Quantification of black carbon mixing state from traffic: implications for aerosol optical properties

M. D. Willis¹, R. M. Healy²,³,a, N. Riemer⁴, M. West⁵, J. M. Wang², C.-H. Jeong², J. C. Wenger³, G. J. Evans², J. P. D. Abbatt¹, and A. K. Y. Lee¹

¹Department of Chemistry, University of Toronto, Ontario, Canada
²Southern Ontario Centre for Atmospheric Aerosol Research, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Ontario, Canada
³Department of Chemistry and Environmental Research Institute, University College Cork, Cork, Ireland
⁴Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign, Urbana, USA
⁵Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, USA

a now at: Air Monitoring and Transboundary Air Sciences Section, Environmental Monitoring and Reporting Branch, Ontario Ministry of the Environment and Climate Change, Ontario, Canada

Received: 11 November 2015 – Accepted: 16 November 2015 – Published: 27 November 2015

Correspondence to: M. D. Willis (megan.willis@mail.utoronto.ca) and A. K. Y. Lee (alexky.lee@utoronto.ca)

Published by Copernicus Publications on behalf of the European Geosciences Union.
Abstract

The climatic impacts of black carbon (BC) aerosol, an important absorber of solar radiation in the atmosphere, remain poorly constrained and are intimately related to its particle-scale physical and chemical properties. Using particle-resolved modelling informed by quantitative measurements from a soot-particle aerosol mass spectrometer, we confirm that the mixing state (the distribution of co-emitted aerosol amongst fresh BC-containing particles) at the time of emission significantly affects BC-aerosol optical properties even after a day of atmospheric processing. Both single particle and ensemble aerosol mass spectrometry observations indicate that BC near the point of emission co-exists with hydrocarbon-like organic aerosol in two distinct particle types: HOA-rich and BC-rich particles. The average mass fraction of black carbon in HOA-rich and BC-rich particles was 0.02–0.08 and 0.72–0.93, respectively. Notably, approximately 90 % of BC mass resides in BC-rich particles. This new measurement capability provides quantitative insight into the physical and chemical nature of BC-containing particles and is used to drive a particle-resolved aerosol box model. Significant differences in calculated single scattering albedo (an increase of 0.1) arise from accurate treatment of initial particle mixing state as compared to the assumption of uniform aerosol composition at the point of BC injection into the atmosphere.

1 Introduction

Incomplete combustion emits teragram quantities of black carbon (BC) aerosol to the troposphere each year, resulting in a significant warming effect on climate that may be second only to carbon dioxide (Bond et al., 2013; Ramanathan and Carmichael, 2008; Jacobson, 2001). BC influences climate directly, by absorbing solar radiation, and indirectly, by changing cloud properties and altering snow and ice melt. BC impacts on the global scale remain poorly constrained and are intimately related to its particle-scale physical and chemical properties (Bond et al., 2013). The majority of BC
emissions in North America, Europe and Latin America are derived from traffic-related sources, though the specific physical and chemical properties of BC-containing particles at emission depend greatly on the source (Bond et al., 2013). BC-containing particles are generally hydrophobic near emission and become mixed over time with hydrophilic species through condensation and coagulation (Johnson et al., 2005; Moteki et al., 2007; Moffet and Prather, 2009), with resulting impacts on particle hygroscopicity (McMeeking et al., 2011b; D. Liu et al., 2013; Laborde et al., 2013) and optical properties (Zhang et al., 2008; Cappa et al., 2012; Lack et al., 2012; Knox et al., 2009; Liu et al., 2015). Despite extensive previous work, our understanding of the role of mixing state in influencing the climate impacts of BC remains incomplete, in part because of instrumental challenges in particle characterization.

