide whether the annual variation of SO$_2$ at 10 km altitude is robust or caused by unknown artifacts within the MIPAS retrieval.

A similar interhemispheric picture of the SO$_2$ distribution as in the MIPAS dataset has been obtained by Thornton et al. (1999) during flights over the Pacific. At 8–12 km altitude a north–south gradient has been found with values of 50–150 pptv in the north decreasing to 10 pptv at southern remote areas. (The Thornton et al. (1999) data are also included in the comparison of Fig. 7.)

Another feature reported by Thornton et al. (1999) and present also in the MIPAS distributions especially in JJA (c.f. Fig. 16) is the signal of pollution visible in the western North Pacific region east of the Asian continent and reaching even the upper troposphere. Enhanced levels of
SO$_2$ in the free troposphere originating from the North China Plain have been observed by Ding et al. (2009) during airborne measurements in summer 2007. By trajectory analysis Ding et al. (2009) concluded that these polluted airmasses are further lifted into the upper troposphere by warm conveyor belts (WCBs). Further, Fiedler et al. (2009a) and Fiedler et al. (2009b) report on measurements of enhanced SO$_2$ concentrations over Europe with origin in East Asia.

Enhanced concentrations of SO$_2$ at around 16–18 km located mainly in the region of the Asian and the North American Monsoon cannot be compared to in-situ data due to the lack of observations at those altitudes. However, there may be a connection with the Asian tropopause aerosol layer (ATAL) which was detected in data of the spaceborne lidar CALIPSO (Vernier et al., 2011a). There is a region of enhanced aerosol backscatter signal in the region of the Asian monsoon extending vertically from around 13 to 18 km. A similar but less pronounced aerosol feature is also present in connection with the North American monsoon (Vernier et al., 2011a). The nature of these particles is still unclear. Due to their low depolarisation signal, either spherical droplets or small solid particles are candidates (Vernier et al., 2011a). The present MIPAS data indicate that there exist enhanced levels of SO$_2$ in the Monsoon regions at the altitudes of the ATAL. This points towards the possibility of a production of sulfate aerosols from SO$_2$ oxidation at those levels.

4 Conclusions

We have presented a dataset of global SO$_2$ volume mixing ratio distributions which is complementary to the one shown in Höpfner et al. (2013). While the latter covers the altitude range of 15–40 km, the present retrievals extend from the upper troposphere up to about 20 km. In terms of temporal and horizontal resolution, the Höpfner et al. (2013) data are monthly and zonal average values of 10° latitudinal bins, while the new data record consists of single limb-scan retrievals from MIPAS/Envisat comprising more than thousand profiles with global coverage daily. The estimated total error for single vmr profiles is typically in the range 60–100 pptv. The error budget is dominated by the measurement noise. Other error contributions are estimated from about 10 pptv up to 100 pptv, with increasing errors towards lower altitudes. Comparison
of the MIPAS SO₂ measurements with those of the ACE-FTS instrument revealed an altitude dependent offset in the background SO₂ concentrations of the second major measurement period of MIPAS (2005–2012). The two periods have been debiased by application of a height- and latitude-dependent correction field yielding residual biases of less than 20 pptv. Due to the sparsity of in-situ observations of SO₂ no systematic validation could be made with collocated measurements. However, we could compare within similar latitudes and seasons of the year. This resulted in a scatter of the differences within about ±50 pptv revealing no indication for a problem with the actual MIPAS data after debiasing.

