Interactive comment on “Global evaluation of ammonia bi-directional exchange” by L. Zhu et al.

Anonymous Referee #1

Received and published: 20 March 2015

General comments

The GEOS-Chem model is modified for its treatment of ammonia surface fluxes by imposing diurnal variation to livestock emissions and adding a bidirectional exchange algorithm for soil and vegetation for NH3 from fertilizer. The diurnal livestock emission variation is clearly more realistic than the constant assumption. While the bidirectional surface flux model is simpler than has been implemented in other models it still represents a significant advance of GEOS-Chem and global modeling. My main criticism of the paper is about the evaluation. None of the comparisons to surface NH3, Nitrate, or NH4+ wet deposition show any significant advantage of the bidirectional flux implementation. This is explained by noting that other parts of the ammonia emission inventory are likely underestimated by large amounts. It is demonstrated that results are improved by multiplying livestock emission by factors of 8 in April and 3 in October in the US. They also do sensitivity runs with reduced HNO3 by 50% and 20%. It seems that they have identified some key areas for improvement that would have greater impact than the developments described in the paper. Most of the plots and much of the discussion are about the differences between the base and BIDI runs. I don’t see much value to this since we cannot not say which result is better.

We thank the reviewer for their comments. While we agree that implementation of the bidi scheme does not lead to improved performance in many areas, this in itself is a valuable result to report (lest people suspect it would). Also it does make improvements in some areas, such as locations with lots of fertilizers application. Moreover, it is indeed a comprehensive improvement in physical level. This helps identify shortcomings in other areas of the model to be addressed in future work.

The most interesting result is in the last plot which shows that the BIDI case has much larger area of influence of NH3 emissions.

I suggest that the difference discussions and plots be reduced and more comparisons to observations be shown.

Unfortunately for NH3 there are not many datasets to which the model can be directly compared. We have however added a comparison of the modeled to measured timeseries at the SEARCH sites, which is the new Figure 2. They have also compared to monthly average measurements of NH3 from AMoN, measurements of NO3 aerosol and NH4 wet depositions, and draw comparisons to remote sensing observations. The model difference plots help us understand how the different mechanisms (diurnal variability, bidi) contribute to these evaluations, and help us respond to additional reviewer questions.
(e.g., reviewer 3’s comment about section 6.1.1).

If the conclusion is that meaningful evaluation cannot be made without further improvements to the emissions and/or model chemistry, then perhaps this analysis should wait for such improvements to be developed and implemented.

Point well taken. But we believe the work presented here in terms of implementation of improved emissions mechanisms, and updating the adjoint model, are important first steps towards identifying the additional needed improvements in emissions and/or chemistry and facilitating such efforts (with the adjoint). We have added to the conclusion

“Measurements from recent (Shephard and Cady-Pereira, 2015) or future (Zhu et al., 2015) remote sensing platforms will be of value for such endeavors.”

All spatial plots are much too small to see!

One of the novel aspects of this work is evaluation of the diurnal variability and bidi emissions schemes in a global model; for this reason we prefer to show arrays of global plots. We have however provided all images in vector graphics, which can be readily enlarge for further viewing as desired.

Specific Comments

P4826 ln6: should spell out acronyms for first usage.

Thanks. It is been corrected. See line 50.

P4827ln21: Please give approximate grid spacing in km

Approximate grid spacing in km is added. See line 88-89.

P4831: The various emission inventories should be better explained and intercompared. For example, how can NEI be used for a global model when it is US only? How does NEI, Massage and the original GEOS-Chem inventories compare?

We apologize for the misunderstanding. There are different emission inventories used in global and regional (US) runs. NEI was only used in US runs. MASAGE_NH3 was only used in global runs. The original GEOS-Chem inventory was described in Section 2.1. We have added a table (Table 1) to summarize all the inventories used in study. We also updated the text as below.

“The anthropogenic emissions inventories described here are only used for base case nested grid model runs over the US. Variants will be explained in the following sections. Table 1 is a summary of the different emission inventories used in different sections of the work.” See line 103-105.

“As the standard GEOS-Chem anthropogenic emissions do not distinguish the livestock
emissions sector (described in Section 2.1), we calculate the absolute NH$_3$ livestock emissions based on the fraction of livestock emissions in anthropogenic emissions in the 2008 NEI.” See line 172-174.

“Comparisons between the emissions of MASAGE_NH3 and GEOS-Chem standard inventories are in Paulot et al. (2014).” See line 187-188.

P4831 ln19: Should show a plot of these results (dynamic vs static) at SEARCH sites. It seems that the SEARCH sites and the TES comparisons are the only evaluation of the effects of the dynamic emissions. Why no plots of either results? Just showing differences as in Figs 2-4 is not enough especially since these plots are too small to see.

We added a figure of dynamic versus static model estimates and measurements at SEARCH sites. See the new Figure 2.

P4833 ln20: Can’t see feature in Russia.

It is more obvious in northeastern China (red color in the third column of October). We changed “southeastern Russia” to “northeastern China”. See line 234.

P4836 ln1-2: It might be interesting to compare fertilizer rates for the US to EPIC simulations.

This is a good suggestion. However, we should note that the fertilizer rates we used in this study are from 2000, but we use them as input to our 2008 simulations. EPIC contains a detailed soil model that calculates fertilizer rates online for multiple soil layers. It is generally used for regional and national policy analysis. Thus, comparing the fertilizer rates to EPIC simulations would require navigating differences in physical processes in soil structure, space and temporal resolutions. We may get to this in a future analysis.

P4844 ln6: what is IASA?

Sorry for the omission -- Infrared Atmospheric Sounding Interferometer. This has been updated in the text as:

“Observations from the Infrared Atmospheric Sounding Interferometer (IASI) remote sensing instrument”
Interactive comment on “Global evaluation of ammonia bi-directional exchange” by L. Zhu et al.

Anonymous Referee #3

Received and published: 10 June 2015

The manuscript reports an ambitious attempt to evaluate improvements in the representation of ammonia surface-atmosphere exchange in chemical transport models. A significant portion of the manuscript is devoted to discussing the implementation of a new representation of diurnal variability for agricultural emissions (referencing an in prep publication) and a new bottom-up agricultural inventory (MASAGE_NH3). However, the title of the manuscript only reflects the second aspect of the paper, which examines the implementation of a bidirectional exchange scheme.

Thanks. Our revised title is now:

“Global evaluation of ammonia bi-directional exchange and livestock diurnal variation schemes”

In the description of GEOS-Chem in 2.1, the authors should emphasize that the description of the NH3 emissions is the base case and that the variants will be explained in the following sections.

Thanks. We updated the text as below and we also added a new table (Table 1) to summarize all the inventories used in this study.

“The anthropogenic emissions inventories described here are only used for base case nested grid model runs over the US. Variants will be explained in the following sections. Table 1 is a summary of the different emission inventories used in different sections of the work.” See line 103-105.

A pervasive problem with the manuscript is that the comparisons between different model runs and between model runs and observations are difficult to digest. Partly this is because the figures are so small and the information is all over the continents, and partly it is because the text reports the extremes of differences, rather than more general metrics. Below I provide general and detailed comments for the two portions of the manuscript separately:

Sections 3 and 4

The evaluation of the updated dynamic emissions scheme is quite haphazard. It is challenging to extract quantitative information from Figures 2, 3, and 4 and the related text which describes comparisons with ground sites and remotely sensed representative volumetric mixing ratios reports biases or improvements in a handful of regions, but the approach lacks consistency. While the cases reported may be representative, the reader
is left wondering about regions and times that aren’t mentioned.

We have added a new figure (Figure 2) showing the modeled and measured timeseries at SEARCH sites. We hope the differences here are more apparent, as well as their significance as compared to the observations.

In our analysis, we chose to make regional evaluations as we are not expecting the diurnal variability, which only affects livestock emissions, to impact the model NH3 everywhere. It is reasonable that some regions with large fertilizer application would change less. The impact on all regions, even those not discussed, are evident from the global figures, which are indeed small but at least comprehensive.

Section 3.1 Surface measurements – what is the impact of having observational constraints at such differing time resolutions?

The fine time resolution observations from SEARCH allow us to evaluate the improvement in diurnal variations, which lets us know, mechanistically, how the model is behaving. The coarsely resolved measurements from AMoN (e.g., two-week) observations are used to evaluate the broader impacts of such changes. The networks are also positioned in different parts of the country.

What is the impact of including urban and rural sites in some regions, and only rural sites in others?

The source types would be different between urban and rural sites, and the model (particularly the global scale simulations) would likely more reliably estimate background concentrations. We thus indeed exclude the urban sites of EANET in comparison of ammonium wet deposition, as we found that the wet deposition observed by surface monitoring sites are much higher in some urban sites than in the model (e.g., 50 vs 1.3 kg/ha/yr), likely outside of what we expect to be able to simulate at the global model resolution. We updated the text to clarify this, see line 146.

P4828, L22-25 This sentence reads as though soil pH and fertilizer application influence livestock emissions. Is that correct?

No, we apologize for the confusion. This sentence means that soil pH and fertilizer would influence the NH3 in the model; we made new development to the model, which are NH3 bi-directional exchange and a diurnal variation to NH3 livestock emissions.

We updated the text as below:

“In this paper, we develop the adjoint of bi-directional exchange and we use this adjoint model to investigate the sensitivity of modeled NH3 with respect to soil pH and fertilizer application rate.”

P4829, L11-10, This paragraph is hard to follow. How many SEARCH sites are used, and do they all provide observations of NH3 and wet deposited NH4+? Are the three sites with high time resolution data combined because they fall in the same model grid
Three SEARCH sites are used because only three sites have 5 min samples. We average the 5 min observations to hourly values for each site. Two of the three are in the same grid cell, and the other one is two grid cells away. We compared to the corresponding modeled values for each site location. We only average them when we calculate the mean differences between model and observations. We now updated the text. See line 124-127.

We were not using NH4+ from SEARCH.

We think it is better to make a separate paragraph for the first sentence of this section. We updated the text. See line 119-120.

If I understand correctly, the fraction of anthropogenic emissions that are due to livestock are estimated for all regions of the world based on the NEI for the U.S. Is this fraction likely to be the same in other parts of the world?

No, we will try to be more clear. The fraction calculated based on the NEI was only used for the U.S., not for the world. There was another emission inventory used for world and it has the livestock and fertilizer sectors separated. So we didn’t need to calculate this fraction based on the NEW. We apologize for the misunderstanding. We have now added a table to summarize all the inventories used in this study. See Table 1.

