Response to all referees

We would like to thank the two reviewers for the comments and suggestions, which help to improve the quality of our work. We have made revisions and have replied to all comments and suggestions. Please find a detailed point-by-point response to each comment. Our responses are shown in “Blue” color and the changes in the manuscript are shown in “Red” color.

Referee #1

Comment:
This manuscript describes a new approach to obtain SSR from satellites, and the proposed idea on how to combine MODIS and MTSAT data and offset their respective observation shortcomings indeed is very novel. Throughout the manuscript, the structure, elements, procedures, discussions and analyses all are well organized, and thereby it is fluent to read. In a word, I find the study is interesting and well sound and it is worth publishing in Atmospheric Chemistry and Physics. Even though I think the study is worth publishing in ACP, it may be still require some modifications.

Response:
We thank Referee #1 for the encouraging comments. All comments and suggestions have been considered carefully and well addressed.

Comment:
1. Generally speaking, if we want to retrieve the atmospheric states (e.g. cloud-related parameters) from satellite TOA (Top of the Atmosphere) observations, the surface states must be known or assumed in advance. However, in your method the cloud-related parameters are directly linked with TOA MTSAT observations by an ANN method. Are the fluctuations of surface states, such as different surface reflectance, required to be further accounted for in your retrieving scheme? Do you compare your cloud mask results with MTSAT TOA VIS images through visual identification, and are they in agreement each other?

Response:
I agree that the surface states must be known or assumed in advance when retrieving the atmospheric states from satellite TOA (Top of the Atmosphere) observations. This is especially significant when the air condition is clear sky, in which case the TOA radiances are affected greatly by the surface states. Under cloudy condition, the effects of clouds on TOA radiances are much greater than those of the surface states on TOA radiances. Thus, most retrieval algorithms for atmospheric states cannot work well, while the retrieval algorithms for cloud parameter are almost not affected by the surface states. Furthermore, MODIS cloud retrieval algorithm has accounted for the surface effects when retrieving cloud parameters. Therefore, we directly build relationships between MODIS cloud parameters and TOA MTSAT observations with an ANN method without considering surface states.
Yes, we randomly selected a few cloud mask pictures and compared with the corresponding MTSAT TOA VIS images through visual identification and found that they are generally in agreement with each other.

Comment:
2. You first use to MTSAT TOA 5 channel data to derive cloud parameters, and then use resulting cloud parameters to compute SSR. Why didn’t you choose a more straight-forward way to obtain SSR, namely directly retrieving SSR from MTSAT TOA 5 channel data? You also can use MODIS cloud products and the algorithm of Qin et al. (2015) to obtain SSR, and then establish the direct relationship between SSR and MTSAT observations by an ANN method.

Response:
Generally, there are two types of methods to directly retrieve SSR from the MTSAT TOA channel data. One is the look-up table methods that use satellite signals to match a pre-established radiative-transfer database. These methods are widely adopted by many researchers (such as Pinker et al., 2003; Liang et al., 2006; Mueller et al., 2009; Lu et al., 2010; Huang et al., 2011; Ma and Pinker, 2012), but their computational efficiency are not high, and most of them only use visible channel data. The other is the statistical methods that directly link TOA radiance with the observed SSR at regional scale. For example, Using ANN technology, Lu et al. (2011) built the non-linear relationship between daily SSR measurements and MTSAT-1R all-channel radiances over China, and the evaluation results indicate that the relationship can efficiently estimate daily SSR from MTSAT-1R data. However, the non-linear relationship is not universal and needs local calibrations. To alleviate the weaknesses of the above methods, Qin et al. (2015) developed an efficient physically based parameterization algorithm to retrieve SSR. This algorithm can retrieve SSR quickly and be used globally. Qin et al. (2015) have applied the algorithm on polar-orbit satellite (MODIS Terra/Aqua), and this study attempts to apply the algorithm on geostationary satellite to map high spatio-temporal resolution SSR over China. To achieve this goal, we first use MTSAT TOA 5 channel data to derive cloud parameters, and then use the derived cloud parameters to compute SSR.

Your suggestion of using MODIS cloud products and the algorithm of Qin et al. (2015) to obtain SSR and then establishing the direct relationship between SSR and MTSAT observations by an ANN method may be equivalent to what we have done in this study. It is worth doing in the future.

Comment:
3. In the mid-latitude regions such as most parts of mainland China, the overpass times of Terra-MODIS and Aqua-MODIS respectively roughly are 11:00 and 13:30. Around these times, the solar zenith angles are relatively small. Therefore, the samples that you used to train ANN maybe lose representativeness for cases that solar zenith angles are large (e.g., the hours around sunrise and sunset). This may also influence your retrieval accuracy. Is this right? My questions may seem a little too
harsh, but you should try your best to respond them.

Response:
Good comment! We randomly selected a large number of data points to train the ANNs for cloud parameters estimation. These data points cover most of China and span all four seasons. We have checked the training data and found that the values of solar zenith angle (SZA) vary from about 7.1° to 78.3°. This range of SZA is sufficiently wide except for extreme cases such as the hours around sunrise and sunset, but the value of SSR is very small in the extreme cases. Also, it should be noted that the angle information is not the determinative factor in retrieving cloud parameters. As a matter of fact, the question you mentioned has been discussed among the authors when designing the ANN. The above discussion has been added into the text (L186-196).

Specific comments:

Comment:
1. P.35202, L. 16: or 3.52.P. 35203, L. 26: “with inputs” may be more appropriate?

Response:
Accepted!

Comment:
2. P.35204, L. 1: Is it better to change “get their values at…” into “them with”?

Response:
Accepted!

Comment:
3. P.35204, L. 3: “their limited…” may be more appropriate?

Response:
Accepted!

Comment:
4. P.35205, L. 11: MTSAT1R is 135 degree and MTSAT2 is 140 degree, which one did you use?

Response:
MTSAT-1R is positioned at 140° E and MTSAT-2 is positioned at 145° E. In this study, both MTSAT-1R and MTSAT-2 data are used to map high spatio-temporal resolution SSR dataset (hourly, 5 km) over China from 2007 to 2014. The observed SSR data in 2009 are used to validate the retrieved SSR, which were estimated from MTSAT-1R data.

Comment:
5. P.35205, L. 25: Misleading phrase “The spatial resolutions of these MODIS products are 5 km”, different MODIS products have different spatial resolutions.

Response:
The authors are sorry for this error. The spatial resolutions of the aerosol products

3
(MOD04, MYD04), atmospheric profiles products (MOD07, MYD07) and albedo products (MCD43C3) are 5 km; whereas, the spatial resolution of cloud products is 1 km. Thus we resample the cloud products to a spatial resolution of 5 km in the original manuscript. This information has been added into the text (L121-124).

Comment:
6. P.35208, Sect. 3.2: Here the descriptions are a bit disordered. Maybe, the following revision is better. The conclusion “Comparison between … To improve… train the ANN” in the end of this paragraph, is adjusted into the end of next paragraph. You respectively describe the training data and validation data, and then conclude their similar behaviors, finally all data are used to train the ANN. between the L. 15 and L. 25, and the “observed ones” is “the MODIS derived”, isn’t it? In a word, these two paragraphs need to be rephrased.

Response:
Yes, you logic is right. Actually, the logic you suggested has been briefly described in the original manuscript as “The MODIS cloud products are randomly selected, and split into two parts: one for training and other for independent validation. Comparison between the two parts indicates that the trained ANNs behave similar to each other. To improve the generalization of the ANN model, we use all the data to train the ANN”. Figure 3 and Figure 4 in the original manuscript use all the data to train the ANN. To avoid misunderstanding, we have added the text “After all the data are used to train the ANN,” into the text (L206).

Yes, the “observed ones” is the “MODIS derived ones”.

Comment:
7. P.35209, L. 23: 2.9 g cm⁻² seems to be small. From my experience, under cloudy skies the absorption of water vapor usually is saturated. Maybe 3.5 g cm⁻² is more appropriate.