Due to the global coverage of this dataset and the high sensitivity of limb observations, the evolution of SO₂ clouds from single volcanic eruptions reaching the region of the UTLS can be tracked, in some cases for even more than half a year. We have derived volcanic injection masses and for some cases also atmospheric lifetimes at three altitude regions for thirty eruptions between 2002 and 2012. The determination of masses of emitted SO₂ was complicated due to an underestimation of the total mass directly after the eruptions which has become evident by a comparison with SO₂ masses derived from MLS. This is attributed to sampling artifacts caused by the discard of MIPAS spectra with large aerosol contribution, an effect similar to the “aerosol cloud top” feature in SAGE II observations (McCormick and Veiga, 1992; Fromm et al., 2014) and the smearing of SO₂ profile maxima in case of extremely high mixing ratios where the spectral lines are saturated and, thus, carry less information. The derived masses can be used as input for atmospheric models taking into account explicitly also smaller volcanic eruptions reaching stratospheric levels. Further, to our knowledge for the first time, the atmospheric e-folding lifetime of SO₂ has been derived at different levels in the UTLS. The average lifetimes increase with altitude from about 13 days at 10–14 km up to 32 days at 18–22 km. These values are compatible with previous observations other limb-sounding measurements (Pumphrey et al., 2015) but are considerably larger than estimates from nadir sounders. We attribute this discrepancy to the SO₂ detection limit of nadir sounding instruments and a combination of both decay time and instrument sensitivity varying with height.

Seasonal global maps of background SO₂ distributions are provided by omitting volcanically perturbed periods. In the northern mid- and high latitudes at about 10 km altitude these maps
indicate an annual cycle with maximum values during summertime. Candidate explanations are the higher tropopause level during summer and the so-called flushing of the extratropical UTLS with tropospheric air from late spring to summer (Gettelman et al., 2011, and references therein). To our knowledge, such a cycle in SO$_2$ has not been observed before. However, the significance of this particular result is limited, and additional measurements are needed for confirmation or falsification. The same applies to increased concentrations of SO$_2$ at altitudes of 16–18 km at the regions and during the period of the Asian and North-American monsoon which might be linked to the ATAL (Vernier et al., 2011a). This calls for a closer probing of upper altitude monsoon airmasses with respect to sulfur species which is actually a goal of the StratoClim project (http://www.stratoclim.org/).

Acknowledgements. H. Schlager, A. Roiger, and K. Wissmüller acknowledge support by the DLR projects ESMVal and VolcATS. This work was supported by the European Community within the StratoClim project (grant no. 603557). We acknowledge provision of MIPAS level-1b calibrated spectra by ESA, meteorological data by ECMWF, and data on volcanic activity by the Smithsonian’s Global Volcanism Program and by NASA’s Global Sulfur Dioxide Monitoring Home Page. Funding for the Atmospheric Chemistry Experiment is provided by the Canadian Space Agency. We acknowledge support by the Deutsche Forschungsgemeinschaft and Open Access Publishing Fund of the Karlsruhe Institute of Technology.
The article processing charges for this open-access publication have been covered by a Research Centre of the Helmholtz Association.

References

Table 1. Spectral windows for MIPAS SO\textsubscript{2} retrieval [cm−1].