This section describes a comparison with modelled RVMR and those retrieved from TES, but is very hard to follow. Why not include a figure, or a table of statistics, rather than quoting differences from a few regions?

We have considered such a figure (shown below), but because the magnitude of dynamic RVMR changes (-1.5 – 1.6 ppb) is much smaller than the differences (-11.4 – 3 ppb) between the static RVMR and TES RVMR, the differences between “GC Static RVMR – TES RVMR” and “GC Dynamic RVMR – TES RVMR” are not particularly obvious. The ability of low-earth-observations to detect such differences is not that great, as demonstrated further in another recent article (Zhu et al., in press, 2015).
A larger question from this section is: If the total livestock emissions are staying constant, how can the deposition be decreasing?

Gross deposition is based on the NH3 concentrations in atmosphere, not the total mass of NH3. The NH3 concentrations are quite different at night. Perhaps this is now more clear with the inclusion of the new Figure 2.

Sections 5-7

The manuscript provides significant detail on the representation of the soil ammonium pool, which responds to atmospheric deposition. On the other hand, there is no mention of the ammonium pool in the vegetation, which one assumes would influence the stomatal compensation point. Is there a reason this is not addressed in a similar online manner?

The reviewer is correct that the vegetation plays a role. However, the soil ammonium pool is also a reservoir of ammonium from fertilizers, which is much larger source than that from deposition. Based on sensitivity tests, the influence of the ammonium potential in the soil is much larger than that in the stomata. Thus, we don’t think the stomatal pool is necessary.

What is the rationale for looking at the adjoint sensitivity with respect to soil pH rather than soil [H+]? It seems like the log scale might skew the perception of the emission potential.

Pragmatically, soil pH is the actual input we provide to the model, and thus for which adjoint sensitivities are directly calculated. It is also more constant than soil [H+], which may be adjusted in regional models that include a detail soil model. Although we don’t have a detail soil model in GEOS-Chem yet, this may be a future development. The emissions potential wouldn’t be impact by whether we use soil pH or soil [H+].
A more general question is whether the adjoint of GEOS-Chem been sufficiently validated for a species like NH3 with significant non-linearities in its behavior? Presumably, one would need to have met fields very accurate and also abundance of SO4, HNO3. As stated by the authors, the HNO3 in the model is likely biased, and one would assume that the sensitivity of NH3 concentrations to emissions depends on the model HNO3.

The adjoint has been verified to be accurate, see Figure 7, i.e. sensitivities calculated by the adjoint are accurate compared to those in the forward model. A different and more challenging question is whether the GEOS-Chem model itself contains correct sensitivities, which as the author points out are related to meteorology and the concentrations of sulfate and nitrate. For this reason we feel it is important to evaluate the model relative to NH3, NH4+ and nitrate, rather than just NH3 or NHx.

An issue with many of the comparisons between models runs in Section 6 is that the value that is typically quoted in the text is the largest difference, which may not provide much insight on typical behaviour. I recommend quoting the median difference, as well as the maximum.

We only expect large changes in regions with large fertilizer applications. The global mean or median value will wash out these changes and would be close to zero in some cases given the positive and negative differences. While we agree that ranges, by themselves, are not that informative, the inclusion of the global maps allows for visual analysis of what the typical behavior is in different parts of the world.

In section 6.1, it would be interesting to know if the annual gross emissions are lower or higher across the US in the base vs BIDI cases.

We haven’t done the annual simulations. We only did simulations for three months. We do however now present the gross emissions in each month in Table 1.

In section 6.1.1, the AMoN comparison suggests that the BIDI parameterization degrades the ability of the model to represent the variability in two-week integrated measurements in the spring and fall. Can the authors speculate if this would also be the case for higher time resolution? Additionally, what fraction of the gross emissions are from bidirectional exchange as a function of space and time?

We should first emphasize that the underestimation of NH3 primary emissions in the model is the largest reason. We are more worried about the spatial resolution rather than the time resolution (point vs ~ 3000 km²). It is challenge for the model to match observations, especially for the sites with large sources near by. We thus think it is useful to show the fraction of the gross emissions from bi-directional exchange in space. Accordingly, we added a spatial plot of these fractions over the global. See new Figure 15 and additional text on line 464-467.

“Figure 15 shows the percentage of emissions from fertilizers in BIDI case in the global simulations. BIDI fertilizers contribute more to gross emissions in July than
in other months in the Northern Hemisphere, which again demonstrates the delayed effect of fertilizer NH$_3$ (mostly applied in the springtime) in the BIDI model.”

But, to speculate as requested, the limited set of higher-time resolution measurements are not more help for evaluations of NH$_3$ from BIDI at this stage since the emission biases in the current emission inventory are much larger than the BIDI could fix. BIDI changes are consistent (either increase or decreases) in one location during the whole month when we look at results in finer time resolution (hourly).

In Section 6.1.3, it is not really clear what the authors are trying to demonstrate with this comparison. Are the ‘uni-directional’ emissions from Zhu et al., 2013, replacing the MASAGE inventory? I think the hybrid, piecemeal nature of the comparison makes it difficult to interpret the results.

We didn’t use the MASAGE inventory in the nested simulations over the US, which we hope is now clarified with the addition of Table 1. The purpose of this section is to evaluate the BIDI ability of reducing the high bias, which is found in Zhu et al. (2013).

Section 6.2 – again, it would be interesting to know how the annual emissions change for each model run.

This information is now included in Table 1.

P4845, L17-23 I find this section confusing. On some spatial scale, there ought to be mass balance between the changes in emission and deposition. Obviously, there could be some change to the amount of dry deposition, so one cannot expect the emissions and wet deposition to change in exactly the same way, but they should be close. In comparing the changes in wet deposition to the changes in emissions, why quote one change in absolute terms and the other as a percent. It makes in challenging to compare them.

We added the absolute values of emissions in the text. See line 517-518.

Section 6.4.3 – I think this spot sensitivity analysis is one of the more interesting parts of the manuscript, as it provides one of the more robust and digestible results of implement bi-directional flux.

Thanks.

Technical corrections:

Figure 3 is missing a colour scale.

Thanks. Corrected.

P4826, L26-27 – missing word in sentence

Thanks. Corrected.
P 4836, L8 Gaussian is misspelled

Thanks. Corrected.

Fig 9 shows R^2 whereas Fig 10 shows R, it would be better to be consistent

Thanks. We changed the R to R^2 in Figure 10.
Global evaluation of ammonia bi-directional exchange and livestock diurnal variation schemes

Liye Zhu1, Daven Henze1, Jesse Bash2, Gill-Ran Jeong1,2, Karen Cady-Pereira3, Mark Shephard4, Ming Luo5, Fabien Paulot6,7, and Shannon Capps2

1Department of Mechanical Engineering, University of Colorado, Boulder, Colorado, USA.
2US Environmental Protection Agency, Research Triangle Park, North Carolina, USA.
3Atmospheric and Environmental Research, Inc., Lexington, Massachusetts, USA.
4Environment Canada, Toronto, Ontario, Canada.
5Jet Propulsion Laboratory, California Institute of Technology Pasadena, CA, USA.
6Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey, USA.
7Geophysical Fluid Dynamics Laboratory/National Oceanic and Atmospheric Administration, Princeton, New Jersey, USA.

Correspondence to: Daven K. Henze (daven.henze@colorado.edu)

Abstract. Bi-directional air-surface exchange of ammonia (\textit{NH}_3) has been neglected in many air quality models. In this study, we implement the bi-directional exchange of \textit{NH}_3 in the GEOS-Chem global chemical transport model. We also introduce an updated diurnal variability scheme for \textit{NH}_3 livestock emissions and evaluate the recently developed MASAGE_NH\textsubscript{3} bottom up inventory. While updated diurnal variability improves comparison of modeled-to-hourly in situ measurements in the Southeastern US, \textit{NH}_3 concentrations decrease throughout the globe, up to 17 ppb in India and Southeastern China, with corresponding decreases in aerosol nitrate by up to 7 μg m-3. The ammonium (\textit{NH}_4+) soil pool in the bi-directional exchange model largely extends the \textit{NH}_3 lifetime in the atmosphere. Including bi-directional exchange generally increases \textit{NH}_3 gross emissions (7.1\%) and surface concentrations (up to 3.9 ppb) throughout the globe in July, except in India and Southeastern China. In April and October, it decreases \textit{NH}_3 gross emissions in the Northern Hemisphere (e.g., 43.6\% in April in China) and increases \textit{NH}_3 gross emissions in the Southern Hemisphere. Bi-directional exchange does not largely impact \textit{NH}_4+ wet deposition overall. While bi-directional exchange is fundamentally a better representation of \textit{NH}_3 emissions from fertilizers, emissions from primary sources are still underestimated and thus significant model biases remain when compared to in situ measurements in the US. The adjoint of bi-directional exchange has also been developed for the GEOS-Chem model and is used to investigate the sensitivity of \textit{NH}_3 concentrations with respect to soil pH and fertilizer application rate. This study thus lays the groundwork for future inverse modeling studies to more directly constrain these physical processes rather than tuning bulk uni-directional \textit{NH}_3 emissions.
1 Introduction

Ammonia (NH$_3$) is an important precursor of particulate matter (PM$_{2.5}$) that harms human health (Reiss et al., 2007; Pope et al., 2009; Crouse et al., 2012) and impacts climate through aerosol and short-lived greenhouse gas concentrations (Langridge et al., 2012). Global emissions of NH$_3$ have increased by a factor of 2 to 5 since pre-industrial times, and they are projected to continue to rise over the next 100 years (Lamarque et al., 2011; Ciais et al., 2013). NH$_3$ is an important component of the nitrogen cycle and accounts for a significant fraction of long-range transport (100’s of km) of reactive nitrogen (Galloway et al., 2008). Excessive deposition of NH$_3$ already threatens many sensitive ecosystems (Liu et al., 2013).