Studies assessing both the composition and amount of non-BC species in BC-containing particles are rare. A large body of evidence from urban, tunnel and engine emission studies has shown that individual combustion particles are mixtures of BC, inorganic species, metals, and hydrocarbon-like organic species at the time of emission (e.g., Johnson et al., 2005; Toner et al., 2006; Schneider et al., 2006; Tritscher et al., 2011; Chirico et al., 2010; Dallmann et al., 2014; Zhang et al., 2013; Massoli et al., 2012). Among these studies, single particle mass spectrometry has directly demonstrated mixing of BC and non-BC species in traffic-derived particles. For example, Toner et al. (2006) observed that emissions from heavy duty diesel engines were dominated by particles containing BC, organic species, calcium and phosphate, with one particle type dominated by BC and another with higher levels of organic species. In contrast, Healy et al. 2012 observed BC-dominated particles from traffic emissions in a European city. Other approaches to measure BC mixing state, including hygroscopicity and volatility differential mobility techniques, have highlighted the presence of an external mixture in terms of particle volatility with lower volatility, BC-containing aerosol being less hygroscopic (Kuwata et al., 2009; McMeeking et al., 2011a). Further, single particle soot photometer measurements of coating thickness in urban areas have shown that traffic-related BC-containing particles are largely uncoated or very thinly coated...
In addition, microscopy studies have illustrated the dominance of bare or thinly coated BC-containing particles in traffic emissions (China et al., 2014) and the occurrence of coating, embedding and compaction of BC as it is aged (Adachi et al., 2014; Adachi and Buseck, 2013). While previous work has provided valuable insight into BC mixing state, the majority of past approaches have not allowed simultaneous quantification of BC mixing state on a mass basis and chemical characterization of non-BC species.

Considerable attention has been paid to BC-containing aerosol because of the potential for short-term climate mitigation through emissions reduction (Shindell et al., 2012). Therefore, a quantitative understanding of BC mixing state is crucial for three reasons: first, to assess rates of BC processing and removal in the atmosphere; second, to assess the role that BC-containing particles play as cloud nuclei; and third, to assess direct effects on solar radiation. Aerosol optical properties are central parameters required to evaluate direct radiative forcing (DRF). One of the largest contributors to uncertainty in DRF calculations is the single scattering albedo (SSA) (McComiskey et al., 2008), defined as the ratio of aerosol scattering to total light extinction. Previous work has clearly demonstrated that calculations of aerosol optical properties depend upon assumptions about particle mixing state (e.g., Jacobson, 2000), with assumptions of uniform internal mixing producing overestimations in absorption efficiency and single scattering albedo (Zaveri et al., 2010; Matsui et al., 2013; Oshima et al., 2009). The role of BC-aerosol mixing state at emission in affecting its mixing state in the atmosphere has also been highlighted in modelling studies explicitly treating detailed aerosol micro-physical and chemical processes (e.g., Matsui et al., 2013). However, model assessments driven by quantitative measurements of aerosol mixing state remain rare.

In this work, we use a soot-particle aerosol mass spectrometer, equipped with a light-scattering module, to determine the mixing state of BC-containing particles from traffic-dominated sources in an urban environment. These measurements provide quantitative insight into the physical and chemical nature of BC-containing particles near emis-
sion, and are used to drive a particle-resolved aerosol box model to assess the effect of accurately representing BC mixing on aerosol optical properties.

2 Methods

2.1 SP-AMS measurements

A soot-particle aerosol mass spectrometer (SP-AMS, Aerodyne Research Inc., Billerica, MA, USA), equipped with a light scattering module, was deployed in two urban studies to assess the mixing state of rBC-containing particles derived from vehicle emissions (Lee et al., 2015). The first study was conducted in downtown Toronto away from major roadways (“non-roadside”), and the second was performed at ground level, near a busy road in downtown Toronto (“roadside”), to investigate fresh vehicle emissions. The SP-AMS was operated such that both rBC-containing particles and non-rBC-containing particles were detected in the non-roadside study (see Sect. S2 in the Supplement), whereas exclusively rBC-containing particles were detected in the roadside study (Lee et al., 2015; Onasch et al., 2012). The non-roadside site is described in detail in Lee et al. 2015. The roadside study took place from 31 May to 24 June 2013 at the Southern Ontario Centre for Atmospheric Aerosol Research (SOCAAR) facility in downtown Toronto, Canada, located at ground level and adjacent to a road with traffic volumes ranging from 16 000 to 25 000 vehicles day$^{-1}$ (Sabaliauskas et al., 2014).

Ambient air was sampled at 170 L min$^{-1}$ through a 10 cm (inner diameter) stainless steel tube fitted with a 2.5 µm cut-off inlet, located 15 m from the roadside at a height of 3 m a.g.l.