<table>
<thead>
<tr>
<th>MIPAS period</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1132.1250–1132.7500</td>
<td></td>
<td>1132.1250–1132.7500</td>
</tr>
<tr>
<td>1136.3250–1136.8750</td>
<td></td>
<td>1136.3125–1136.8750</td>
</tr>
<tr>
<td>1139.4500–1141.0000</td>
<td></td>
<td>1139.4375–1141.0000</td>
</tr>
<tr>
<td>1142.0000–1143.3000</td>
<td></td>
<td>1142.0000–1143.3125</td>
</tr>
<tr>
<td>1366.5750–1368.2500</td>
<td></td>
<td>1366.5625–1368.2500</td>
</tr>
<tr>
<td>1369.9500–1370.6250</td>
<td></td>
<td>1369.9375–1370.6250</td>
</tr>
<tr>
<td>1371.1250–1371.9250</td>
<td></td>
<td>1371.1250–1371.9375</td>
</tr>
<tr>
<td>1376.0000–1376.6250</td>
<td></td>
<td>1376.0000–1376.6250</td>
</tr>
</tbody>
</table>
Table 2. Results of retrieval simulations for enhanced profiles. The vmr values of SO$_2$ at the profile maximum and the integrated column amounts between 10 and 25 km are reported (Ref. = Reference, Res. = Result, Diff. = Difference = (Res.-Ref.)/Ref. × 100).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.08</td>
<td>1.01</td>
<td>-6.34</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>1.23</td>
</tr>
<tr>
<td>5.08</td>
<td>4.43</td>
<td>-12.78</td>
<td>0.52</td>
<td>0.52</td>
<td>0.52</td>
<td>-0.13</td>
</tr>
<tr>
<td>10.08</td>
<td>8.19</td>
<td>-18.71</td>
<td>1.02</td>
<td>1.00</td>
<td>1.00</td>
<td>-1.72</td>
</tr>
<tr>
<td>50.08</td>
<td>31.02</td>
<td>-38.06</td>
<td>5.03</td>
<td>4.67</td>
<td>4.67</td>
<td>-7.01</td>
</tr>
<tr>
<td>100.08</td>
<td>49.90</td>
<td>-50.14</td>
<td>10.03</td>
<td>8.57</td>
<td>8.57</td>
<td>-13.97</td>
</tr>
<tr>
<td>500.08</td>
<td>114.14</td>
<td>-77.18</td>
<td>50.10</td>
<td>22.33</td>
<td>22.33</td>
<td>-54.83</td>
</tr>
</tbody>
</table>
Table 3. Volcanic eruptions observed in MIPAS measurements. General data of volcanoes are obtained from http://www.volcano.si.edu. “TropVolc” indicate unidentified sources at low tropical latitudes. $M(t_0)$ are the resulting emission masses of SO$_2$ from the exponential fit (see text for details). Values of $M(t_0)$ are given for altitude ranges 10–14/14–18/18–22/10–22 km. “$\tau =$” in column $M(t_0)$ indicates that a fit of the lifetime was possible with the values in days given for the altitude ranges 10–14/14–18/18–22 km. Values in brackets indicate estimated errors.