Uncertainties in estimates of NH$_3$ emissions are significant. Surface-level NH$_3$ measurements have been limited in spatial and temporal coverage, leading to large discrepancies in emissions estimates (Pinder et al., 2006). Additional information from remote sensing observations has been used to gain a better understanding of NH$_3$ distributions (Clarisse et al., 2009; Shephard et al., 2011; Pinder et al., 2011; Van Damme et al., 2014). These observations have also been used as inverse modeling constraints on NH$_3$ emissions (Zhu et al., 2013). While this approach leads to improved results regarding the comparison of air quality model estimates to independent surface observations in the US (Zhu et al., 2013), several limitations of this approach were identified. First, model biases in NH$_3$ wet deposition were not reduced. Emission constraints from remote sensing measurements available only once per day were very sensitive to the model’s diurnal variation of NH$_3$ sources. Also, the remote sensing observations used in Zhu et al. (2013) are sparsely distributed, leading to a quantifiable sampling bias. Other inverse modeling studies of NH$_3$ emissions have been performed using in situ observations, such as aerosol SO$_4^{2-}$ and NO$_3^-$ (Henze et al., 2009), aircraft observations of NH$_3$ (Schiferl et al., 2014) or wet deposition of NH$_4^+$ (Paulot et al., 2014). However, these approaches still have disadvantages as they are limited to the small spatiotemporal coverage of available aircraft measurements, or are sensitive to large model biases in HNO$_3$ (Heald et al., 2012; Zhang et al., 2012) or precipitation Paulot et al. (2014).

The modest success of previous inverse modeling studies suggests that updates to the dynamic and physical processes governing NH$_3$ are needed in addition to improvements in emissions estimates. Nighttime NH$_3$ concentrations are consistently overestimated in many air quality models (e.g., GEOS-Chem global chemical transport model and the Community Multiscale Air-Quality (CMAQ)). This may contribute to an overestimate of monthly averaged NH$_3$ concentration following the assimilation of Tropospheric Emission Spectrometer (TES) observations (Zhu et al., 2013).

Another area in which many air quality models are currently deficient is in treatment of the air-surface exchange of NH$_3$. Rigorous treatment of the bi-directional flux of NH$_3$ can substantially impact NH$_3$ deposition, emission, re-emission and atmospheric lifetime (Sutton et al., 2007). Re-emission of NH$_3$ from soils can be a significant part of NH$_3$ sources in some regions. However, this bi-directional exchange mechanism is neglected by many air quality models (e.g., GEOS-Chem).
Several recent studies have begun to include resistance-based bi-directional exchange wherein the NH₃ flux direction is determined by comparing the ambient NH₃ concentration to the NH₃ in-canopy compensation point. Sutton et al. (1998) and Nemitz et al. (2001) began with the air-canopy exchange model and extended the model by including air-soil exchange, but with no soil resistance. Cooter et al. (2010) and Bash et al. (2010) developed and extended the model to include a soil capacitance which assumes that NH₃ and NH₄⁺ exist in equilibrium in the soil. This NH₃ bi-directional exchange scheme has been evaluated in a regional air-quality model (CMAQ) by Bash et al. (2013) and Pleim et al. (2013).

Based on these previous studies, investigating the diurnal patterns of NH₃ emissions and bi-directional air-surface exchange is critical for reducing uncertainties in the GEOS-Chem model, which may in turn afford better top-down constraints on NH₃ source distributions and seasonal variations. In this paper, we apply a new diurnal distribution pattern to NH₃ livestock emissions in GEOS-Chem, which is developed based on observations of emissions in the Concentrated Animal Feeding Operation (CAFO) dominated areas in North Carolina (Zhu et al., 2015). We then implement bi-directional exchange of NH₃ in a global chemical transport model – GEOS-Chem – following Pleim et al. (2013), and compare the model to in situ observations. As a first step towards including bi-directional exchange in NH₃ inverse modeling, we also develop the adjoint of bi-directional exchange in GEOS-Chem; this also provides a useful method for quantifying the sensitivities of GEOS-Chem simulations with respect to important parameters in the bi-directional model, such as soil pH and fertilizer (only mineral fertilizer is considered in NH₃ bi-directional exchange) application rate, which are themselves uncertain.

Section 2 describes the model we use in this study. Section 3 introduces the in situ observation networks we use for evaluation. The impacts of implementing the new diurnal variation pattern of NH₃ emissions are presented in section 4. The details of developing bi-directional exchange and its adjoint in GEOS-Chem are described in section 5, followed by the evaluations and adjoint sensitivity analysis in section 6. We present our conclusions in section 7.

2 Methods

2.1 GEOS-Chem

GEOS-Chem is a chemical transport model driven with assimilated meteorology from the Goddard Earth Observing System (GEOS) of the NASA Global Modeling and Assimilation Office (Bey et al., 2001). We use the nested grid of the model (horizontal resolution 1/2° × 2/3° (~50 km × 67 km) over the US and 2° × 2.5° (~200 km × 250 km) horizontal resolution for the rest of the world. The year 2008 is simulated with a spin-up period of 3 months. The tropospheric oxidant chemistry simulation in GEOS-Chem includes a detailed ozone-NOₓ-hydrocarbon-aerosol chemical mechanism (Bey et al., 2001) coupled with a sulfate-nitrate-ammonia aerosol thermodynamics module described
in Park et al. (2004). The wet deposition scheme of soluble aerosols and gases is described in Liu et al. (2001). The dry deposition of aerosols and gases scheme is based on a resistance-in-series model (Wesely, 1989), updated here to include bi-directional exchange (see Section 5).

Global anthropogenic and natural sources of NH$_3$ are from the GEIA inventory 1990 (Bouwman et al., 1997). The anthropogenic emissions are updated by the following regional inventories: the 2005 US EPA National Emissions Inventory (NEI) for US, the Criteria Air Contaminants (CAC) inventory for Canada (van Donkelaar et al., 2008), the inventory of Streets et al. (2006) for Asia, and the Co-operative Program for Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in Europe (EMEP) inventory for Europe (Vestreng and Klein, 2002). Monthly biomass burning emissions are from van der Werf et al. (2010), and biofuel emissions are from Yevich and Logan (2003). The anthropogenic emissions inventories described here are only used for base case nested grid model runs over the US. Variants will be explained in the following sections. Table 1 is a summary of various emissions inventories used in different sections.

2.2 GEOS-Chem adjoint model

An adjoint model is an efficient tool for investigating the sensitivity of model estimates with respect to all model parameters simultaneously. This approach has been applied in recent decades in chemical transport models for source analysis of atmospheric tracers (Fisher and Lary, 1995; Elbern et al., 1997) and for constraining emissions of tropospheric chemical species (Elbern et al., 2000). Adjoint models have also been used in air quality model sensitivity studies (e.g., Martien and Harley, 2006). The adjoint of GEOS-Chem is fully described and validated in Henze et al. (2007). It has been used for data assimilation using in situ observations (e.g., Henze et al., 2009; Paulot et al., 2014) and remote sensing observations (e.g., Kopacz et al., 2010; Zhu et al., 2013; Xu et al., 2013). In this paper, we develop the adjoint of bi-directional exchange and we use this adjoint model to investigate the sensitivity of modeled NH$_3$ with respect to soil pH and fertilizer application rate.

3 Observations

3.1 Surface measurements

We use surface observations of NH$_3$ and wet deposited NH$_4^+$ from several networks to evaluate model estimates.

The SouthEastern Aerosol Research and Characterization (SEARCH) network contains monitoring stations throughout the Southeast US. The SEARCH network provides different sampling frequencies, such as daily, 3-day, 6-day, 1-min, 5-min and hourly, at different sites. Three of the monitoring stations (Oak Grove, MS, Jefferson Street, GA, and Yorkville, GA) provide 5-min long surface NH$_3$ observations. In order to see the diurnal variations, we convert the 5-min long observations to be hourly average NH$_3$ concentration for each of these three sites in July 2008. We then
average the hourly observations of these three sites to compare with the modeled results of corresponding sites.

The Ammonia Monitoring Network (AMoN) of National Atmospheric Deposition Program (NADP) contains 21 sites across the US with two-week long sample accumulation (Puchalski et al., 2011). We average the two-week long observations from November 2007 through June 2010 to monthly \(\text{NH}_3 \) concentrations. The Interagency Monitoring of Protected Visual Environments (IMPROVE) network (Malm et al., 2004) consists of more than 200 sites in the continental US which collect \(\text{PM}_{2.5} \) particles over 24 hours every third day. We use monthly average sulfate and nitrate aerosols concentrations.

We use wet \(\text{NH}_4^+ \) deposition observations from several monitoring networks around the world. The NADP National Trends Network (NTN) (http://nadp.sws.uiuc.edu/NTN) contains more than 200 sites in US which are predominately located in rural areas. It provides wet deposition observations of ammonium with week-long sample accumulation. The Canadian Air and Precipitation Monitoring Network (CAPMoN) (http://www.on.ec.gc.ca/natchem) contains about 26 sites which are predominately located in Central and Eastern Canada with 24-hour integrated sample times. The European Monitoring and Evaluation Program (EMEP) (http://www.nilu.no/projects/ccc/emepdata.html) contains about 70 sites which are predominately located away from local emission sources. It has daily, weekly, and bi-weekly observations of ammonium available in different sites. The Acid Deposition Monitoring Network in East Asia (EANET) (http://www.eanet.asia/product) contains 54 sites (21 urban, 13 rural, and 20 remote sites) with monthly observations of wet deposition of ammonium. We only use nonurban sites (~30) of EANET to avoid large local emission sources influences. We convert the daily/weekly/bi-weekly observations to monthly average \(\text{NH}_4^+ \) concentration in 2008.

4 Diurnal variability of ammonia livestock emission

4.1 Development of new diurnal distribution scheme

Simulated \(\text{NH}_3 \) surface concentrations in GEOS-Chem are significantly overestimated at nighttime compared to hourly observations from the SEARCH network (Zhu et al., 2013). The standard \(\text{NH}_3 \) emissions in GEOS-Chem are evenly distributed throughout the 24 hours of each day of the month, as indicated by the blue line in Figure 1. That the simulated \(\text{NH}_3 \) emissions do not have any diurnal variation is a likely explanation for this discrepancy with hourly observation. Thus, a new diurnal distribution scheme for \(\text{NH}_3 \) livestock emissions has been developed in CMAQ (Zhu et al., 2015). Here we implement this algorithm in GEOS-Chem. The hourly \(\text{NH}_3 \) livestock emission, \(E_h(t) \), is calculated from the monthly total emission, \(E_m \), as

\[
E_h(t) = E_m N_{\text{met}}(t), \tag{1}
\]
where $N_{met}(t)$ is the hourly fraction of the NH$_3$ livestock emission during the month. This depends on the aerodynamic resistance, R_a [s$^{-1}$m], and surface temperature, T [K],

$$N_{met}(t) = \frac{H(t)/R_a(t)}{\sum_{t=1}^{n} (H(t)/R_a(t))},$$ \hspace{1cm} (2)

where n is the number of hours in a month, t is the time during the month, from 1 to n, and $H(t)$ is the Henry’s equilibrium, calculated following Nemitz et al. (2000),

$$H(t) = \frac{161500}{T} e^{-10380/T},$$ \hspace{1cm} (3)

More details of the development of this diurnal variability scheme can be found in Zhu et al. (2015).