Response:
Maybe you are right, but the PW effect is negligible under cloudy conditions because the cloud effect on the SSR is dominant. Therefore, we may expect that the using of 2.9 g cm⁻² or 3.5 g cm⁻² will produce negligible difference.

Comment:

Response:
We have changed this sentence to “The lack of three-dimensional radiative effects in the SSR retrieval algorithm and the appearance of broken clouds are the potential reasons for the hourly SSR bias” in the text (L288-290).

Comment:
9. P.35213, L. 4-5: I do agree with the reasons you presented here. “This would be
due to the coarse spectral resolution of geostationary satellites...”. I feel that maybe two factors contribute this phenomenon. One is satellite observing TOA reflectance has saturated for too thick clouds. Subsequently TOA reflectances can not reflect the change of cloud optical depth, and result in overestimated atmospheric transmittance. Another one is the “representative cloud” and “climatology average aerosol loading” are used in the calculation of SSR. This means extremely cases can not be accounted for, and a systematic underestimation in certain high value range and a systematic overestimation in certain low value range are certainly resulted in. Frankly, it is weird that GLASS SSR has such large systematic errors on a daily timescale. In summary, my overall recommendation is that this work could go further for publication provided the authors will provide a thorough rebuttal to the aforementioned issues.

Response:
I agree with you absolutely.

Referee #2

Comment:
As well known, Incident shortwave radiation (ISR) at the surface is an essential parameter in the land surface radiation budget and in many land surface process models. This manuscript entitled “Retrieving high-resolution surface solar radiation with cloud parameters derived by combining MODIS and MTSAT data” presented an effective method to retrieve ISR with cloud parameters, including effective particle radius, liquid water path, and ice water path, by combining MODIS and MTSAT data. The retrieved ISR data were also compared with ground measurements and current satellite-derived ISR products. The paper is well written and organized. Overall, I feel the paper presents interesting scientific results as the retrieval algorithm is novel and the comparisons are extensive and valuable for knowing their overall accuracies using direct measurements. However, the manuscript is lacking in detail in a few areas (see comments below for details). Therefore, I would not recommend the paper for potential publication in ACP unless substantial improvements are made to address the following concerns.

Response:
We thank Referee #2 for the encouraging comments. All comments and suggestions have been considered carefully and well addressed.

Comment:
1. As mentioned in the manuscript, the major contributions of the authors are to present an effective method to retrieve high temporal resolution cloud parameters by establishing correlations between MODIS cloud products and MTSAT TOA radiance based on ANN, since the parameterization scheme has been reported in the previous studies presented by the authors. As it is well known, one obvious advantage to use satellite data for the mapping of surface or atmospheric parameters is the fact that it is available at least regionally, potentially even on a global level. Although the authors compared the retrieved high temporal resolution cloud parameters with the MODIS
“TRUE values”, the mapping of high temporal resolution cloud parameters were not displayed in the context. I would suggest the authors to present some retrieved results of high temporal resolution cloud parameters.

Response:
Cloud covers and cloud parameters change drastically, which significantly affect SSR. In terms of SSR retrieval, it makes little sense to simply average the cloud parameters on the seasonal or annual scale. Thus, an instantaneous image of high resolution cloud parameters at 4:00UTC on July 7th, 2009 was randomly selected and displayed in Figure 1, which shows the spatial distribution of cloud parameters clearly. The figure will not be added in the manuscript, because displaying an instantaneous image of cloud parameters in the manuscript have no apparent scientific significance. As indicated in the manuscript, the accuracy of our retrieved SSR is comparable or even higher than other two radiation products (GLASS and ISCCP-FD). Therefore, we may expect that the cloud parameters derived in this study is relatively reliable.

Figure 1 An example of the spatial distribution of cloud parameters at 4:00UTC on July 7th, 2009.

Comment:
2. The authors simply concluded that the overestimation in the proposed scheme might be attributed to the underestimation of the cloud water path. I think extra sensitive analyses are needed in Section 3.2. How the cloud parameters influence the retrieval accuracy?
Response:
Good comment! The sensitivity test of the SSR retrieval algorithm to cloud parameters (effective particle radius and liquid/ice water path) is presented in Figure 2. The condition used for the sensitivity test is specified as a mid-latitude atmosphere with: solar zenith angle of 60 degree, surface elevation of 0.0 km, precipitable water of 0.14 cm, total zone amount of 0.25 cm, surface albedo of 0.2 and Ångström turbidity coefficient of 0.1. We estimated the sensitivity of SSR retrieval to estimation errors in both liquid/ice water path and effective particle radius. As shown in Figure 3 and Figure 4 (in the original manuscript), the estimated mean effective particle radius within one standard deviation (1σ) correspond to the ranges of about 8-12 μm and 22-30 μm for water cloud and ice cloud, which would lead to SSR changing about 25 W m⁻² and 15 W m⁻² as seen from Figure 2, respectively. The estimated mean cloud liquid/ice water path within 1σ correspond to the ranges of about 45-185 g m⁻², 80-240 g m⁻², which would lead to SSR changing about 154 W m⁻² and 172 W m⁻², respectively. Obviously, errors in SSR caused by the cloud liquid/ice water path estimation errors are much greater than the ones caused by cloud effective particle estimation errors. Therefore, we believe that the underestimation of cloud liquid/ice water path is the major cause for the overestimation of SSR.

The above information has been added in the text (L220-235).

The MBE and RMSE for cloud parameters estimation has been added on Figure 3 and Figure 4 in the revised manuscript.

![Figure 2](image)

Figure 2 (a) Sensitivity of SSR to cloud liquid/ice water path, given the effective particle radius for water cloud and ice cloud to be 12 μm and 30 μm, respectively; (b) Sensitivity of SSR to cloud effective particle radius for water cloud and ice cloud, given liquid/ice water path to be 80 g m⁻².

Comment:
3. The spatial resolution of ISCCP-FD product is about 280 km, while the spatial resolutions the GLASS and the retrieval results based on the proposed method are 5 km. Will different spatial resolutions affect the evaluation results?

Response:
Good comment! It must be admitted that it is very important that both spatial and temporal scales of in-situ SSR measurements are commensurate with those of satellite retrievals. As pointed by Li et al. [2005], it incurs un-negligible errors to use instantaneous SSR measurements to validate coarse-resolution satellite retrievals. However, the spatial sampling uncertainties decrease rapidly as the time-averaging interval increases up to 24 h. Therefore, we compare the evaluation results of our SSR estimates with GLASS and ISCCP-FD product at a daily time scale. This information has been added in the text (L341-345) as “It may incur large errors to validate ISCCP-FD SSR products by using instantaneous in situ measurements because its spatial resolution is rather coarse (about 280 km). However, at daily time scale, the spatial sampling errors become small (Li et al., 2005). Thus, we compare our SSR estimates with GLASS and ISCCP-FD product at a daily time scale.”

Minors:

Comment:
1. Page 35203, Line 13: “But their spatial resolutions (> 100 km) are too coarse to meet the requirements of land surface processes studies and practical applications.” I think it should be “But their spatial resolutions (> 100 km) are too coarse to meet the requirements of land surface processes studies and practical applications very well.”

Response:
Accepted!

Comment:
2. Page 35204, Line 23: “But it is difficult to directly derive cloud properties based on geostationary satellites due to their low spectral resolutions.” Quotations are needed for this expression.

Response:
The following three references have been added in the revised manuscript.

Comment:
3. Page 35204, Line 23: I think “As well-known, the largest certainties....” should be “As well-known, the larger uncertainties ...”.
Response:
Compared with other factors such as aerosol, water vapor, ozone and so on, cloud actually is the largest uncertainty factor in satellite retrieval of SSR. Therefore, we think the “largest” is more proper than “larger”.

Comment:
4. Page 35205, Line 3: “MODIS and high temporal resolution radiance data of all MTSAT channels” should be “MODIS and high temporal resolution TOA radiance data of all MTSAT channels”.
Response:
Accepted!