<table>
<thead>
<tr>
<th>Name</th>
<th>Eruption date</th>
<th>Location ° N/° E</th>
<th>$M(t_0)$ [Gg] if present: τ [d]</th>
<th>$M(t_0)$ [Gg] from other sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ny Nyamuragira</td>
<td>25 Jul 2002</td>
<td>−1.4/29.2</td>
<td>22(1)/12(1)/3(0)/37(2)a</td>
<td></td>
</tr>
<tr>
<td>Ru Ruang</td>
<td>25 Sep 2002</td>
<td>2.3/125.4</td>
<td>36(19)/39(9)/15(2)/90(21)b</td>
<td>741</td>
</tr>
<tr>
<td>Rev Reventador</td>
<td>3 Nov 2002</td>
<td>−0.1/−77.7</td>
<td>54(47)/29(6)/12(2)/94(47)b</td>
<td>65–841; 1002</td>
</tr>
<tr>
<td>So Soufrière Hills</td>
<td>12 Jul 2003</td>
<td>16.7/−62.2</td>
<td>68(19)/28(7)/2(1)/98(20)b</td>
<td>100–1283; 1404</td>
</tr>
<tr>
<td>Ma Manam</td>
<td>27 Jan 2005</td>
<td>−4.1/145.0</td>
<td>79(15)/87(9)/39(3)/206(17)a</td>
<td>1801; 99 ± 13(>68.1 hPa)4</td>
</tr>
<tr>
<td>An Anatahan</td>
<td>6 Apr 2005</td>
<td>16.4/145.7</td>
<td>34(11)/34(7)/0(0)/68(13)a</td>
<td>1653</td>
</tr>
<tr>
<td>Tr TropVolc</td>
<td>mid-Jul 2005</td>
<td>0.0/0.0</td>
<td>38(17)/21(5)/1(0)/68(13)a</td>
<td></td>
</tr>
<tr>
<td>Tr TropVolc</td>
<td>mid-Aug 2005</td>
<td>0.0/0.0</td>
<td>61(26)/23(5)/3(1)/88(27)a</td>
<td></td>
</tr>
<tr>
<td>Ma Manam</td>
<td>27 Feb 2006</td>
<td>−4.1/145.0</td>
<td>21(4)/58(8)/1(0)/80(9)a</td>
<td></td>
</tr>
<tr>
<td>So Soufière Hills</td>
<td>20 May 2006</td>
<td>16.7/−62.2</td>
<td>40(29)/38(4)/85(15)/162(33)a</td>
<td>2001; 123–2335; 139 ± 24(>68.1 hPa)4</td>
</tr>
<tr>
<td>Ra Rabaul</td>
<td>7 Oct 2006</td>
<td>−4.3/152.2</td>
<td>75(26)/118(34)/12(4)/205(43)b</td>
<td>1251; 2302; 190 ± 14(>100 hPa)4</td>
</tr>
<tr>
<td>Ny Nyamuragira</td>
<td>27 Nov 2006</td>
<td>−1.4/29.2</td>
<td>49(6)/5(0)/−/54(6)a</td>
<td>58–2161</td>
</tr>
<tr>
<td>Fo Founaise, Piton de la Ta</td>
<td>4 Apr 2007</td>
<td>−21.2/55.7</td>
<td>57(10)/12(1)/2(1)/71(10)a</td>
<td>140(>7.5 km)6</td>
</tr>
<tr>
<td>Ta Tair, Jebel at</td>
<td>30 Sep 2007</td>
<td>15.6/41.8</td>
<td>26(11)/27(5)/3(1)/56(12)b</td>
<td>46–577</td>
</tr>
<tr>
<td>Ch Chaiten</td>
<td>2 May 2008</td>
<td>−42.8/−72.7</td>
<td>26(7)/2(0)/2(0)/30(7)a</td>
<td>105; 69</td>
</tr>
<tr>
<td>Ok Okmok</td>
<td>12 Jul 2008</td>
<td>53.4/−168.1</td>
<td>110(41)/31(6)/2(0)/143(41)b</td>
<td>200–3005; 100–20010</td>
</tr>
<tr>
<td>Ka Kasatochi</td>
<td>7 Aug 2008</td>
<td>52.2/−175.5</td>
<td>645(127)/210(86)/43(8)/899(154)c</td>
<td>900–270011; 220012; 1000(>10 km)13</td>
</tr>
<tr>
<td>Da Dalaffilla</td>
<td>3 Nov 2008</td>
<td>13.8/40.5</td>
<td>31(9)/47(10)/1(0)/79(13)b</td>
<td>12005; 17009; 160014; 1350 ± 38(>215 hPa)4</td>
</tr>
<tr>
<td>Re Redoubt</td>
<td>23 Mar 2009</td>
<td>60.5/−152.7</td>
<td>182(10)/18(7)/−/200(12)c</td>
<td>$\tau =$ 8–912; 189; \approx1014; 27 ± 1(>215 hPa)4</td>
</tr>
<tr>
<td>Fe Fernandina</td>
<td>10 Apr 2009</td>
<td>−0.4/−91.6</td>
<td>14(2)/11(3)/2(0)/27(4)a</td>
<td>100–20015</td>
</tr>
<tr>
<td>Sa Sarychev</td>
<td>12 Jun 2009</td>
<td>48.1/153.2</td>
<td>888(293)/542(60)/44(4)/1473(299)c</td>
<td>225–33516</td>
</tr>
</tbody>
</table>