4.2 Evaluation with in situ NH$_3$ observations

We replace the standard GEOS-Chem livestock emissions, which are evenly distributed for each hour of the day (static), with this new diurnal variability of livestock emissions that peaks in the middle of the day (dynamic) (Figure 1). This also introduces daily variability of livestock emissions into the simulation, which is not considered in the standard GEOS-Chem model. As the standard GEOS-Chem anthropogenic emissions do not distinguish the livestock emissions sector (described in Section 2.1), we calculate the absolute NH$_3$ livestock emissions based on the fraction of livestock emissions in anthropogenic emissions in the 2008 NEI.

Significant improvements are found when we compare surface NH$_3$ concentrations to SEARCH observations after implementing the dynamic diurnal emissions (see Figure 2). The dynamic case (black) decreases the surface NH$_3$ concentration relative to the static case (red) by several ppb at night and increases concentrations slightly (up to 1 ppb) in the day. This reduces the model mean bias by up to 2.9 ppb at night.

4.3 Global distribution

To apply the dynamic emissions scheme globally, we implement a new global NH$_3$ anthropogenic emissions inventory Magnitude And Seasonality of AGricultural Emissions model (MASAGE$_{NH_3}$, Paulot et al. (2014)), which contains sector-specific emissions for different agriculture sources, such as livestock emissions (the standard GEOS-Chem NH$_3$ emissions do not clearly distinguish this sector). Comparisons between the emissions of MASAGE$_{NH_3}$ and GEOS-Chem standard inventories are in Paulot et al. (2014). Figure 3 shows the global distribution of surface NH$_3$ concentrations from the GEOS-Chem static and dynamic cases in April, July, and October of 2008. The third column shows the difference between the dynamic and the static cases. In general, the dynamic case decreases the monthly NH$_3$ surface concentration throughout the world with significant changes in Southeast China and India in all three months, which can be up to 17.1 ppb in China in October.
and 12.1 ppb in India in April. There are also large decreases in the Eastern US (up to 3.3 ppb) and southeastern of South America.

The modeled Representitive Volume Mixing Ratio (RVMR) (Shephard et al., 2011) underestimates the observed RVMR from TES in the US and most places of the globe (Shephard et al., 2011; Zhu et al., 2013). In this study, we also compare the modeled RVMR from static and dynamic cases to the TES RVMR. We calculate modeled RVMR at the same time and locations of TES retrievals during 2006 through 2009. We average the RVMRs at the $2^\circ \times 2.5^\circ$ grid resolution for each month (April, July, and October). The static RVMR underestimates the TES RVMR throughout the globe in all three months except in India and Southeastern China in April. With the new diurnal variability scheme (dynamic case), the modeled RVMR increases in many places (e.g., Eastern China, Northern India, South America) and decreases in the Middle US and Northern Europe. The differences between the dynamic and static RVMR are from -1.5 ppb to 1.6 ppb. These changes generally reduce differences between modeled and observed RVMR, while the differences are enhanced in a few locations, such as Northern India in April. However, the magnitude of these changes is small compared to the differences (from -11.4 ppb to 3 ppb) between the static RVMR and TES RVMR. We are able to detect more obvious changes between the static and dynamic cases when focusing on a livestock source region (California) and a hotter day, during which the dynamic RVMR increases 3.4 ppb (Zhu et al., 2015). Stronger constraints on diurnal variability would be evident from potential future geostationary measurements (Zhu et al., 2015).

High biases of surface nitrate aerosol concentrations in GEOS-Chem are found in the US (e.g., Heald et al., 2012; Walker et al., 2012). Here we consider the impact of dynamic NH$_3$ livestock emissions on surface nitrate concentration in the US, as well as globally. Figure 4 presents the global distribution of surface nitrate concentration from the GEOS-Chem static and dynamic cases in April, July, and October of 2008. The dynamic case decreases the nitrate concentration significantly in Eastern China in all three months, which can be as large as 7 $\mu g \, m^{-3}$ in October. There are also large decreases in the Eastern US which can be up to 2.7 $\mu g \, m^{-3}$ in July. In October, there are large decreases in the dynamic case in comparison to static case in Northern India (up to 3.9 $\mu g \, m^{-3}$) and Europe (up to 2.4 $\mu g \, m^{-3}$ in Poland).

Investigating the impacts of dynamic NH$_3$ livestock emissions on nitrogen deposition is also of interest. In Figure 5, we show the global distribution of total nitrogen deposition (wet deposition of NH$_3$, ammonium, HNO$_3$ and nitrate, and dry deposition of NH$_3$, ammonium, NO$_2$, PAN, N$_2$O$_5$, HNO$_3$ and nitrate) from GEOS-Chem static and dynamic cases in April, July, and October of 2008. The dynamic case decreases nitrogen deposition in most places in the world, yet increases it in several locations. The largest decrease of nitrogen deposition occurs in Northern India in April by up to 3.6 kg N/ha/month. The total amount of nitrogen deposition in India decreases by 8.6% in April. Decreases in nitrogen deposition in the dynamic case occur in Southeastern China in all three months, with the total amount of nitrogen deposition in China decreasing by 4.7% in April, 2.8% in
July, 3.1% in October. The new diurnal variability scheme has more NH$_3$ from livestock emissions emitted in the daytime, when the boundary layer is thicker than nighttime. Typically, this lowers deposition largely at night. However, it may also be conducive to more export of NH$_3$ in the atmosphere during the day. Thus, slight increases of nitrogen in the dynamic cases occur downwind of regions with large NH$_3$ sources in the base cases, such as increases in northeastern China owing to enhanced NH$_3$ export from Eastern China.

5 Bi-directional exchange of NH$_3$

5.1 Bi-directional flux calculation

The dry deposition scheme in the standard GEOS-Chem model is based on the resistance in series formulation of Wesely (1989), which only considers the unidirectional flux of NH$_3$ from the air to the surface. However, the air-surface exchange is known to actually be bi-directional. In this paper, we update the dry deposition of NH$_3$ to combine NH$_3$ dry deposition from the atmosphere and emission from vegetation. A simplified schematic of the updated air-surface exchange process of NH$_3$ is shown in Figure 6. More details of this bi-directional scheme can be found in Cooter et al. (2010) and Pleim et al. (2013). The total air-surface exchange flux, F_t, is calculated as a function of the gradient between the ambient NH$_3$ concentration in the first (surface) layer of the model and the canopy compensation point (Bash et al., 2013; Pleim et al., 2013),

$$F_t = \frac{C_c - C_a}{R_a + 0.5R_{inc}}, \quad (4)$$

where C_a is the ambient NH$_3$ concentration of the first atmospheric layer of the model, C_c is the canopy compensation point (which is set at one half of the in-canopy resistance, since NH$_3$ can come from either air or soil to the canopy, thus, splitting R_{inc} symmetrically is appropriate), R_a is the aerodynamic resistance, and R_{inc} is the in-canopy aerodynamic resistance. $C_a > C_c$ will result in deposition from air to surface, and $C_a < C_c$ will result in emission from surface to air. C_c is calculated as (Bash et al., 2013),

$$C_c = \frac{C_g}{R_a + 0.5R_{inc}} + \frac{C_g}{R_b + R_{bg}} + \frac{C_g}{R_{st} + R_{st}} + \frac{C_g}{0.5R_{inc} + R_{bg} + R_{soil}}, \quad (5)$$

where R_b, R_{bg}, R_{st}, R_{soil} and R_w are the resistances at the quasi-laminar boundary layer of leaf surface, the quasi-laminar boundary layer of ground surface, the leaf stomatal, soil and cuticle respectively. R_a, R_b, R_{bg}, R_{st} and R_w are already defined and used in the standard GEOS-Chem deposition scheme. Here we define and calculate R_{soil} and R_{inc} following Pleim et al. (2013). C_{st} and C_g are the NH$_3$ concentrations in the leaf stomata and soil pores respectively. They are calculated as functions of temperature and NH$_3$ emission potential ($\Gamma_{st,g}$, dimensionless) in the leaf stomata and soil (Nemitz et al., 2000).

$$\Gamma = \frac{[\text{NH}_3^+]}{[\text{H}^+]]. \quad (6)$$
\(\Gamma_{st} \) is calculated as a function of land cover type, and the values of different land cover types are based on Zhang et al. (2010). \(\Gamma_g \) is calculated as a function of soil pH and \(\text{NH}_4^+ \) concentration in the soil, \([\text{NH}_4^+]_{\text{soil}}\). Soil pH data is taken from ISRIC - World Soil Information with a 0.5° \(\times \) 0.5° global resolution (http://www.isric.org/data/data-download). We model the \([\text{NH}_4^+]_{\text{soil}} \) as an ammonium pool in the soil, which is a function of fertilizer application rate, deposition, nitrification, soil moisture, and emission in bi-directional exchange. The calculation of \([\text{NH}_4^+]_{\text{soil}} \) is described in the next section.

To compare the deposition (downward) flux and emission (upward) flux of the bi-directional case to the base case, we define diagnostic variables for gross deposition flux \(F_{dep} \) and emission flux \(F_{emis} \) as follows (Bash et al., 2013),

\[
F_{dep} = \frac{C_c - C_a}{R_a + 0.5R_{inc}} \bigg|_{C_s = 0, C_g = 0},
\]

\[
F_{emis} = \frac{C_c}{R_a + 0.5R_{inc}} \bigg|_{C_a = 0},
\]

where \(F_{dep} \) is calculated under the assumption that there is no \(\text{NH}_3 \) emission potential from the soil and canopy, and \(F_{emis} \) is calculated under the assumption that there is no \(\text{NH}_3 \) in the atmosphere. Thus, \(F_{dep} + F_{emis} = F_t \).