Comment:
5. Page 35205, Line 3: I think the authors used to MTSAT-1R data. It should be described clearly here.
Response:
Yes, the observed SSR data in 2009 are used to validate the retrieved SSR, which were estimated from MTSAT-1R data. But, both MTSAT-1R and MTSAT-2 data are used in this study to map high spatio-temporal resolution SSR dataset (hourly, 5 km) over China from 2007 to 2014. We have added the information into the text (L103, L105-106).

Comment:
6. Page 35205, Line 20-25: Specific references should be included in the context.
Response:
The following two references have been added in the revised manuscript.
Retrieving high-resolution surface solar radiation with cloud parameters derived by combining MODIS and MTSAT data

W. Tang¹,²*, J. Qin¹, K. Yang¹,², S. Liu³, N. Lu⁴, X. Niu¹

1. Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.

2. CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, China.

3. State Key Laboratory of Remote Sensing Science, School of Geography, Beijing Normal University, Beijing 100875, China.

4. State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.

*Corresponding author and address:

Wenjun Tang, Dr.
Institute of Tibetan Plateau Research, Chinese Academy of Sciences
Building 3, Courtyard 16, Lin Cui Road, Chaoyang District, Beijing 100101, China
Email: tangwj@itpcas.ac.cn
Abstract: Cloud parameters (cloud mask, effective particle radius and liquid/ice water path) are the important inputs in estimating surface solar radiation (SSR). These parameters can be derived from MODIS with high accuracy but their temporal resolution is too low to obtain high temporal resolution SSR retrievals. In order to obtain hourly cloud parameters, the Artificial Neural Network (ANN) is applied in this study to directly construct a functional relationship between MODIS cloud products and Multi-functional Transport Satellite (MTSAT) geostationary satellite signals. Meanwhile, an efficient parameterization model for SSR retrieval is introduced and, when driven with MODIS atmospheric and land products, its root mean square error (RMSE) is about 100 W m$^{-2}$ for 44 Baseline Surface Radiation Network (BSRN) stations. Once the estimated cloud parameters and other information (such as aerosol, precipitable water, ozone and so on) are input to the model, we can derive SSR at high spatio-temporal resolution. The retrieved SSR is first evaluated against hourly radiation data at three experimental stations in the Haihe River Basin of China. The mean bias error (MBE) and RMSE in hourly SSR estimate are 12.0 W m$^{-2}$ (or 3.5%) and 98.5 W m$^{-2}$ (or 28.9%), respectively. The retrieved SSR is also evaluated against daily radiation data at 90 China Meteorological Administration (CMA) stations. The MBEs are 9.8 W m$^{-2}$ (or 5.4%); the RMSEs in daily and monthly-mean SSR estimates are 34.2 W m$^{-2}$ (or 19.1%) and 22.1 W m$^{-2}$ (or 12.3%), respectively. The accuracy is comparable or even higher than other two radiation products (GLASS and ISCCP-FD), and the present method is more computationally efficient and can produce hourly SSR data at a spatial
resolution of 5 km.

Keywords: Solar radiation; High resolution; Cloud parameters; Cloud detection
1. Introduction

Surface solar radiation (SSR), as a component of the surface radiation budget, is the primary source of energy for the Earth’s system. It controls both water and energy exchanges on the land surfaces and thus is a major forcing for land surface models, hydrological models, and ecological models (Xue et al., 2013; Huang et al., 2016). SSR is also essential for many applications such as determination of the site of solar power stations and design of heating systems (Berbery et al., 1999; Oliver and Jackson, 2001; Roebeling et al., 2004; Mondol et al., 2008; Benghanem and Mellit, 2010). However, in situ measurements of SSR are sparse, which are not adequate to represent regional characteristics of SSR, due to high spatial variability of SSR, especially in mountain regions.

Satellites can be utilized to retrieve spatially continuous SSR over a wide geographical extent. Currently, there are several global satellite SSR products, such as the Global Energy and Water cycle Experiment Surface Radiation Budget (GEWEX-SRB, Stackhouse et al., et al., 2004,) and the International Satellite Cloud Climatology Project Flux Data (ISCCP-FD, Zhang et al., 2004). But their spatial resolutions (>100 km) are too coarse to well meet the requirements of land surface processes studies and practical applications. Moreover, their accuracy needs further improvements. As indicated by Yang et al. (2008), the SSR of GEWEX-SRB and ISCCP-FD have large discrepancies in highly variable terrain in the Tibetan Plateau. Wu et al. (2011) evaluated the monthly mean SSR of GEWEX-SRB over China, and found that the SSR was generally overestimated over eastern China but occasionally
underestimated over western China. Therefore, it is necessary to develop new methods that can produce high-accuracy and high-resolution SSR products.

So far, numerous methods have been developed to retrieve SSR from satellite signals. These methods can be roughly divided into three categories. One is look-up table methods that use satellite signals to match a pre-established radiative-transfer database (Pinker et al., 2003; Liang et al., 2006; Mueller et al., 2009; Lu et al., 2010; Huang et al., 2011; Ma and Pinker, 2012). These methods are not computational economical, and most of them only use visible channel data. The second is parameterization methods that directly calculate SSR by a parameterization model, with inputs of cloud, aerosol and other atmospheric and surface variables (Zhang et al., 2004; Halthore et al., 2005; Wang et al., 2009; Kim and Ramanathan, 2008; Huang et al., 2012; Sun et al., 2012). Some inputs (e.g. cloud parameters) of these methods change rapidly but it is hard to get them with high temporal resolution. The third is statistical methods that directly link satellite-observed signals to SSR measurements at regional scales (Lu et al., 2011). The disadvantage of these methods is their limited generalization. In addition, the combination of the above methods is also widely adopted by many researchers (e.g. Hammer et al., 2003; Rigollier et al., 2004; Posselt et al., 2012; and Wang et al., 2011; 2014; Tanahashi et al., 2001; Kawai and Kawamura, 2005; Yeom et al., 2008; 2010). These combined methods firstly calculate clear-sky SSR by a look-up table method or a parameterization method, and then the cloud index or cloud attenuation coefficient derived from satellite data is used to calculate all-sky SSR. Their applicability needs further tests.
Currently, both polar-orbit and geostationary satellites can be used to retrieve the SSR, with different merits and defects. Sensors onboard polar-orbit satellites generally have higher spectral resolutions than geostationary satellites. For example, the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua platforms has 36 spectral bands, but the Multi-functional Transport Satellite (MTSAT) and Geostationary Operational Environmental Satellites (GOES) have only five spectral bands. Sensors with high spectral resolution have great advantage in retrieving cloud properties (Huang et al., 2006). As a fact, MODIS can provide cloud property data with high accuracy, which are used in many studies for SSR estimation (Wang et al., 2009; Huang et al., 2011; Qin et al., 2015). However, their temporal resolutions are too low to capture the diurnal cycle. By contrast, geostationary satellites can provide continuous observations with high temporal resolutions, and thus can capture the diurnal cycle of sky-conditions at regional scales. But it is difficult to directly derive cloud properties based on geostationary satellites due to their low spectral resolutions (King et al., 1997; Huang et al., 2005; Minnis et al., 2007). As well-known, the largest uncertainties in satellite retrieval of SSR are attributed to the inadequate information on cloud properties. Combination of polar-orbit and geostationary satellites may provide an opportunity to derive the cloud properties at high temporal resolutions.

This paper presents a new method to quickly estimate SSR by combining signals of polar-orbit and geostationary satellites. This method includes two steps. The first
step is to estimate hourly cloud parameters by combining high-accuracy cloud products of MODIS and high temporal resolution top of atmosphere (TOA) radiance data of all MTSAT channels. The second step is to use the cloud information and other auxiliary information in an efficient parameterization model to retrieve SSR at a high spatio-temporal resolution. The paper is organized as follows. The data used are introduced in Section 2. The SSR retrieval scheme is presented in Section 3. Section 4 presents the validation results and discussions. Finally, conclusions and remarks are given in section 5.