Details of the SP-AMS (and SP-AMS with light scattering) have been described elsewhere (Lee et al., 2015; Onasch et al., 2012). The SP-AMS detects black carbon, which evaporates at \sim 4000 K, as C$_x^+$ fragments (predominantly m/z 12, 24, 36, 48 and 60) and is referred to as refractory black carbon (rBC) (Onasch et al., 2012). We use the term “black carbon” (BC) when referring generally to the concept of “soot”-type aerosol,
while rBC is used when referring to quantities measured by the SP-AMS. In the SP-AMS, rBC and associated species are volatilized in an infrared laser beam (1064 nm) and are ionized using 70 eV electron impact ionization followed by detection in a time-of-flight mass spectrometer (ToF-MS) operated in “V-mode.” For the majority of the study the SP-AMS was operated at one-minute time resolution alternating between bulk mass spectrum (MS), particle time-of-flight (pToF) and single particle modes. The SP-AMS was operated at high-time resolution (1 Hz) in MS mode for a total of five days during the roadside study. SP-AMS data was analysed using the Igor Pro-based analysis tool PIKA (Seuper, 2010). The single particle categorization procedure and \(k \)-means clustering algorithm used to analyse the single particle data followed the description in Lee et al. (2015). Positive matrix factorization (PMF) analysis of ensemble data was performed to identify the sources of rBC and organics based on procedures described previously (Paatero and Tapper, 1994; Zhang et al., 2011; Ulbrich et al., 2009).

Without the tungsten vaporizer, direct calibrations of the ionization efficiency for \(\text{NH}_4\text{NO}_3 \) (IE\(_{\text{NO}_3}\)) are not possible. Therefore, size-selected (300 nm) Regal Black (Regal 400R Pigment, Cabot Corp.) particles were used to determine the mass based ionization efficiency of rBC (mIE\(_{r\text{BC}}\)) (Onasch et al., 2012; Willis et al., 2014). The relative ionization efficiency for rBC (RIE\(_{r\text{BC}}\) = mIE\(_{r\text{BC}}\)/mIE\(_{\text{NO}_3}\)) was 0.2 ± 0.05, as experimentally determined before removal of the tungsten vaporizer. Assuming that RIE\(_{r\text{BC}}\) is constant, IE\(_{\text{NO}_3}\) could be calculated based on known values of mIE\(_{r\text{BC}}\) and RIE\(_{r\text{BC}}\). The average mIE\(_{r\text{BC}}\) was 189±20 ions pg\(^{-1}\) in the roadside study. The calculated IE\(_{\text{NO}_3}\) was then used with recommended relative ionization efficiencies to quantify other aerosol species associated with rBC (Jimenez et al., 2003). Collection efficiency for rBC particles was determined in the roadside study using beam width probe (BWP) measurements described in (Willis et al., 2014). Ambient rBC-containing particles had an average beam width \(\sigma = 0.46 ± 0.03 \) mm, which is close to, but wider than that of 300 nm Regal Black particles \(\sigma = 0.40 ± 0.08 \) nm (Willis et al., 2014). Therefore, a collection efficiency (CE) of 0.6 was applied for absolute quantification of rBC and associated
species. A time-varying collection efficiency was not possible with BWP measurements available here; the assumption of a constant CE over periods of local and long-range transport influence in this study provided a good linear correlation with PASS absorption measurements (405 and 781 nm) and SP-AMS rBC (Healy et al., 2015, Fig. 4). Note that the CE applied will not impact calculations of \(m_f \text{rBC} \); however, there are uncertainties in the recommended RIE for organic species for the SP-AMS of up to \(\sim 50 \% \) (Lee et al., 2015; Willis et al., 2014) that can impact these calculations. SP-AMS CE and quantification are discussed in further detail in Sect. S1 in the Supplement.