5.2 Soil ammonium pool

Here we introduce a \(\text{NH}_4^+ \) pool to track the \(\text{NH}_3 \) and \(\text{NH}_4^+ \) in the atmosphere and in the soil. The inputs to the ammonium pool in the soil are \(\text{NH}_3 \) (\(\text{NH}_3 \) and \(\text{NH}_4^+ \)) deposition from the atmosphere, \(\text{NH}_3 \) emission from the soil, and N fertilizer application rate. The annual N fertilizer application rates are from Potter et al. (2010), which has chemical fertilizer (global total 70 Tg N yr\(^{-1}\)) with a 0.5° \(\times \) 0.5° resolution for the year 2000. We assume that all forms of N fertilizers will convert to \(\text{NH}_4^+ \) rapidly after fertilizer application. This dataset is also used to develop the global soil nitric oxide emissions in GEOS-Chem in Hudman et al. (2012). We use the same treatment of annual total fertilization as Hudman et al. (2012) to derive daily fertilizer application rates by applying 75% of the annual total fertilization amount around the first day of the growing season (green-up day), distributed with a Gaussian distribution one month after. The other 25% is evenly distributed over the remaining time before the end of the growing season (brown-down day). The determination of green-up and brown-down days is based on the growing season dates derived from the MODIS Land Cover Dynamics product (MCD 12Q2) using the MODIS enhanced vegetation index (EVI) (Hudman et al., 2012).

Using the fertilizer inputs described above, in addition to inputs from deposition and outputs from emission, the time dependent soil \(\text{NH}_4^+ \) pool [mol L\(^{-1}\)] is calculated as

\[
[\text{NH}_4^+]_{\text{soil}} = \frac{[\text{NH}_3]_{\text{dep}}}{\frac{d_e \theta N_A}{d_s \theta M_N}} + \frac{[\text{N}]_{\text{fert}}}{\frac{d_e \theta M_N}{d_s \theta N_A}} - \frac{[\text{NH}_3]_{\text{bidiemit}}}{\frac{d_e \theta N_A}{d_s \theta M_N}},
\]
where \([NH_x]_{\text{dep}} \), deposition from wet and dry deposition of \(NH_3 \) and \(NH_4^+ \), \([N]_{\text{fert}}\), [N g m\(^{-2}\)] is the \(NH_4^+ \) from fertilizer, \([NH_3]_{\text{bidiemit}}\), [molec cm\(^{-2}\)] is the gross \(NH_4^+ \) emitting from the soil due to bi-directional exchange, \(M_N \) is the molar mass of nitrogen, \(d_s \) is the depth of the soil layer, taken to be 0.02 m, \(\theta \) is the soil wetness [m\(^3\) m\(^{-3}\)], and \(N_A \) is Avogadro’s number. We then solve the mass balance equation for \([NH_x]_{\text{dep}}\) and \([N]_{\text{fert}}\),

\[
\frac{d[NH_x]_{\text{dep}}}{dt} = S_{\text{dep}} - \frac{[NH_x]_{\text{dep}}}{\tau} - L_{\text{dep}},
\]

\[
\frac{d[N]_{\text{fert}}}{dt} = S_{\text{fert}} - \frac{[N]_{\text{fert}}}{\tau},
\]

where \(\tau \) is the decay time owing to nitrification rate of \(NH_4^+ \) in soil. We assume \(\tau \) is 15 days, since almost all \(NH_4^+ \) will convert to \(NO_3^- \) within that timespan (Matson et al., 1998). \(S_{\text{dep}} \) is the deposition rate, \(S_{\text{fert}} \) is the fertilizer application rate, and \(L_{\text{dep}} \) is the deposition loss rate. We use the same assumption as Hudman et al. (2012) that only 60% of this deposited \(NH_x \) will enter the soil, while the rest of the \(NH_x \) deposition will runoff into waterways. Here we do not consider the production of \(NH_4^+ \) from \(NO_3^- \) in the nitrogen cycle from mineralization nor immobilization. The time scale of these processes can be years, which is much larger than the time scale of the \(NH_4^+ \) simulations considered here; Cooter et al. (2010) also found these processes were not needed to accurately simulate \(NH_3 \) over managed lands on similar time scales.

5.3 Adjoint of bi-directional exchange

To investigate the sensitivity of modeled \(NH_3 \) concentrations to the parameters in the bi-directional exchange model, and to facilitate future inverse modeling, we develop the adjoint of our updated \(NH_3 \) flux scheme. Here we consider two key parameters, soil pH and fertilizer application rate, since their values are highly approximate.

The adjoint sensitivity is defined as

\[
\lambda_{\sigma} = \frac{\partial J(NH_3)}{\partial \sigma},
\]

where \(J(NH_3) \) is the total mass of ammonia at surface level in each grid box during 1 week. The unit of \(J(NH_3) \) is kg/box. \(\sigma \) in this study is defined as the soil pH scaling factor (\(\sigma_{pH} \)) or fertilizer application rate scaling factor (\(\sigma_{\text{fert_rate}} \)). \(\sigma_{pH} \) is defined as \(\frac{pH}{pH^0} \) and \(\sigma_{\text{fert_rate}} \) is defined as \(\frac{\text{fert_rate}}{\text{fert_rate}^0} \). \(pH^0 \) and \(\text{fert_rate}^0 \) are the initial estimate of soil pH from ISRIC and fertilizer application rates from Potter et al. (2010). \(\lambda_{\sigma} \) is the sensitivity of \(J(NH_3) \) with respect to the bi-directional exchange model parameters \(\sigma \).

5.4 Validating the adjoint of bi-directional exchange

We validate the accuracy of the adjoint model by comparing the sensitivity of \(NH_3 \) surface concentrations with respect to soil pH and fertilizer application rate calculated using the adjoint model.
with sensitivities calculated using the finite differences method. In order to make such comparisons efficiently throughout the model domain, horizontal transport is turned off for these tests (e.g., Henze et al., 2007). Figure 7 shows the comparison of sensitivities calculated by adjoint and finite difference. The cost function is evaluated once at the end of a one week simulation. The slope of a linear regression and square of correlation coefficient, R^2, are both close to unity, demonstrating the accuracy of adjoint of the bi-directional model.

6 Results and Discussion

For the US region, we use nested horizontal resolution ($1/2 \times 2/3^\circ$) simulations with the standard set of GEOS-Chem emission inventories. For the global simulation, we introduce a new bottom up emission inventory for NH$_3$ agriculture sources, MASAGE_NH3 (Paulot et al., 2014). The full description of the differences between the GESO-Chem standard NH$_3$ emission inventories and MASAGE_NH3 is in Paulot et al. (2014). We perform global simulation at a horizontal resolution of $2^\circ \times 2.5^\circ$. All simulations include the dynamic treatment of the diurnal variability of livestock emissions described in section 4.

6.1 US

We run the GEOS-Chem model for April, July, and October of 2008 with the updated diurnal variation of NH$_3$ livestock emissions and the bi-directional exchange mechanism. Figure 8 shows the NH$_3$ total gross emissions from GEOS-Chem with (BIDI) and without (BASE) the bi-directional air-surface exchange. The total gross emissions of BIDI case are the sum of primary emissions and upward fluxes from soil and vegetation. Bi-directional exchange generally increases gross emissions in most parts of the US in July (up to 0.43 Gg/month) and decreases gross emissions throughout the US in October (up to 0.29 Gg/month). Significant decreases occur in the Great Plains region in both April and October with a magnitude of up to 0.23 Gg/month in April and 0.29 Gg/month in October. Bi-directional exchange does not much alter the total modeled emissions in the US in July (increase by 5.2%) and October (decrease by 13.9%), but does lead to a decrease of 23.5% in April. With the ammonium soil pool, the model can preserve ammonia/ammonium in the soil rather than emitting it directly after fertilizer application. This is the main reason that gross emissions decrease in the Great Plains in April and October. In July, there is not as much fertilizer applied as in April. However, the bi-directional exchange between the air and surface can induce NH$_3$ to be re-emitted from the ammonium soil pool which reserve ammonium from previous deposition and fertilizer application.

The spatial distributions of surface NH$_3$ concentrations in GEOS-Chem are shown in Figure 9. In general, bi-directional exchange decreases monthly NH$_3$ surface concentrations in April (up to 1.8 ppb) and October (up to 2.1 ppb), and increases it in July (up to 2.8 ppb) throughout the US. There are peak decreases in NH$_3$ surface concentrations in the Great Plains in both April and October and
increases in California in July. These changes of surface NH$_3$ concentration are consistent with the pattern of changes to NH$_3$ emissions in Figure 8.

6.1.1 Evaluation with NH$_3$

We evaluate the GEOS-Chem simulation with bi-directional exchange by comparing the model values to in situ observations from AMoN. Figure 10 shows the comparison of GEOS-Chem surface NH$_3$ concentrations in the BASE and BIDI cases with AMoN observations. Bi-directional exchange decreases the normalized mean bias (NMB) from -0.227 to -0.165 in July, and increases the NMB from -0.701 and -0.197 to -0.829 and 0.283 in April and October, respectively. The root mean square error (RMSE) decreases by 18.3% in July, and increases by 16.7% in April and 19.2% in October. R2 values increase by 20.6% in July, and decrease by 37.6% in April and 49.1% in October. The slope slightly increases by 0.5% in July, and decreases by 53.5% and 37.5% in April and October, respectively. The changes in slopes can also be seen in Figure 9 as bi-directional exchange decreases the NH$_3$ monthly average concentration at AMoN sites in April and October while it increases the NH$_3$ monthly average concentrations in July. Modeled surface NH$_3$ concentrations are significantly lower than the AMoN observations in April and October by a factor of 2 - 5, which is not unreasonable given likely underestimates in primary emissions (Zhu et al., 2013; Nowak et al., 2012; Schiferl et al., 2014). Such large underestimation is not corrected by applying the NH$_3$ bi-directional exchange to the model. Other improvements in the model besides bi-directional exchange, such as updating primary NH$_3$ emissions, are also required for better estimating NH$_3$ surface concentrations.

6.1.2 Evaluation with aerosol nitrate

We also compare the simulated nitrate aerosol concentrations to the aerosol observations from IMPROVE. Figure 11 shows the simulated monthly average nitrate aerosol surface concentration from the GEOS-Chem BASE and BIDI cases in comparison to IMPROVE observations in 2008. GEOS-Chem overestimates nitrate in the BASE case in all three months. The overestimates in BASE cases can be 5 times larger in October. Bi-directional exchange generally decreases the nitrate concentrations in April, which makes the slope of the regression line decrease by 45.4%. However there are still large overestimates (~ a factor of 2 on average) in the Northeast US and large underestimates (up to 1.7 μg m$^{-3}$) in South California in the BIDI case in April. Bi-directional exchange slightly increases (less than 0.5 μg m$^{-3}$) nitrate in July and decreases (less than 0.4 μg m$^{-3}$) nitrate in October, which does not significantly impact the comparison of modeled nitrate with IMPROVE observations.