2 Data

2.1. MTSAT Data

The MTSAT (includes MTSAT-1R and MTSAT-2) data of the Japan Meteorological Agency (JMA) is used in this study. The MTSAT-1R, launched on 26 February 2005, is positioned at 140°E above the equator, and the MTSAT-2, launched on 18 February 2006, is positioned at 145° E above the equator. As the next generation of satellite series, they succeed the Geostationary Meteorological Satellite (GMS) series and take over the role of observing East Asia and the Western Pacific. The imager onboard MTSAT scans the earth every 30 minutes and provides images in five channels (see Table 1). The spatial resolution of MTSAT data at nadir is 1 km for the visible sensor, and 4 km for all the other infrared sensors. The visible and infrared data were resampled to a spatial resolution of 5 km by Kochi University, and all these five-channel data are used in this study to retrieve SSR.
2.2. MODIS Products

The MODIS level-2 products (version 5.1) are used in this study. These MODIS products contain cloud products (MOD06, MYD06), aerosol products (MOD04, MYD04), atmospheric profiles products (MOD07, MYD07), and albedo products (MCD43C3), where MOD denotes data collected from the Terra platform, MYD indicates data collected from Aqua platform, and MCD means combined product derived from both Terra and Aqua platforms (Schaaf et al., 2002; King et al., 2003). The spatial resolutions of the aerosol products (MOD04, MYD04), atmospheric profiles products (MOD07, MYD07) and albedo products (MCD43C3) are 5 km; whereas, the spatial resolution of cloud products is 1 km. Thus we resample the cloud products to a spatial resolution of 5 km. The temporal resolution of atmosphere products is generally two daytime observations every day, while that of MCD43C3 is 16 day.

These products are used for two purposes. One is to evaluate a new SSR retrieval algorithm developed by the authors (Qin et al., 2015), which is driven by MODIS atmospheric and land products. The inputs of this algorithm are MODIS products of precipitable water, aerosol loading, ozone thickness, surface pressure, effective particle radius of water/ice cloud, liquid/ice water path, cloud fraction, and ground surface albedo. The other is to build mathematical relationships between MODIS cloud products (effective particle radius and liquid/ice water path) and MTSAT signals through ANN training, and then the cloud properties are estimated from MTSAT signals by this ANN model. To reduce the uncertainty of the ANN model,
we only select high-quality MODIS data for the training.

2.3. SSR Measurement Data

Three types of surface radiation observation data are used to validate SSR retrievals in this study. The first one is the ground measurements data collected at 44 Baseline Surface Radiation Network (BSRN) stations located in contrasting climatic zones (see the Red Cross marks in Figure 1). Radiation observations at BSRN are conducted with instruments of the highest available quality, and are recognized as the most reliable data. Their temporal resolutions are 1 or 3 minutes. The measured SSR are averaged over one hour centered on the satellite overpass. The second one is the \textit{in-situ} data collected at three experimental stations located in Haihe River Basin, China. Figure 1 shows the spatial distribution of the experimental stations, which are marked by the blue cross symbols, and the basic information on the three stations are given in Table 2. The radiation data were sampled at every 1 or 2 s and the average values of each 10 or 30 min were recorded. The detailed information about the observations is available in Liu et al. (2013). The third one is the daily SSR data at China Meteorological Administration (CMA) radiation stations. Figure 1 shows the geographical distribution of these radiation stations denoted by circles throughout China. The elevations of these stations vary from 1 to 4507 m. A set of quality-check procedures has been applied to these data (Tang et al., 2010).

3 SSR Retrieval Scheme

The SSR retrieval scheme includes three key steps, as presented in Figure 2.
First, the clear-sky and cloudy conditions of the MTSAT data are flagged by cloud
detection in the image preprocessing procedure (Section 3.1), and the cloudy pixels
are divided into water cloud and ice cloud. Second, cloud parameters (effective
particle radius and liquid/ice water path) are derived by ANN models (Section 3.2)
built by all MTSAT channels signals and the MODIS level-2 cloud products. Third,
the hourly SSR is estimated by a physical retrieval algorithm (Section 3.3), given the
above derived cloud parameters and other inputs. Daily SSR values are obtained by
integrating hourly SSR values. The following three sub-sections describe the details
of each step.

3.1 Cloud Detection

Because of limitations of traditional cloud detection methods (e.g. threshold
approaches and statistical approaches) (Liu et al. 2009), an ANN method is trained
with the Levenberg-Marquardt optimization algorithm to detect clouds. Similar to
MODIS cloud mask, three classes (water cloud, ice cloud and clear land or sea) are
defined. The ANN contains three layers: input layer, output layer and one hidden
layer between them. The input layer has nine parameters, which are five MTSAT
channel signals, three angles information (the cosines of satellite viewing zenith
angle, solar zenith angle and the relative azimuth angle between the sun and the
satellite), and pixel’s elevation. The hidden layer contains 20 neurons with
hyperbolic tangent sigmoid transfer function as the transfer function. In the output
layer, three neurons with linear transfer function are utilized to denote the cloud
detection results.
In the training, we select high-quality MODIS cloud mask data as the “truth” of the output, and the MTSAT signals as input. To enhance the possibility of distinguishing clouds from snow, we also randomly choose clear-sky pixels above snow surface and cloud-sky pixels above snow surface through visual identification. Finally, the trained ANN is used to detect clouds, and the result is one of clear sky, water cloud and ice cloud.

One may question that the trained ANN may lose representativeness for cases that solar zenith angles are large (e.g., the hours around sunrise and sunset), because the overpass times of Terra-MODIS and Aqua-MODIS roughly are 10:30 and 13:30, around which the solar zenith angles are relatively small. To alleviate this issue, a large number of data points are selected in this study to train the ANN. These data points cover most of China and span all four seasons. We have checked the training data and found that the values of solar zenith angle vary from about 7.1° to 78.3°. This range of solar zenith angle is sufficiently wide except for extreme cases such as the hours around sunrise and sunset, but the value of SSR is very small in the extreme cases. Also, it should be noted that the angle information is not the determinative factor in cloud detection.

3.2 Cloud Parameter Estimation

Similar to Section 3.1, another ANN model is used to estimate cloud parameters (effective particle radius and liquid/ice water path) from MTSAT image. Again, the ANN model is trained with high-quality MODIS cloud products as “truth” of the output and MTSAT signals as input. The MODIS cloud products are randomly
selected, and split into two parts: one for training and other for independent validation. Comparison between the two parts indicates that the trained ANNs behave similar to each other. To improve the generalization of the ANN model, we use all the data to train the ANN.

After all the data are used to train the ANN, Figures 3 and 4 show the cloud parameters (effective particle radius and liquid/ice water path) comparisons between the MODIS “true values” and the estimated ones by ANNs for water cloud and ice cloud, respectively. It can be seen that the estimated effective particle radius for both water cloud and ice cloud are generally comparable to the observed ones, and their correlation coefficients are both greater than 0.60. The estimated liquid/ice water path for both water cloud and ice cloud are generally consistent with the observed ones, and their correlation coefficients are both greater than 0.70. The performance of the trained ANNs for both water cloud and ice cloud at other pixels, which are not used to build the ANNs, behaves similar as to the ones in Figures 3 and 4 (not shown here). Therefore, the built ANNs can catch the functional relationships between the MODIS cloud parameters and MTSAT signals. Based on the ANNs, the cloud parameters can be efficiently derived from MTSAT data for the estimation of high spatio-temporal resolution SSR.