$\tau =$ 14(1)/23(5)/32(4) $\tau =$ 10–1117; \approx1014
<table>
<thead>
<tr>
<th>Name</th>
<th>Eruption date</th>
<th>Location ° N° E</th>
<th>$M(t_0)$ [Gg] if present: τ [d]</th>
<th>$M(t_0)$ [Gg] if present: τ [d] from other sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ny</td>
<td>2 Jan 2010</td>
<td>−1.4/29.2</td>
<td>17(5)/3(1)/2(0)/22(6)b</td>
<td></td>
</tr>
<tr>
<td>So</td>
<td>11 Feb 2010</td>
<td>16.7/−62.2</td>
<td>11(3)/12(2)/5(1)/28(4)b</td>
<td>5018</td>
</tr>
<tr>
<td>Pa</td>
<td>28 May 2010</td>
<td>14.4/−90.6</td>
<td>−10(2)/4(1)/14(2)b</td>
<td>2019</td>
</tr>
<tr>
<td>Me</td>
<td>4 Nov 2010</td>
<td>−7.5/110.4</td>
<td>−253(61)/23(7)/276(61)c</td>
<td>44020</td>
</tr>
<tr>
<td>Sh</td>
<td>12 Dec 2010</td>
<td>56.7/161.4</td>
<td>18(4)/1(0)/0(0)/20(4)a</td>
<td></td>
</tr>
<tr>
<td>Kar</td>
<td>1 Jan 2011</td>
<td>54.0/159.4</td>
<td>−/1(0)/1(0)a</td>
<td></td>
</tr>
<tr>
<td>Gr</td>
<td>21 May 2011</td>
<td>64.4/−17.3</td>
<td>273(101)/2(0)/276(101)a</td>
<td>350–40014; 108 ± 11 (> 215 hPa)4</td>
</tr>
<tr>
<td>Pu</td>
<td>4 Jun 2011</td>
<td>−40.6/−72.1</td>
<td>185(33)/−/185(33)c</td>
<td>25014</td>
</tr>
<tr>
<td>Na</td>
<td>12 Jun 2011</td>
<td>13.4/41.7</td>
<td>131(86)/343(79)/65(5)/539(117)c</td>
<td>150014; 650 (> 10 km)21</td>
</tr>
</tbody>
</table>

a, b, c: extrapolation method, see Sect. 3.2

1: http://www.volcano.si.edu/volcano.cfm?vn=221070; S. Carn, personal communication, 2014
Fig. 2. Comparison between MIPAS and ACE-FTS collocated single profile measurements. Left column: average profiles (red solid: MIPAS original dataset, red dotted: MIPAS dataset after debiasing, c.f. Sect. 2.5). Second column: mean differences MIPAS-ACE-FTS (solid: before, dotted: after debiasing) together with their standard error (error bars; not visible in the top row since these are smaller than the line thickness) calculated as their SD (see third column) divided by the square root of the number of pairs (see last column). Third column: SD of the single differences (black line) and the mean value of the combined estimated precision of the two instruments (blue line). Fourth column: number of collocated pairs used for comparison at each altitude. Top row: only those pairs are selected where ACE-FTS profile values are smaller than 50 pptv up to 20 km altitude. Middle row: only those pairs are selected where ACE-FTS profile values are above 50 pptv at least at one altitude level up to 20 km. Bottom row: same as middle row, but for a lower limit of 200 pptv.
Fig. 3. Same as top row in Fig. 2 but (1) separated in MIPAS phase 1 (top row) and phase 2 (bottom row) observation periods, and (2) excluding periods with strong volcanic influence (January–June 2005, May–November 2006, October 2007, July–December 2008, June–December 2009).
Fig. 4. Comparison between monthly mean profiles from ACE-FTS, MIPASmon (Höpfner et al., 2013) and MIPAS. Left: average profiles (red solid: MIPAS original dataset, red dotted: MIPAS dataset after debiasing). Middle: mean differences (blue: MIPASmon – ACE-FTS, red: MIPAS – ACE-FTS, red solid: before, red dotted: after debiasing) together with their standard error (error bars; not visible in the top row since these are smaller than the line thickness). Right: number of collocated pairs of monthly mean values used for comparison at each altitude. Top: only those pairs are selected where MIPASmon profile values are smaller than 50 pptv up to 20 km altitude. Bottom: only those pairs are selected where MIPASmon profile values are above 100 pptv at least at one altitude level up to 20 km.
Fig. 5. Same as top row in Fig. 4 but (1) only for MIPASmon and MIPAS, (2) separated in MIPAS phase 1 (top row) and phase 2 (bottom row) observation periods, and (3) excluding periods with strong volcanic influence (October–December 2002, July 2003, January–June 2005, May–November 2006, October 2007, July–December 2008, June–December 2009, November–December 2010, July–September 2011).
Fig. 6. Bias correction applied to the MIPAS dataset from period P2 (2005–2012).
In-situ:

Fig. 7. Comparison between in-situ and debiased MIPAS observations of SO\textsubscript{2}. Green lines indicate MIPAS measurements before April 2004 and blue lines after January 2005 (solid thin lines: mean of each year, solid bold lines: mean of all profiles). Black diamonds show the in-situ observations based on publications as given in the plot title (JAESCHKE76: Jaeschke et al. (1976), INN81: Inn and Vedder (1981), MEIXNER84: Meixner (1984), MOEHLER92: Möhler and Arnold (1992), THORNTON99: Thornton et al. (1999), CURTIUS01: Curtius et al. (2001), JAESCHKE99: Jaeschke et al. (1999), REINER98: Reiner et al. (1998). In case of THORNTON99, the data from Thornton et al. (1999, Plate 3) have been subdivided into five regions over the Pacific (bold black lines: mean, dotted: median). Periods with strong volcanic influence have been excluded from the MIPAS data (see caption of Fig. 5).
Fig. 8. Comparison between in-situ airborne ITCIMS observations and the debiased MIPAS dataset of SO$_2$. Green lines indicate MIPAS measurements before April 2004 and blue lines after January 2005 (solid thin lines: monthly mean for each year, solid bold lines: mean of all profiles, dashed bold lines: monthly mean for year of in-situ observation). Black diamonds and horizontal bars show the mean values of the in-situ observations as well as their 1-σ variability. The median value of the in-situ measurements is indicated by black triangles. Periods with strong volcanic influence have been excluded from the MIPAS data (see caption of Fig. 5).
Fig. 9. Example from the MIPAS dataset of SO_2 for three days and at three altitude levels after the eruption of Nabro on 12 June 2011. Note that the color-scale does not cover the entire range of the data such that vmr values $> 300 \text{ ppt v}$ are set to the color at 300 ppt v (red) and negative values to zero (black).
Fig. 10. Global time series of color-coded SO$_2$ distributions at various altitudes with a time resolution of two days. The color scale is restricted to 0–200 pptv: negative and values larger than 200 pptv are given the color belonging to 0 and 200 pptv, respectively. Volcanic eruptions are indicated at the latitude of their location (for details see Table [3]).
Fig. 11. Time series of color-coded SO₂ volume mixing ratio profiles for 10° latitude bins in the Southern Hemisphere with a time resolution of two days. The color scale is restricted to 0–200 pptv: negative and values larger than 200 pptv are given the color belonging to 0 and 200 pptv, respectively. Volcanic eruptions are indicated at the latitude bin of their location (for details see Table 3).
Fig. 12. Same as Fig. 11 but for the Northern Hemisphere.
Fig. 13. Comparison between daily values of total mass of SO$_2$ above 146.8 hPa from MIPAS (red) and from MLS de-seasonalised observations (black) (Pumphrey et al. 2015).
Fig. 14. Logarithmic representation of total mass of SO$_2$ above 146.8 hPa from MIPAS (red dots) from Fig. 13 in comparison with e-folding lifetime τ (thin solid lines) resulting from exponential fits using different start/end dates of the fit window. The bold gray line shows a fit with a fixed lifetime of 10 days.
Fig. 15. Graphical representation of total SO$_2$ eruption masses as listed in Table 3. Black: MIPAS, red: MLS, other colors: nadir instruments. The colored numbers refer to the references given in Table 3.