Overestimation of nitrate in GEOS-Chem is a long recognized problem (Park et al., 2004; Liao et al., 2007; Henze et al., 2009; Heald et al., 2012; Walker et al., 2012; Zhu et al., 2013). Heald et al. (2012) recommend that reducing the nitric acid to 75% would bring the magnitude of nitrate aerosol concentration into agreement with the IMPROVE observations. In our study, based on the
comparison of BASE modeled nitrate concentration and IMPROVE observation, we perform sensitivity studies by reducing the nitric acid to 50% in July and to 20% in October at each timestep in the GEOS-Chem model for both BASE and BIDI cases. Modeled nitrate concentrations reduce dramatically with this adjustment in July and October, but overestimates still exist in many places in the Eastern US. We also compare the modeled NH$_3$ surface concentrations in the sensitivity simulations with adjusted nitric acid concentrations to the AMoN observations, since reducing the nitric acid in the model may cause NH$_3$ to partition more to the gas phase, which could bring modeled NH$_3$ concentrations into better agreement with AMoN observations. However, no significant impacts are found in NH$_3$ concentrations at AMoN site locations with these nitric acid adjustments, consistent with earlier assessments that the model’s nitrate formation is NH$_3$ limited throughout much of the US (Park et al., 2004). Overall, overestimation of model nitrate by a factor of 3 to 5 appears to be a model deficiency beyond the issue of NH$_3$ bi-directional exchange.

6.1.3 Comparison to inverse modeling

Inverse modeling estimates of uni-directional NH$_3$ emissions using TES observations lead to overestimates of ammonia concentration in comparison to surface observations from AMoN in July (Zhu et al., 2013), and emissions estimates in July are much higher than other top-down or bottom up studies (Paulot et al., 2014). It is thus of interest to evaluate whether bi-directional exchange of NH$_3$ would reduce this high bias. Although repeating the inverse modeling with TES NH$_3$ observations and bi-directional exchange is beyond the scope of this work, we can use the optimized emissions from Zhu et al. (2013) as the basis upon which bi-directional exchange is applied. Figure 12 shows the modeled NH$_3$ monthly average surface concentrations in comparison to the AMoN observations. The left column of Figure 12 is from the optimized NH$_3$ estimates from Zhu et al. (2013). In the right column, the modeled NH$_3$ monthly average concentrations are from GEOS-Chem with NH$_3$ bi-directional exchange using the optimized emissions from Zhu et al. (2013). The model with bi-directional exchange decreases the high bias in July: the NMB decreases by 80.4%; the RMSE decreases by 56.7%. The R^2 value increases by 43.3%. However, the model with bi-directional exchange now underestimates the NH$_3$ monthly average concentrations in April and October. The RMSE increases by 4.1% in April and 28.8% in October. The impacts of NH$_3$ concentration with respect to emissions in the model with bi-directional exchange are nonlinear. Using the optimized NH$_3$ emissions inventories from the TES NH$_3$ assimilation with the BASE model does not guarantee a better estimation of NH$_3$ surface concentrations with the BIDI model. Therefore, full coupling of inverse modeling with TES NH$_3$ observations and bi-directional exchange is necessary. Also, investigating the sensitivities of bi-directional model results to the NH$_3$ emissions, as well as other critical parameters, is important for improving the NH$_3$ concentration estimation.
6.2 Global modeling results

While bi-directional exchange of NH$_3$ has previously been implemented in regional models (e.g., Bash et al., 2013; Zhang et al., 2010; Wichink Kruit et al., 2012), with the GEOS-Chem model we have the chance to evaluate NH$_3$ bi-directional exchange on global scales for the first time. The global distribution of NH$_3$ gross emissions in both BASE and BIDI cases, as well as their differences, are shown in Figure 13. Generally, bi-directional exchange decreases NH$_3$ emissions in the Northern Hemisphere, and increases NH$_3$ gross emissions in the Southern Hemisphere in April and October.

Total NH$_3$ emissions in the Northern Hemisphere decrease by 22.6% in April and 7.8% in October. In July, bi-directional exchange increases NH$_3$ emissions in most places (7.1% globally), except China and India. Significant decreases in NH$_3$ emissions in the BIDI case occur in Southeastern China and Northern India in all three months. The magnitudes of the decreases can be up to 18.4 Gg/month in China and 16.5 Gg/month in India in July. Total NH$_3$ emissions in China decrease by 43.6% in April, 31.4% in July, and 24.7% in October. Total NH$_3$ emissions in India decrease by 28.8% in April, 22.8% in July, and 7.2% in October. There are also large decreases of total NH$_3$ emissions in the US, Mexico and Europe in April of up to 6.5 Gg/month.

The changes of NH$_3$ gross emissions between BASE and BIDI cases can be seen more directly from the comparison of fertilizers emissions in the BASE case with those in the BIDI case. In Figure 14, we show the global distribution of NH$_3$ fertilizer emissions in the BASE and BIDI cases. In BIDI case, the fertilizer emissions are the upward fluxes from soil and vegetation from bi-directional exchange. The third column is the NH$_3$ emissions from all other sources except fertilizers in April, July, and October of 2008. In the BASE case, fertilizers emissions have peak values in Eastern China and Middle East Asia and much smaller values elsewhere. Fertilizers emissions in the BIDI case increase in many places where there are no or near zero values in the BASE case. In the BIDI case, the fertilizer emissions distribution is much more homogeneous. As we described in Section 6.1, fertilizer emissions are lower in the BIDI case under cool spring and fall time conditions due to the temperature effects on NH$_3$ emissions and storage in the soil ammonium pool. The deposition and re-emission processes in bi-directional exchange model thus extend the effect of NH$_3$ emissions from fertilizers. There are obvious trends that fertilizer emissions in the Northern Hemisphere are larger than those in the Southern Hemisphere in April and July, and fertilizer emissions in the Southern Hemisphere are larger than those in the Northern Hemisphere in October. The global amount of NH$_3$ fertilizer emissions is 27.8% of total emissions from all sources in the BASE case and 12.8% in the BIDI case in April. Figure 15 shows the percentage of emissions from fertilizers in BIDI case in the global simulations. BIDI fertilizers contribute more to gross emissions in July than in other months in the Northern Hemisphere, which again demonstrates the delayed effect of fertilizer NH$_3$ (mostly applied in the springtime) in the BIDI model.

Figure 16 shows the global distribution of NH$_3$ monthly surface concentrations in the BASE and BIDI cases and their differences in April, July and October. In general, bi-directional exchange
increases NH$_3$ concentrations throughout the world in July by up to 3.9 ppb. It decreases NH$_3$ concentrations in the Northern Hemisphere (up to 27.6 ppb) and increases NH$_3$ concentrations in the Southern Hemisphere (up to 4.2 ppb) in April and October. Significant decreases of NH$_3$ concentrations occur in China in all three months with up to 20.6 ppb in April, 12.8 ppb in July, and 15.7 ppb in October. Paulot et al. (2014) indicated the MASAGE NH$_3$ emissions, which we use in this study, were higher than the bottom-up NH$_3$ emissions from Huang et al. (2012) in China in April and July, and similar to the emissions from Streets et al. (2003) in April, July, and October. Overestimation of NH$_3$ surface concentrations in GEOS-Chem in China are found in Wang et al. (2013) when using NH$_3$ emissions from Streets et al. (2003), leading to an overestimation of nitrate aerosol concentrations in China. Observations from the Infrared Atmospheric Sounding Interferometer (IASI) remote sensing instrument have discrepancies over China with NH$_3$ concentrations in GEOS-Chem (Kharol et al., 2013; Clarisse et al., 2009) that may in part be improved by the impacts of bi-directional exchange. However, observations from TES show NH$_3$ concentrations in GEOS-Chem (with NH$_3$ emissions from Streets et al. (2003)) are underestimated in many places of the globe including China (Shephard et al., 2011). We must note that the lower NH$_3$ concentrations presented here are daily averages, while IASI and TES data are for a particular hour of the day. The changes in the emissions profile may reduce the model underestimate against the satellite observations while decreasing the mean NH$_3$ concentrations. However, the ability of remote sensing instruments on satellites in low-earth orbits (LEO) to observe the impact of bidirectional exchange on NH$_3$ concentrations is limited compared to observations from potential future geostationary measurements (Zhu et al., 2015).

6.3 Wet deposition evaluation (Global and US)

We compare the model NH$_4^+$ wet deposition to in situ observations in several regions of the world using NTN for the continental US, CAPMoN for Canada, EMEP for Europe, and EANET for East Asia, see Figure 17. For the model NH$_4^+$ wet deposition, we also include the model NH$_3$ wet deposition since NH$_4^+$ wet deposition from in situ observations includes precipitated NH$_3$. Since there are biases in the modeled precipitation, we scale the model wet deposition by multiplying the modeled deposition by the ratio of the observed to modeled precipitation, $F/I_x = \frac{P_{\text{obs}}}{P_{\text{sim}}} \times (\frac{P_{\text{obs}}}{P_{\text{sim}}})^{0.6}$, following the correction method in Paulot et al. (2014). We only include observations that have $0.25 < \frac{P_{\text{obs}}}{P_{\text{sim}}} < 4$ to limit the effect of this correction (Paulot et al., 2014), and we also exclude observations which are beyond three times the standard deviation of observed NH$_4^+$ wet deposition to avoid outliers.

In general, the GEOS-Chem model underestimates NH$_4^+$ wet deposition throughout the world in the BASE case. Large increases in NH$_4^+$ wet deposition in the BIDI cases are found in the US, Canada, and Europe in July (up to 6.31 kg ha$^{-1}$ yr$^{-1}$). The slopes of the regression line when compared to observations increase by 37.9% in US, 54.9% in Canada, and 17.7% in Europe in the
BIDI cases in July, all becoming closer to unity. However, the bi-directional exchange increases the RMSE by 64.3% in the US, 37.2% in Canada, and 36.0% in Europe.

Bi-directional exchange does not impact the NH$_4^+$ wet deposition much in April and October. It decreases NH$_4^+$ wet deposition slightly (up to 3.77 kg ha$^{-1}$ yr$^{-1}$ in Europe) at most of the observation locations in the US, Canada, and Europe in April. The slopes decrease by 14.3% in the US, 6.8% in Canada, and 12.3% in Europe. Bi-directional exchange decreases the NMB by 46.4% in the US, 37.6% in Europe in April, but increases the NMB by 28.3% in Canada, and 11.6% in East Asia. In October, bi-directional exchange increases NH$_4^+$ wet deposition slightly at most of the observation locations (up to 3.85 kg ha$^{-1}$ yr$^{-1}$). The changes in RMSE between BASE and BIDI cases are small, less than 10%.