To further investigate the effect of errors in cloud parameters estimates on the accuracy of the SSR retrieval algorithm, a sensitivity test of the SSR retrieval algorithm to cloud parameters (effective particle radius and liquid/ice water path) is presented in Figure 5. The condition used for the sensitivity test is specified as a
mid-latitude atmosphere with: solar zenith angle of 60 degree, surface elevation of 0.0 km, precipitable water of 0.14 cm, total zone amount of 0.25 cm, surface albedo of 0.2 and Ångström turbidity coefficient of 0.1. We estimated the sensitivity of SSR retrieval to estimation errors in both liquid/ice water path and effective particle radius. As shown in Figure 3 and Figure 4, the estimated mean effective particle radius within one standard deviation (1σ) correspond to the ranges of about 8-12 μm and 22-30 μm for water cloud and ice cloud, which would lead to SSR changing about 25 W m⁻² and 15 W m⁻² as seen from Figure 5, respectively. The estimated mean cloud liquid/ice water path within 1σ correspond to the ranges of about 45-185 g m⁻², 80-240 g m⁻², which would lead to SSR changing about 154 W m⁻² and 172 W m⁻², respectively. Obviously, errors in SSR caused by the cloud liquid/ice water path estimation errors are much greater than the ones caused by cloud effective particle estimation errors.

3.3 SSR Retrieval Algorithm

The SSR retrieval algorithm used in this study is developed by Qin et al. (2015). This algorithm is mainly based on the cloud parameterization developed by Chou et al. (1999) and a clear-sky broadband radiative transfer model developed by Yang et al. (2006). The detailed description of cloud parameterization and the SSR parameterization are presented in Appendix A1 and A2, respectively.

In order to estimate the SSR, the retrieval algorithm needs to input cloud parameters, surface elevation, the precipitable water (PW), the thickness of ozone layer, the Ångström turbidity coefficient, and surface albedo. Qin et al. (2015) drove the algorithm with MODIS level-2 atmospheric and land products and validated the
instantaneous SSR at nine stations. The mean Root Mean Square Error (RMSE) is about 100 W m$^{-2}$. To further test the performance of the algorithm globally, we validated the instantaneous SSR estimated with MODIS products at 44 BSRN stations in 2009. Figure 6 presents validation results. The mean RMSEs for Terra and Aqua are about 101 W m$^{-2}$ and 106 W m$^{-2}$, which may indicate that this algorithm can effectively retrieve SSR based on MODIS products globally. Therefore, we may expect to apply the algorithm on the geostationary satellite.

The key of applying the SSR retrieval algorithm on geostationary satellite is the acquisition of input parameters. The cloud parameters can be derived efficiently by the ANNs in sub-section 3.2. The influence of the PW on the SSR is significant for the cloud-free conditions. Therefore, the PW here is derived by the split-window algorithm of Chesters et al., (1987) under cloud-free conditions as adopted by Tanahashi et al., (2001) and Lu et al., (2010). However, the PW for cloudy conditions is set at 2.9 g/cm2, as defined in the standard atmospheric profile of the mid-latitude summer model, since the cloud effects on the SSR is dominant. The Ångström turbidity coefficient is produced by the GADS (Global Aerosol Data Set 2.2a; see Koepke et al., 1997 and Hess et al., 1998) model. The thickness of ozone layer is obtained from TOMS (Total Ozone Mapping Spectrometer) zonal means provided by NASA/GSFC Ozone Processing Team (see https://ozoneaq.gsfc.nasa.gov/data/toms/). The surface elevation data are from the near-global elevation model Shuttle Radar Topography Mission (SRTM) 30 data set and have been averaged to the 0.05° latitude-longitude grids of the MTSAT imagery.
The surface albedo data are from the MODIS MCD43A3 16 day albedo.

4 Results and Discussions

As mentioned above, SSR measurements at three experimental stations over Haihe River Basin and 90 CMA radiation stations in 2009 are used to evaluate the accuracy of the hourly, daily and monthly SSR retrieval from collocated satellite pixels, respectively. The performance of the SSR estimate is evaluated using three metrics: mean bias error (MBE, in W m\(^{-2}\)), RMSE, (in W m\(^{-2}\)), and correlation coefficient (R).

4.1 Validation of Hourly SSR in Haihe River Basin

Pinker et al. (2003) pointed out that an hourly interval is suitable for evaluating satellite instantaneous SSR retrievals due to the dependence on the average speed of cloud movement. Furthermore, Deneke et al. (2009) demonstrated that the observed SSR averaging over a period of 40-80 min is optimal for a comparison with satellite retrievals. Therefore, here we adopt hourly SSR observations, centered on the time of the satellite overpass on the hour, to evaluate the satellite-derived hourly values. Figures 7(a)-(c) show the validation results of the hourly SSR estimates in 2009 at the three experimental stations (Miyun, Daxing, and Guantao) in Haihe River Basin. The average RMSE on an hourly timescale for these three stations is 98.5 W m\(^{-2}\) (28.9%) and the corresponding MBE is 12.0 W m\(^{-2}\) (3.5%). The overall positive MBE indicates overestimation of the hourly SSR retrievals with MTSAT data at the three stations. The lack of three-dimensional radiative effects in the SSR retrieval...
algorithm and the appearance of broken clouds are the potential reasons for the hourly SSR bias (Deneke et al., 2008). Another reason for the discrepancies may be attributed to the different amounts of cloud in the different illumination and viewing paths when comparing the satellite retrievals with the ground measurements (Liang et al., 2006). In addition, it might be caused by the retrieval algorithm error.

In a word, although the retrievals in Haihe River Basin have slight biases toward overestimating the hourly SSR values, the results still indicate acceptable agreement between satellite retrievals and ground observations at the hourly time scale.

4.2 Validation of Daily and Monthly SSR at CMA

Figure 8 shows the validation results for the daily and monthly mean SSR estimates at all CMA radiation stations, respectively. The daily and monthly mean SSR estimates show high correlation with the ground SSR measurements, with correlation coefficients of 0.93 and 0.95, respectively. Both the daily and monthly mean SSR estimates exhibit a positive mean bias of 9.8 W m$^{-2}$ (or 5.4%) and RMSE of 34.2 W m$^{-2}$ (or 19.1%) on daily scale, 22.1 W m$^{-2}$ (or 12.3%) on monthly scale. These RMSE values are comparable to the results of Kawai and Kawamura (2005) with 19.5% daily RMSE, those of Lu et al. (2010) with 17.7% daily RMSE, and the results of Lu et al. (2011) with 20.4% daily RMSE and 11.4% monthly RMSE. Moreover, the daily mean RMSE of our study is obviously lower than that of Jia et al. (2013), which estimates SSR with FY-2C and their daily mean RMSE over China is about 49.3 W m$^{-2}$ (or 27.5%). These results suggest that our SSR estimation with
MTSAT data works well for various climate regions, land cover types and elevations. The differences between satellite-derived estimates and ground observations may be attributed to calibration uncertainty of the satellite sensor, the cloud detection error, uncertainty in the retrieval algorithm, errors in ground observations, and the representativeness of the station data. The representativeness of the station data is crucial for evaluating the satellite-derived estimates. For example, the Ermeishan station (No. 56385) of CMA was deployed at the top of Emei Mountain, which cannot well represent the corresponding pixel of MTSAT. The mean elevation of the pixel is 1005 m, while the station’s elevation is 3047 m.