2.2 Particle-resolved box model

We used the stochastic particle-resolved box model PartMC-MOSAIC (Particle Monte Carlo – Model for Simulating Aerosol Interactions and Chemistry) (Riemer et al., 2009; Zaveri et al., 2008) to quantify the importance of the observed mixing state information for the calculation of CCN and aerosol optical properties. PartMC-MOSAIC is suited for this task, as it explicitly tracks the composition of individual aerosol particles (in our case about \(10^5 \) particles) in a population of different particle types within a well-mixed computational volume. Particle emissions, dilution with the background, and Brownian coagulation are simulated stochastically with PartMC, by generating a realization of a Poisson process using weighted particles in the sense of DeVille et al. (DeVille et al., 2011) and an accelerated binned sampling strategy (Michelotti et al., 2013). Coupled to PartMC is the MOSAIC chemistry code, which simulates gas chemistry (Zaveri and Peters, 1999), particle phase thermodynamics (Zaveri et al., 2005a, b), and dynamic gas-particle mass transfer (Zaveri et al., 2008) in a deterministic manner. An important update to previous work is the sampling algorithm to assign the composition of individual particles of initial condition and particle emissions. We now allow for stochastic composition variation at each diameter, with a prescribed standard deviation around a mean value. These parameters are quantitatively derived from measurements as described in Sect. S6 in the Supplement.
The set-up of the simulations was similar to the urban plume scenarios presented in Riemer et al. (2009) and Zaveri et al. (2010). We tracked the evolution of gas phase species and aerosol particles in a Lagrangian air parcel that was advected over and beyond a large urban area. The simulation started at 06:00 local standard time (LST) and, during the advection process, primary trace gases and aerosol particles from traffic sources were emitted into the air parcel for 12 h. After 18:00 LST, the emissions stopped, and the evolution of the aerosol population was tracked for another 12 h. More details can be found in Sect. S7 in the Supplement.

From the information on per-particle composition it is straightforward to calculate per-particle properties, such as hygroscopicity (Riemer et al., 2010; Zaveri et al., 2010; Ching et al., 2012; Tian et al., 2014; Fierce et al., 2013), optical properties (Zaveri et al., 2010), and particle reactivity (Kaiser et al., 2011), and to reconstruct the properties of the entire population.

3 Results and discussion

3.1 Two classes of fresh black carbon particles

Based on single particle SP-AMS measurements and using a particle categorization procedure and clustering algorithm described in our previous work (Lee et al., 2015), two types of particles originating from vehicle exhaust are identified in both roadside and non-roadside studies (Figs. 1 and S1 in the Supplement); HOA-rich and rBC-rich particle classes. The mass spectra of HOA-rich particles (Fig. 1a) exhibit fragmentation patterns associated with hydrocarbon structures (e.g., m/z 43 (C\textsubscript{3}H\textsubscript{7}+), 57 (C\textsubscript{4}H\textsubscript{8}+), 71 (C\textsubscript{5}H\textsubscript{11}+)), and are consistent with previous aerosol mass spectrometer observations of gasoline/diesel vehicle exhaust and unburned lubricating oil (Massoli et al., 2012; Canagaratna et al., 2004; Mohr et al., 2009). The average mass fractions of rBC (mf\textsubscript{rBC}) in HOA-rich particles during the non-roadside and roadside studies are very low: 0.03 and 0.05, respectively. The narrow distribution of mf\textsubscript{rBC} (Figs. 2a and S1b in...
the Supplement) suggests that most of the HOA-rich particles are either mixed with a small amount of rBC or do not contain detectable rBC mass.

Mass spectra of rBC-rich particles are dominated by C_x^+ fragments (i.e., m/z 12, 24, 36, 48 and 60 in Fig. 1d) arising from black carbon. Smaller signals associated with HOA-like material in these particles are similar to the primary organic materials derived from diesel engine exhaust observed in laboratory studies (Sage et al., 2008). In contrast to the HOA-rich particles, Figs. 2c and S1d in the Supplement illustrate a range of m_f values in rBC-rich particles. In the non-roadside and roadside environments the average m_f values (\pm1 standard deviation) in this particle class are 0.72 (\pm0.18) and 0.86 (\pm0.14), respectively, highlighting the possibility that condensation and/or coagulation of HOA material on rBC particles might occur within a short time of emission. Assuming a “core-shell” structure, these observations demonstrate that rBC-rich particles are only very thinly coated with HOA-material, as compared to HOA-rich particles that have only very small rBC inclusions (Sect. S3, Fig. S2 in the Supplement).