The overall differences of NH$_4^+$ wet deposition between the BASE and BIDI cases are generally small (from -4.95 to 6.31 kg ha$^{-1}$ yr$^{-1}$), even when the differences in NH$_3$ emissions are substantial. For example, NH$_3$ emissions differences between the BASE and BIDI range from -61.2 to 1.16 kg ha$^{-1}$ yr$^{-1}$ in China in April with bi-directional exchange, but changes in NH$_4^+$ wet deposition are not very large (from -4.95 to 2.52 kg ha$^{-1}$ yr$^{-1}$). While implementing NH$_3$ bi-directional exchange leads to improvements in some regions and seasons, it does not uniformly reduce error in model estimation of NH$_4^+$ wet deposition.

6.4 Adjoint sensitivity analysis

6.4.1 Global adjoint sensitivities

In section 5.3, we demonstrated the accuracy of the sensitivities calculated using the adjoint of the GEOS-Chem bi-directional model. In this section, we present the adjoint sensitivities of NH$_3$ surface concentrations with respect to the important parameters in the bi-directional model. Figure 18 shows the adjoint sensitivities of NH$_3$ surface concentration with respect to the scaling factors for the soil pH (left) and for the fertilizer application rate (right) in April, July, and October, 2008. The sensitivities with respect to both parameters are always positive throughout the globe. Sensitivities of NH$_3$ to fertilizer application rate are positive as excess fertilizer application will increase the NH$_3$ soil emission potential. Sensitivities of NH$_3$ to soil pH are also positive as low H$^+$ concentrations in soil (high soil pH) increases dissociation of NH$_4^+$ to NH$_3$, thereby increasing the potential for volatilization of NH$_3$.

The relationship between NH$_3$ concentration and soil pH is stronger during the growing season since more ammonium is in the soil pool. Slight changes in pH may have large impacts on the amount of NH$_3$ emitted from soil and further induce large differences in NH$_3$ surface concentrations. As we can see in the left column of Figure 18, the sensitivities of NH$_3$ surface concentrations with respect to soil pH scaling factors are larger in the Northern Hemisphere than those in the Southern Hemisphere in April and July, and less in the Northern Hemisphere than those in the Southern
Hemisphere in October, since the growing seasons are in April in the Northern Hemisphere and in October in the Southern Hemisphere. Large sensitivities in July in the Northern Hemisphere are due to ammonium in the soil pool accumulated from CAFO emissions via deposition. However, some caution is warranted in interpreting the seasonality of these sensitivities, as our model does not include any seasonal variations in soil pH. Seasonal variability of soil pH is driven by fertilizer rate, timing of fertilizer application, root and bacterial activity, soil moisture, organic matter, and salt levels (Murdock and Call, 2006). Soil pH is observed to be highest at or near mid-winter and lowest at late summer (Slattery and Ronnfeldt, 1992). Variation of soil pH can be more than one unit from spring to fall (Angima, 2010), thus the uncertainty in the constant annual soil pH used here could be about 20% owing to neglecting seasonality.

The relationship between NH$_3$ concentration and fertilizer application rate is also seasonally dependent. The seasonal trends of sensitivities of NH$_3$ to fertilizer application rate are similar to sensitivities of NH$_3$ to soil pH. Larger sensitivities appear in places with lower fertilizer application rates than those with plenty of fertilizer. For example, the largest fertilizer application rates appear in Southeast China, Northwest Europe and Northern India in April, and sensitivities are nearly zero in each of these locations. That the magnitude of the fertilizer application rates itself is an important factor in determining the sensitivities of NH$_3$ concentration to the fertilizer application rate is indicative of the nonlinear relationship introduced by treatment of bi-directional exchange.

Through investigating the sensitivities of NH$_3$ surface concentration to the soil pH and the fertilizer application rate, we know that NH$_3$ surface concentrations are very sensitive to these parameters in many places of globe. We also find that NH$_3$ surface concentrations are more sensitive to soil pH than fertilizer application rate in general. In addition to the adjoint sensitivity analysis of NH$_3$ concentrations to the soil pH and the fertilizer application rate, it is also interesting to know the ranking of sensitivities of NH$_3$ concentrations with respect to other parameters, such as NH$_3$ concentrations at compensation points (C_c, C_{st}, C_g), NH$_3$ emission potentials (Γ_g, Γ_{st}), and resistances (R_{aq}, R_{inc}, R_{soil}, R_g, R_{st}, R_{bg}, R_{w}). Knowledge of the sensitivity of NH$_3$ concentrations with respect to these parameters may help improve the model estimation of the spatial and temporal distributions as well as the magnitudes of NH$_3$ concentrations.

6.4.2 Comparison to in situ NH$_3$ with adjusted BIDI parameters

Based on the adjoint sensitivity analysis we have shown above and forward sensitivity analysis for all the parameters mentioned above (results not shown), we know that soil pH is one of the most critical parameters in the GEOS-Chem bi-directional exchange model. It is interesting to explore to what extent biases in the modeled NH$_3$ concentrations may be explained by uncertainties in the parameters of the bi-directional model, rather than e.g., revising livestock NH$_3$ emissions. To test this, we increase the soil pH value by a factor of 1.1, since uncertainties of seasonal soil pH are about 20%. As expected, the NH$_3$ surface concentrations generally increase over the globe (e.g.,
up to 3.4 ppb in April). Large increases occur in places with large sensitivities to soil pH (Figure 18, upper right). NH$_3$ concentrations are underestimated in the model in comparison to the AMoN observations in the US. They are also underestimated in many parts of globe in comparison to TES observations (Shephard et al., 2011). With this adjustment to soil pH, the discrepancy between TES observations and the model in upper levels of the boundary layer may potentially be reduced in regions where GEOS-Chem NH$_3$ is underestimated before the growing seasons and overestimated after the growing seasons. Slight increases in NH$_3$ surface concentrations are found throughout the US as NH$_3$ is not very sensitive to soil pH in the US (see Figure 18). Thus, this adjustment does not improve the comparison to AMoN observations in the US.

In this study, we did not consider the adjustment of soil pH in agricultural areas by the farmers who limit the soil pH in a certain range to improve crop yield (Haynes and Naidu, 1998). However, no significant changes in the modeled surface NH$_3$ concentrations occur with bi-directional exchange when we limit the soil pH in the agricultural areas between 5.5 and 6.5 (generally less than 1 ppb over the globe, up to 3.4 ppb in India), since sensitivities are not very strong in the agricultural areas (see left column of Figure 18).

Small differences between bi-directional and unidirectional fluxes in the US are also indicated in Dennis et al. (2013), wherein sensitivity tests were performed varying the soil emission potential (Γ_g, a parameter which includes both soil pH and fertilizer application rate) in CMAQ. It was found that the impact on total N deposition at continental scales was generally small (<5%), with very few (<10%) grid cells having differences up to 20%.

From Zhu et al. (2013), we know that the underestimation of NH$_3$ emissions in the unidirectional model can be as much as a factor of 9 in the US. We also notice that NH$_3$ may not change much when fertilizer emissions increase a lot in regions such as Midwest US and Northern Australia (see Figure 14 and Figure 16). Thus, low emissions from other sources, such as livestock, may be a big part of the reason for underestimating NH$_3$ concentrations in the bi-directional exchange model. To better understand this, we also test increasing NH$_3$ livestock emissions by a factor of 8 in April and 3 in October as NH$_3$ concentrations are generally underestimated by around 8 and 3 times (Figure 10) compare to AMoN observations in April and October, respectively. These adjustments bring the NH$_3$ concentrations into a much better agreement with the magnitude of AMoN observations, see Figure 19. However, uniformly increasing the livestock emissions does not well represent the NH$_3$ spatial distribution with the AMoN observations (correlations of model and observation are very low). Overall, treatment of bi-directional exchange can improve our understanding of NH$_3$ emissions from fertilizers, but this alone may not improve estimation of NH$_3$ concentrations, NH$_4^+$ wet depositions, and nitrate aerosol concentrations. Additional work including bi-directional exchange in NH$_3$ inverse modeling is needed, as large underestimates in NH$_3$ primary sources exist in the model and simply applying the scheme to optimized emissions from inverse modeling can not well capture
the spatial variability of NH$_3$ concentrations that are the responses of both bi-directional exchange processes and emissions.

6.4.3 Spot sensitivity analysis

Here we investigate to what extent bi-directional exchange increases the NH$_3$ lifetime, which is a critical issue for controlling nitrogen deposition and PM$_{2.5}$ formation. Through the adjoint method, we are able to assess source contributions to model estimates in particular response regions (e.g., Lee et al., 2014). In Figure 20, we show the adjoint sensitivity of NH$_3$ surface concentration at a single location [88°W, 40°N] with respect to the NH$_3$ anthropogenic emissions at all grid cells in April, 2008. In the BASE case (left panel), the NH$_3$ surface concentration is most sensitive to the emissions from the same grid cell, and is less sensitive to the emissions from surrounding grid cells. With the bi-directional exchange (right panel), the NH$_3$ concentration is sensitive to the emissions from a much wider range, which extends all the way to Canada. Some of the sensitivities are very strong even though they are a long distance away from the location of the NH$_3$ concentration under consideration. The deposition and re-emission processes in the bi-directional exchange extends the spatial range of influence of NH$_3$ emissions and, in effect, the NH$_3$ lifetime. Thus, modeled NH$_3$ concentrations in Illinois can be impacted by the emissions from Kansas or even from Canada.

7 Conclusions

In this study, we have considered a more detailed, process-level treatment of NH$_3$ sources in a global chemical transport model (GEOS-Chem) and evaluated the model behavior in terms of biases in estimated NH$_3$, nitrate, and NH$_4^+$ wet deposition, and the factors driving these processes in the model. First, we update the diurnal variability of NH$_3$ livestock emissions. In general, by implementing this diurnal variability scheme, the global NH$_3$ concentrations, nitrate aerosol concentrations, and nitrogen deposition all decrease. The largest decreases always occur in Southeastern China and Northern India. More NH$_3$ from livestock emitted in the daytime largely decreases the NH$_3$ surface concentrations in the night and increases concentrations during the day, which is more conducive to export of NH$_3$.