The spatial distribution of MBE and RMSE for daily and monthly mean SSR estimates at all the CMA radiation stations are presented in Figure 9, respectively. Most of daily and monthly mean MBE values are positive and less than 30 W m$^{-2}$. The large positive MBE mainly located in the southern China, in which the corresponding RMSE values are relatively large. This phenomenon can be easily explained. Because southern China (20°-35°N, 103°-120°E) is the largest cloudy subtropical continental region (Yu et al. 2001), which was also confirmed by Li et al. (2004) based on multi-year ISCCP data and surface cloud observations. When cloud distribution become more complicated, the accuracy of cloud parameters estimates (see section 3.3) would decrease, and leads to larger error in SSR retrieval. However, most of the RMSEs are less than 40 W m$^{-2}$ for daily SSR and less than 30 W m$^{-2}$ for monthly mean SSR, indicating the retrieval algorithm had relatively reliable estimation performance at individual observation station.
4.3 Comparisons with Other SSR Estimates

Two satellite SSR products are selected to compare with the SSR estimate in this study. One is the Global Land Surface Satellite (GLASS) SSR products, which were also retrieved from MTSAT data by look-up table method (Zhang et al. 2014). The GLASS SSR algorithm is similar to the photosynthetically active radiation (PAR) retrieval algorithm of Liang et al. (2006). The other is the ISCCP-FD SSR products, which were produced by a NASA Goddard Institute for Space Studies (GISS) radiative transfer model based on the ISCCP D1 data at 2.5° spatial resolution and 3-hour temporal resolution (Zhang et al., 2004). It may incur large errors to validate ISCCP-FD SSR products by using instantaneous in situ measurements because its spatial resolution is rather coarse (about 280 km). However, at daily time scale, the spatial sampling errors become small (Li et al., 2005). Thus, we compare our SSR estimates with GLASS and ISCCP-FD product at a daily time scale. Figure 10 shows the performance comparisons between our SSR estimates and the two satellites SSR products on a daily time scale at all CMA radiation stations except the Ermeishan station during 2009. The number of daily validation data here is less than the one in Figure 7(a) due to some missing values in the GLASS products at some points, which are excluded from comparison. As shown in the Figure 10, the ISCCP-FD SSR retrievals perform slightly worse than the ones of our algorithm and the GLASS in terms of RMSE and R. The RMSE of our algorithm is comparable to the one of GLASS, though the MBE of our algorithm is larger than the one of GLASS. The GLASS produces smaller scattering than our algorithm, while it underestimates the
SSR at peak values and overestimates the SSR at low values. This would be due to the coarse spectral resolution of geostationary satellites (MTSAT), which cannot work well in the extreme conditions (namely, extremely low value and high value). Another feature is that our algorithm generally overestimates the SSR, with mean MBE of 9.4 W m$^{-2}$. This phenomenon may be attributed to the general underestimations of liquid water path and ice water path, which can be seen in Figures 3 and 4. We suspect that the general underestimations of liquid water path and ice water path in Figures 3 and 4 would also stem from the coarse spectral resolution of MTSAT. However, the linear fitting curve of our estimate is closer to the 1:1 line than the ones of the GLASS and the ISCCP-FD. This demonstrates that our algorithm can produce a comparable or even higher accuracy than the GLASS and the ISCCP-FD products.

4.4 Applications in China

Based on the above SSR retrieval scheme and MTSAT data, we derive an eight-year high spatio-temporal resolution SSR dataset (hourly, 5 km) over China from 2007 to 2014. This dataset is significantly important for the regions where few ground-based measurements are available, such as the Tibetan Plateau. Figure 11 shows the monthly-mean SSR images for 12 months in 2009 over the mainland China. As seen, these 12 images thoroughly exhibit the spatial-temporal patterns of SSR over the mainland China. The spatial distribution characteristics of Figure 11 are consistent with the result of Tang et al. (2013), which was derived based on the SSR estimations at 716 CMA stations. The SSR values are the highest in summer and lowest in winter, spring and autumn are in the midst. The formation of this
phenomenon is primarily controlled by sun elevation and the annual cycle of day length. In addition, some interesting regional characteristics can be found. The maximum radiation appears over the Tibetan Plateau, where the average elevation is more than 4 km and thus radiation extinction is small. The minimum radiation is over southwestern China (Sichuan Basin and Guizhou), where are often covered by stratiform clouds. Meanwhile, both the two extreme values lie on the belt between 25°N and 35°N. SSR generally increases from east to west except for southwestern China, and decreases with increasing latitude in the western China. There is no doubt that the sparse ground-based observations could not distinguish such regional differences in SSR distribution. The eight-year SSR dataset will be released after the publication of this article.

5 Conclusions and Remarks

To obtain high-resolution SSR data, this study developed an ANN-based algorithm to estimate cloud parameters (cloud mask, effective particle radius and liquid/ice water path) from MTSAT imagery. The algorithm was built by the combination of MODIS cloud products and MTSAT data. The estimated cloud parameters and other information (such as aerosol, ozone, PW and so on) were put into a parameterization model to estimate SSR. The estimated SSR was validated against both experimental data and operational station data in China, with RMSE of 98.5 W m⁻² for hourly SSR, 34.2 W m⁻² for daily SSR and 22.1 W m⁻² for monthly SSR, and MBE of about 10 W m⁻².
Compared with two satellite radiation products (GLASS and ISCCP-FD), the SSR estimate presented in this study has a comparable accuracy in terms of RMSE. The GLASS underestimates the peak values of SSR while overestimates the low values. Our algorithm generally overestimates the SSR, which might be attributed to the underestimation of the cloud water path. The combining of CLOUDSAT and MTSAT in the future may be an alternative method to further improve the accuracy of cloud parameters, because the CLOUDSAT has more advantage in retrieving cloud parameters than MODIS.

Appendix A

A.1 Cloud Parameterization

The cloud parameterization schemes of Chou et al. (1999) are actually parameterization of three key parameters, which are optical thickness, single-scattering co-albedo and asymmetry factor, for ice/water cloud at 11 individual broad spectral bands, respectively. They are expressed as:

\[\delta = CWP(a_0 + a_1 r_e) , \]

\[1 - \omega = b_0 + b_1 r_e + b_2 r_e^2 , \]

\[g = c_0 + c_1 r_e + c_2 r_e^2 , \]

where \(a, b, \) and \(c \) are regression coefficients and theirs values are given in Chou et al. (1999). \(r_e \) is the effective particle radius for ice/water cloud, and \(CWP \) is the cloud ice/water path. Taking the ratio of the extraterrestrial solar radiation of each band to that of the total spectrum for weight, thus the single-scattering properties for
ice/water cloud at shortwave broadband can be derived, respectively.

\[
\overline{\delta} = -\log \left(\frac{\sum_{i=1}^{11} S_{0i} * e^{(-\delta_i)}}{\sum_{i=1}^{11} S_{0i}} \right), \quad (A4)
\]

\[
\overline{\omega} = -\log \left(\frac{\sum_{i=1}^{11} S_{0i} * e^{(-\delta_i * \omega_i)}}{\sum_{i=1}^{11} S_{0i}} \right) / \overline{\delta}, \quad (A5)
\]

\[
\overline{g} = -\log \left(\frac{\sum_{i=1}^{11} S_{0i} * e^{(-\delta_i * g_i)}}{\sum_{i=1}^{11} S_{0i}} \right) / (\overline{\delta} * \overline{\omega}), \quad (A6)
\]

where \(\delta_i\), \(\omega_i\) and \(g_i\) are the single-scattering properties for ice/water cloud at each band, \(S_{0i}\) is the extraterrestrial solar radiation of each band.

Therefore, if the values of \(CWP\) and \(re\) were known, the single-scattering properties at shortwave broadband can be determined. Furthermore, the transmittance due to water cloud attenuation (\(\overline{\tau}_{wc}\)) and ice cloud attenuation (\(\overline{\tau}_{ic}\)) can be obtained as follow,

\[
\overline{\tau}_{wc} = e^{(-\overline{\delta} / \mu_0)}, \quad (A7)
\]

\[
\overline{\tau}_{ic} = e^{(-\overline{\delta} / \mu_0)}, \quad (A8)
\]

where \(\mu_0\) is the cosine of solar zenith angle. \(\overline{\tau}_{wc}\) and \(\overline{\tau}_{ic}\) can be divided into processes of scattering and absorption, respectively.

\[
\overline{\tau}_{wc} = \overline{\tau}_{wca} \overline{\tau}_{wcs}, \quad (A9)
\]

\[
\overline{\tau}_{ic} = \overline{\tau}_{ica} \overline{\tau}_{ics}, \quad (A10)
\]

where \(\overline{\tau}_{wca}\) and \(\overline{\tau}_{wcs}\) are transmittances due to water cloud absorption and
scattering, respectively; $\bar{\tau}_{ics}$ and $\bar{\tau}_{ics}$ are transmittances due to ice cloud absorption and scattering, respectively.