We have also developed bi-directional exchange of NH$_3$ and its adjoint in the GEOS-Chem model. Bi-directional exchange generally increases NH$_3$ gross emissions in most parts of the US and most places around the globe in July, except China and India. These are mainly due to the NH$_3$ re-emissions from the ammonium soil pool that accumulates ammonium from previous months. Bi-directional exchange generally decreases NH$_3$ gross emissions in the US in April and October. On a global scale, bi-directional exchange decreases NH$_3$ gross emissions in the Northern Hemisphere in April and October, and increases NH$_3$ gross emissions in the Southern Hemisphere. During the
growing seasons, the ammonium soil pool preserves ammonia/ammonium in the soil rather than emitting it directly after fertilizer application.

Bi-directional exchange increases monthly NH$_3$ surface concentrations throughout the world in July, which improves comparison to the AMoN observations in the US. It decreases NH$_3$ surface concentrations in the Northern Hemisphere and increases NH$_3$ concentrations in the Southern Hemisphere in April and October. Bi-directional exchange does not have a large impact on model biases in nitrate aerosol, which are likely owing to overestimated nitric acid concentration (Heald et al., 2012). However, with the deposition and re-emission of NH$_3$ inherent in bi-directional exchange, NH$_3$ can be impacted by sources from a much greater distance, which is a critical issue when considering strategies for controlling nitrogen deposition and PM$_{2.5}$ formation.

Bi-directional exchange largely increases NH$_4^+$ wet deposition in the US, Canada, and Europe in July, but slightly decreases NH$_4^+$ wet deposition in April and has little impact in October. The overall differences of NH$_4^+$ wet deposition between the BASE and BIDI cases are generally small, even when the differences in NH$_3$ fertilizer emissions are large. While observations of wet deposition have been used to constrain NH$_3$ sources in previous works (Gilliland et al., 2003, 2006; Zhang et al., 2012; Paulot et al., 2014), this dataset does not appear sufficient to provide constraints on model treatment of bi-directional exchange.

Using the adjoint of bi-directional exchange, we investigate the spatial and seasonal dependency of NH$_3$ surface concentrations in the GEOS-Chem model on the soil pH and fertilizer application rate, which are themselves uncertain. Soil pH is known to be seasonally variable. Updating the soil pH with seasonal variability would impact the results of bi-directional exchange across wide regions of globe. However, updating the soil pH with seasonal variability does not seem sufficient to improve comparison with in situ observations in the US, as primary sources are likely underestimated by a factor of 3 or more. Further, uniformly increasing the emissions from primary sources degrades the spatial variability of simulated NH$_3$.

Overall, bi-directional exchange largely extends the lifetime of NH$_3$ in the atmosphere via deposition and re-emission processes. This model provides a better fundamental description of NH$_3$ emissions from fertilizers. However, implementing bi-directional exchange does not uniformly improve estimation of NH$_3$ concentrations, NH$_4^+$ wet deposition, and nitrate aerosol concentrations. Domain-wide adjustments to soil pH or livestock emissions do not improve the model comparison to the full suite of measurements from different platforms, locations and seasons considered here. Thus, incorporating bi-directional exchange in an inverse model is required in future work to correct the low biases in NH$_3$ primary sources without over adjusting these sources to account for model error from neglecting bi-directional exchange processes. Measurements from recent (Shephard and Cady-Pereira, 2015) or future (Zhu et al., 2015) remote sensing platforms will be of value for such endeavors.
Acknowledgements. This work is supported by NASA grants NNX09AN77G and NNX10AG63G and EPA STAR award RD834559. While this manuscript has been reviewed by the Environmental Protection Agency and approved for publication, it may not reflect official agency views or policies.
References

Table 1. A summary of various emissions inventories used in different sections.

<table>
<thead>
<tr>
<th>Section</th>
<th>Region</th>
<th>Horizontal Resolution</th>
<th>Model</th>
<th>Anthropogenic Emissions Inventory</th>
<th>Gross emissions in Region (Tg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Inventory</td>
<td></td>
<td>April</td>
</tr>
<tr>
<td>4.2 US</td>
<td>1/2° × 2/3°</td>
<td>Static & Dynamic</td>
<td>NEI 2005b</td>
<td>0.200 0.407 0.223</td>
<td></td>
</tr>
<tr>
<td>4.3 Global</td>
<td>2° × 2.5°</td>
<td>Static & Dynamic</td>
<td>MASAGE_NH3c</td>
<td>6.79 6.59 5.01</td>
<td></td>
</tr>
<tr>
<td>6.1.1 6.1.2 US</td>
<td>1/2° × 2/3°</td>
<td>BASEd</td>
<td>NEI 2005</td>
<td>0.200 0.407 0.223</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BIDIe</td>
<td>NEI 2005 livestock + upward BIDI flux</td>
<td>0.153 0.428 0.192</td>
<td></td>
</tr>
<tr>
<td>6.1.3 US</td>
<td>2° × 2.5°</td>
<td>BASE</td>
<td>Optimized emissions inventoriesf</td>
<td>1.04 1.11 1.27</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BIDI</td>
<td>1.12 1.21 1.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.2 6.3 6.4 Global</td>
<td>2° × 2.5°</td>
<td>BASE</td>
<td>MASAGE_NH3</td>
<td>6.79 6.59 5.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BIDI</td>
<td>5.62 6.30 4.73</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Continental US.
b NEI 2005 does not distinguish the livestock emissions sector. Thus, the livestock fractions calculated from NEI 2008 are used in Dynamic case.
c MASAGE_NH3 contains livestock and fertilizer sectors.
d All BASE and BIDI cases include the new Dynamic scheme.
e In all BIDI cases, fertilizer emissions in BASE case will be replaced by the upward BIDI flux.
f Optimized emissions inventories from Zhu et al. (2013).

Figure 1. Monthly averaged diurnal variation fractions of livestock emissions of year 2008 over the US. Blue line is the standard GEOS-Chem. Dark green, red and black lines are the newly developed diurnal pattern of NH₃ livestock emissions in April, July and October, respectively.
Figure 2. Diurnal variation of NH$_3$ surface concentrations from SEARCH observations (blue), GEOS-Chem model with (black) and without (red) dynamic emissions scheme in July 2008.

Figure 3. Spatial distribution of GEOS-Chem simulated NH$_3$ concentration at surface level in static, dynamic cases and their differences. Monthly averages are shown for April, July and October of 2008.
Figure 4. Spatial distribution of GEOS-Chem simulated nitrate concentration at surface level in static, dynamic cases and their differences. Monthly averages are shown for April, July and October of 2008.
Figure 5. Spatial distribution of GEOS-Chem simulated total N deposition in static, dynamic cases and their differences. Monthly averages are shown for April, July and October of 2008.

Figure 6. Simplified schematic of NH$_3$ bi-directional exchange model. C_a, C_g, C_{st} are the NH$_3$ concentrations in the atmosphere, soil and stomata, respectively. C_c is the NH$_3$ concentration at the canopy compensation point.
Figure 7. The adjoint sensitivity of NH$_3$ surface level concentration with respect to soil pH (left) and fertilizer application rate (right) compared to finite difference gradients. The cost function is evaluated once at the end of a one week simulation which excludes horizontal transport.
Figure 8. Spatial distribution of ammonia total emissions from GEOS-Chem with (BIDI) and without (BASE) bi-directional exchange and their differences in April, July and October of 2008. The total emissions in the BIDI case are the sum of upward fluxes from soil and vegetation from the bi-directional exchange and emissions from all other sources except fertilizers.
Figure 9. Spatial distribution of ammonia concentration at surface level of GEOS-Chem with (BIDI) and without (BASE) bi-directional exchange and their differences in April, July and October of 2008.
Figure 10. Comparison of GEOS-Chem simulated NH$_3$ concentration at surface level in BASE and BIDI cases with AMoN observations in April, July, and October of 2008. R^2 is the square of the correlation coefficient. Solid lines are regressions. Gray dashed lines are 1:1.
Figure 11. Comparison of GEOS-Chem simulated nitrate aerosol concentration at surface level in BASE and BIDI cases with IMPROVE observations in April, July, and October of 2008. R is the correlation coefficient.
Figure 12. Left column: comparison of GEOS-Chem optimized NH$_3$ concentration at surface level from Zhu et al. (2013) with AMoN observations. Right column: comparison of GEOS-Chem simulated NH$_3$ concentration at surface level in BIDI case using optimized NH$_3$ emissions from Zhu et al. (2013) with AMoN observations. R^2 is the square of the correlation coefficient. Gray dashed lines are 1:1.
Figure 13. Global distribution of ammonia gross emissions from GEOS-Chem with (BIDI) and without (BASE) bi-directional exchange and their differences in April, July and October of 2008. The total emissions in the BIDI case are the sum of upward fluxes from soil and vegetation from the bi-directional exchange and emissions from all other sources except fertilizers.
Figure 14. Global distribution of original ammonia fertilizer emissions in BASE case (BASE fertilizer), upward flux from soil and vegetation in BIDI case (BIDI fertilizer), and ammonia emissions from all other sources except fertilizers (All others) in April, July and October of 2008.
Figure 15. Percentage of gross emissions owing to fertilizer in the global BIDI case in April, July and October of 2008.
Figure 16. Global distribution of ammonia concentration at surface level of GEOS-Chem with (BIDI) and without (BASE) bi-directional exchange and their differences in April, July and October of 2008.
Figure 17. Comparisons of GEOS-Chem modeled NH$_4^+$ wet deposition in BASE (blue) and BIDI (red) cases with in situ observations in US (1st column), Canada (2nd column), Europe (3rd column), and East Asia (4th column) in April (1st row), July (2nd row), and October (3rd row) of 2008. The y-axis represents the model values, and the x-axis represent observations from NTN (for US), CAPMoN (for Canada), EMEP (for Europe), and EANET (for East Asia). R^2 is the square of the correlation coefficient.
Figure 18. The adjoint sensitivities of NH$_3$ surface level concentration with respect to soil pH scaling factor (left) and fertilizer application rate scaling factor (right) in April, July, and October of 2008. Note that sensitivities in the left and right columns have different scales.
Figure 19. Comparison of NH$_3$ surface concentrations from GEOS-Chem with bi-directional exchange to AMoN observations. The livestock emissions in the model are increased by a factor of 6 in April, and 3 in October.
Figure 20. The adjoint sensitivities of NH$_3$ surface level concentration at 88°W, 40°N with respect to NH$_3$ anthropogenic emission scaling factor at all grid cells in both BASE (left) and BIDI (right) cases in April, 2008.