A.2 SSR Parameterization

SSR under cloudy sky conditions can be given by the following equation, if not taking into account the multiple reflections between the ground and atmosphere,

$$R_{sw,cl} = R_0 (\bar{\tau}_b + \bar{\tau}_d), \quad (A11)$$

where R_0 is solar radiation on a horizontal surface at the top of atmosphere, $\bar{\tau}_b$ and $\bar{\tau}_d$ are the broadband direct radiative transmittance and the diffuse radiative transmittance, which are given by,

$$\bar{\tau}_b \approx \bar{\tau}_a \bar{\tau}_c \bar{\tau}_c \bar{\tau}_w \bar{\tau}_c \bar{\tau}_a \bar{\tau}_c, \quad (A12)$$

$$\bar{\tau}_d = \bar{\tau}_{d1} + \bar{\tau}_{d2} + \bar{\tau}_{d3}, \quad (A13)$$

where $\bar{\tau}_r$, $\bar{\tau}_a$, $\bar{\tau}_c$, $\bar{\tau}_w$, $\bar{\tau}_g$ and $\bar{\tau}_c$ are, respectively, solar radiation transmittances of six damping processes in the atmospheric layer, viz. Rayleigh scattering, aerosol extinction, ozone absorption, water vapor absorption, permanent gases absorption and cloud extinction. $\bar{\tau}_a$ is divided into processes of scattering and absorption.

$$\bar{\tau}_a = \bar{\tau}_{an} \bar{\tau}_{as}, \quad (A14)$$

where $\bar{\tau}_{an}$ and $\bar{\tau}_{as}$ are transmittances due to the aerosol absorption and scattering, respectively. The detailed calculation of $\bar{\tau}_r$, $\bar{\tau}_a$, $\bar{\tau}_c$, $\bar{\tau}_w$ and $\bar{\tau}_g$ can be found in Yang et al. (2006). $\bar{\tau}_c$ can be calculated according the above cloud parameterization scheme.

32
\[\tau_{d1}, \tau_{d2} \text{ and } \tau_{d3} \text{ are forward diffuse radiative transmittances due to Rayleigh } \]

scattering, aerosol scattering, cloud scattering, and are given by,

\[\tau_{d1} \approx 0.5 \tau_{ox} \tau_g \tau_v \tau_{as} \tau_{wca} (1 - \tau_r) \text{ for water cloud,} \quad (A15a) \]

\[\tau_{d1} \approx 0.5 \tau_{ox} \tau_g \tau_v \tau_{as} \tau_{ica} (1 - \tau_r) \text{ for ice cloud,} \quad (A15b) \]

\[\tau_{d2} \approx f_a(\mu_0) \tau_{ox} \tau_g \tau_v \tau_{as} \tau_{wca} \tau_r (1 - \tau_{as}) \text{ for water cloud,} \quad (A16a) \]

\[\tau_{d2} \approx f_a(\mu_0) \tau_{ox} \tau_g \tau_v \tau_{as} \tau_{ica} \tau_r (1 - \tau_{as}) \text{ for ice cloud,} \quad (A16b) \]

\[\tau_{d3} \approx f_w(\mu_0) \tau_{ox} \tau_g \tau_v \tau_{as} \tau_{wca} \tau_r (1 - \tau_{wca}) \text{ for water cloud,} \quad (A17a) \]

\[\tau_{d3} \approx f_i(\mu_0) \tau_{ox} \tau_g \tau_v \tau_{as} \tau_{ica} \tau_r (1 - \tau_{ica}) \text{ for ice cloud,} \quad (A17b) \]

where 0.5 is the fraction of the Rayleigh-scattered flux which is scattered into the downward hemisphere (another 0.5 is scattered upward). \(f_a(\mu_0) \) is the fraction of the aerosol-scattered flux which is scattered into the downward hemisphere \((1 - f_a(\mu_0)) \text{ is scattered upward})\), \(f_w(\mu_0) \) is the fraction of the water cloud-scattered flux which is scattered into the downward hemisphere \((1 - f_w(\mu_0)) \text{ is scattered upward})\), \(f_i(\mu_0) \) is the fraction of the ice cloud-scattered flux which is scattered into the downward hemisphere \((1 - f_i(\mu_0)) \text{ is scattered upward})\). The factors \(f_a(\mu_0) \), \(f_w(\mu_0) \) and \(f_i(\mu_0) \), which depend on cosine of the solar zenith angle \((\mu_0)\) and the asymmetry factor \((g)\) and can be derived by integration of scattering phase function, are given according to parameterization of P.raisänen (2002) by,

\[f_a(\mu_0) = 0.4482 + (5.3664 - 22.1608t + 28.6995t^2 - 11.1348t^3)(-\frac{g_a}{g_a + 1}), \quad (A18a) \]

\[f_w(\mu_0) = 0.3312 + 1.1285(\mu_0^{0.7469})(\frac{g_w}{g_w + 1}), \quad (A18b) \]
\[f'(\mu_0) = 0.4250 + 0.9595(\mu_0^{0.8484})(\frac{g'}{g'}+1), \]
(A18c)

\[t = (\mu_0 + 0.1)^{0.25}, \]
(A19)

where, \(g_a \), \(g_w \) and \(g_i \) are the asymmetry factors of aerosol, water cloud, and ice cloud, respectively. The asymmetry factors of water cloud and ice cloud can be calculated according the above cloud parameterization. While the asymmetry factors and single-scattering albedo of the aerosol are interpolated from the observed ones at all the AERosol RObotic NETwork (AERONET) sites (Dubovik and King, 2000).

Considering the multiple reflections between the ground and atmosphere, The SSR can be given by,

\[R_{sw} = \frac{(1 - C_x - C_i)R_{sw,clr} + C_x R_{sw,wc} + C_i R_{sw,ic}}{(1 - \rho_{a,all}\rho_g)}, \]
(A20)

where \(R_{sw} \) is SSR, \(C_x \) and \(C_i \) are water cloud cover and ice cloud cover, respectively. \(R_{sw,clr} \), \(R_{sw,wc} \) and \(R_{sw,ic} \) are SSR under clear-sky, water cloudy sky and ice cloudy sky, respectively. \(R_{sw,clr} \) can be derived from equations (11-17) when \(\bar{\tau}_c \), \(\bar{\tau}_{wca} \), \(\bar{\tau}_{ica} \), \(\bar{\tau}_{wca} \) and \(\bar{\tau}_{ica} \) are all equal to 1. \(\rho_{a,all} \) and \(\rho_g \) are albedos of atmospheric and ground, respectively. \(\rho_{a,all} \) can be determined by,

\[\rho_{a,all} = (1-C_w - C_i)\rho_{a,clr} + C_w \rho_{a,wc} + C_i \rho_{a,ic}, \]
(A21)

where \(\rho_{a,clr} \), \(\rho_{a,wc} \) and \(\rho_{a,ic} \) are albedos of atmospheric under clear sky, water cloudy sky and ice cloudy sky, respectively. They are given by

\[\rho_{a,clr} \approx \bar{\tau}_g \bar{\tau}_w \bar{\tau}_{oz} \bar{\tau}_{na} \{0.5(1 - \bar{\tau}_r^2) + [1 - f'_g(1 / \sqrt{3})\bar{\tau}_r^2 (1 - \bar{\tau}_{as}^2)]\} \]
(A22a)
\[
\rho_{\text{w*c}} \approx \tau_g \tau_w \tau_{oz} \tau_{aa} \tau_{wca} (0.5(1 - \overline{r}_r) + [1 - f_g(1/\sqrt{3}) \overline{F}_r (1 - \overline{r}_{as})] + [1 - f_w(1/\sqrt{3}) \overline{F}_r \tau_{as} (1 - \overline{r}_{wca}))
\]
for water cloud, \hspace{1cm} (A22b)

\[
\rho_{\text{a*c}} \approx \tau_g \tau_w \tau_{oz} \tau_{aa} \tau_{ica} (0.5(1 - \overline{r}_r) + [1 - f_g(1/\sqrt{3}) \overline{F}_r (1 - \overline{r}_{as})] + [1 - f_w(1/\sqrt{3}) \overline{F}_r \tau_{as} (1 - \overline{r}_{ica}))
\]
for ice cloud, \hspace{1cm} (A22c)

where the transmissivities \(\tau_g, \tau_w, \tau_{oz}, \tau_{aa}, \tau_{wca}, \tau_{ica}, \tau_{wca}, \tau_{ica}, \tau_{wca}, \tau_{ica}, \tau_{wca}, \tau_{ica}, \tau_{wca}, \tau_{ica}, \tau_{wca}, \tau_{ica} \) and \(\tau_{ica} \) are all evaluated at an effective relative air mass of \(\sqrt{3} \) to account for absorption or reflectance over path lengths averaged over the whole upward hemisphere.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 41301359), "Strategic Priority Research Program (B)" of the Chinese Academy of Sciences (Grant No. XDB03030306), National Natural Science Foundation of China (Grant No. 41190083; 41325019), Open Fund from the State Key Laboratory of Remote Sensing Science (grant OFSLRSS201303) that is cosponsored by the Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences and Beijing Normal University. CMA radiation data were obtained from the National Meteorological Information Center. MTSAT data is available via the website (http://weather.is.kochi-u.ac.jp/sat/GAME/). MODIS data is available via the website (http://reverb.echo.nasa.gov/reverb/). BSRN radiation data is available via the website (http://www.bsrn.awi.de). GLASS radiation data is available via the website (http://glass-product.bnu.edu.cn/). ISCCP-FD radiation data is available via the website (http://isccp.giss.nasa.gov).
References

Dubovik, O. and King M. D.: A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements, J. Geophys.

Liu Y., Xia J., Shi C.-X., Hong Y.: An Improved Cloud Classification Algorithm for

Oliver M, Jackson T.: Energy and economic evaluation of building-integrated

Figure captions

Figure 1 Spatial distribution of ground stations used for SSR retrieval validation. The Red Cross marks illustrate the 44 BSRN stations, the Blue Cross marks denote three experimental stations over Haihe River Basin in China, and the Circle marks represent the 90 CMA radiation stations.

Figure 2 Flowchart of the SSR retrieval algorithm.

Figure 3 Comparisons of water Cloud parameters between the MODIS “true values” and the estimated ones by ANN for (a) effective particle radius and (b) liquid water path.

Figure 4 Same as Figure 3, but for ice cloud.

Figure 5 (a) Sensitivity of SSR to cloud liquid/ice water path, given the effective particle radius for water cloud and ice cloud to be 12 μm and 30 μm, respectively; (b) Sensitivity of SSR to cloud effective particle radius for water cloud and ice cloud, given liquid/ice water path to be 80 g m⁻².

Figure 6 Validation of instantaneous SSR estimated with the MODIS atmospheric and land products against the observed ones at 44 BSRN stations in 2009 for (a) Terra and (b) Aqua platforms. Unit of MBE and RMSE is W m⁻².

Figure 7 Comparison between the observed and the estimated hourly SSR at three experimental stations over Haihe River Basin in 2009. Unit of MBE and RMSE is W m⁻².

Figure 8 (a) Comparison between the observed and the estimated daily SSR at all CMA radiation stations in 2009. (b) Similar to panel (a), but for monthly
SSR. Unit of MBE and RMSE is $W \text{ m}^{-2}$.

Figure 9 Spatial distributions of MBE and RMSE for daily and monthly SSR estimates at all CMA radiation stations in 2009, respectively. The size of the circles is corresponding to the MBE and RMSE values. The solid circle means that the MBE is greater than zero, and the open circle means that the MBE is less than zero. The units of RMSE and MBE described on the legend are in $W \text{ m}^{-2}$.

Figure 10 Comparison between the observed and the estimated daily SSR at all CMA radiation stations in 2009 for (a) This study, (b) The GLASS and (c) ISCCP-FD. Unit of MBE and RMSE is $W \text{ m}^{-2}$.

Figure 11 SSR estimates for 12 months in 2009 over the mainland China. The unit of the SSR is $W \text{ m}^{-2}$, and the pixel size is about 5 km.
Figure 1 Spatial distribution of ground stations used for SSR retrieval validation. The Red Cross marks illustrate the 44 BSRN stations, the Blue Cross marks denote three experimental stations over Haihe River Basin in China, and the Circle marks represent the 90 CMA radiation stations.
Figure 2 Flowchart of the SSR retrieval algorithm.
Figure 3 Comparisons of water cloud parameters between the MODIS “true values” and the estimated ones by ANN for (a) effective particle radius and (b) liquid water path.
Figure 4 Same as Figure 3, but for ice cloud.
Figure 5 (a) Sensitivity of SSR to cloud liquid/ice water path, given the effective particle radius for water cloud and ice cloud to be 12 μm and 30 μm, respectively; (b) Sensitivity of SSR to cloud effective particle radius for water cloud and ice cloud, given liquid/ice water path to be 80 g m⁻².
Figure 6 Validation of instantaneous SSR estimated with the MODIS atmospheric and land products against the observed ones at 44 BSRN stations in 2009 for (a) Terra and (b) Aqua platforms. Unit of MBE and RMSE is W m$^{-2}$.
Figure 7 Comparison between the observed and the estimated hourly SSR at three experimental stations over Haihe River Basin in 2009. Unit of MBE and RMSE is W m$^{-2}$. Points outside 3-std were removed (about 1.88%).
Figure 8 (a) Comparison between the observed and the estimated daily SSR at all CMA radiation stations in 2009; (b) Similar to panel (a), but for monthly SSR. Unit of MBE and RMSE is W m$^{-2}$.
Figure 9 Spatial distributions of MBE and RMSE for daily and monthly SSR estimates at all CMA radiation stations in 2009, respectively. The size of the circles is corresponding to the MBE and RMSE values. The solid circle means that the MBE is greater than zero, and the open circle means that the MBE is less than zero. The units of RMSE and MBE described on the legend are in W m$^{-2}$.
Figure 10 Comparison between the observed and the estimated daily SSR at all CMA radiation stations in 2009 for (a) This study, (b) The GLASS and (c) ISCCP-FD. Unit of MBE and RMSE is W m\(^{-2}\).
Figure 11 SSR estimates for 12 months in 2009 over the mainland China. The unit of the SSR is W m$^{-2}$, and the pixel size is about 5 km.
Table 1 Characteristics of MTSAT bands used in this study.

<table>
<thead>
<tr>
<th>Channel</th>
<th>Band Wavelength (μm)</th>
<th>Resolution at nadir (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIS</td>
<td>0.55-0.90</td>
<td>1.0 × 1.0</td>
</tr>
<tr>
<td>IR-1</td>
<td>10.3-11.3</td>
<td>4.0 × 4.0</td>
</tr>
<tr>
<td>IR-2</td>
<td>11.5-12.5</td>
<td>4.0 × 4.0</td>
</tr>
<tr>
<td>IR-3</td>
<td>6.5-7.0</td>
<td>4.0 × 4.0</td>
</tr>
<tr>
<td>IR-4</td>
<td>3.5-4.0</td>
<td>4.0 × 4.0</td>
</tr>
</tbody>
</table>
Table 2 The basic information of three experimental stations over Haihe River Basin.

<table>
<thead>
<tr>
<th>Station Name</th>
<th>Latitude (°N)</th>
<th>Longitude (°E)</th>
<th>Altitude (m)</th>
<th>Instrument height (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miyun</td>
<td>40.6</td>
<td>117.3</td>
<td>350</td>
<td>30.8</td>
</tr>
<tr>
<td>Daxing</td>
<td>39.6</td>
<td>116.4</td>
<td>20</td>
<td>28.0</td>
</tr>
<tr>
<td>Guantao</td>
<td>36.5</td>
<td>115.1</td>
<td>30</td>
<td>15.7</td>
</tr>
</tbody>
</table>