3.2 Black carbon mass is dominated by black carbon rich particles

Single particle measurements provide direct insight into mixing state at an individual particle level; however, single particle detection has an inherent bias towards large particle sizes because light scattering triggers particle detection (Lee et al., 2015; Cross et al., 2009; Freutel et al., 2013; S. Liu et al., 2013). Ensemble size distributions of rBC peaked at \sim100 nm in both roadside and non-roadside studies indicating that fresh rBC-containing particles emitted from vehicle exhaust are small (Figs. 3a and S3a in the Supplement). Smaller rBC-containing particles fall below the lower size limit of single particle detection (Fig. 3b and S3b in the Supplement). Therefore, single particle observations do not necessarily quantify mixing state at the population level. To provide a complementary view of rBC mixing state we turn to ensemble measurements. Ensemble measurements better represent mixing state on a population basis compared to single particle observations, because they cover a wider range of particle size (i.e., 80–1000 nm vacuum aerodynamic diameter, d_{va}).
By measuring very close to a busy road, ensemble SP-AMS observations of rBC and organic aerosol enabled the analysis of more than one hundred vehicle exhaust plumes over the course of the roadside study (Fig. 4a and b). Positive matrix factorization (PMF) (Zhang et al., 2011; Ulbrich et al., 2009) indicates three major sources of rBC and organic aerosol in the roadside environment: transported biomass burning (BBOA), regional background (OOA), and traffic emissions comprised of two PMF factors (HOA-rich and rBC-rich factors, Fig. 4c–f). Mass spectra of all four PMF factors and a discussion of selection of the number of factors is presented in Sect. S5 in the Supplement. Not previously observed with an AMS, the HOA- and rBC-rich factors represent two types of vehicle exhaust plumes with different amounts of rBC and HOA (Fig. 1b and e). The \(m_{f\text{rBC}} \) of HOA- and rBC-rich factors are 0.16 and 0.75, respectively. High-time resolution SP-AMS measurements (Fig. 5) also demonstrated varying organic and rBC levels in vehicle plumes (Fig. 1e and f), with corresponding differences in optical properties (SSA at 405 nm) indicating that rBC-rich plumes were more highly absorbing. The origin of different plume types at this site has been characterized through long-term measurements, and is related to a variety of engine types, operating conditions and pollution control features (Wang et al., 2015).

Figure 1b and e show the mass spectra of HOA- and rBC-rich PMF factors, which are strikingly similar to the mass spectra of HOA- and rBC-rich particle classes identified in the single particle measurements (Fig. 1a and d), validating the division of traffic emissions into the two factors observed here. The single particle and ensemble mass spectra show some differences. First, the HOA-rich factor has a larger rBC content compared to the HOA-rich particle class; second, the rBC-rich factor contains higher CO\(^+\) and CO\(_2^+\) signals compared to the rBC-rich particle class (inserts of Fig. 1d–f). The latter difference arises because highly oxygenated organic fragments \((m/z\ 28\ (\text{CO}^+)\) and 44 \((\text{CO}_2^+)\)\) were excluded in the single particle analysis due to interference of air signals in UMR spectra (Lee et al., 2015). The former difference likely arises because of SP-AMS sensitivity to rBC and the probability of rBC detection in a single particle (Lee et al., 2015).
With support of direct measurements of single particle mixing state, this work presents the first interpretation of ensemble AMS results in terms of rBC and HOA mixing state. Using the intensity of the two traffic-related factors in plumes (Fig. 4d and f), we estimate that rBC-rich particles account for \(\sim 90\%\) of the observed total traffic-related rBC mass (Fig. 2d). In a similar manner, we estimate that \(\sim 60\%\) of the total HOA mass is due to HOA-rich particles (Fig. 2b). Purple dashed lines shown in Fig. 2b and d represent the inclusion of all CO\(_x^+\) fragments (due to surface functionality of ambient rBC Corbin et al., 2014) in the calculation of rBC mass (see Supplement Sect. S1), providing similar results. Red dashed lines in Fig. 2a–c represent the effect of a 50\% overestimation of HOA mass (see Supplement Sect. S1), again providing similar results.

3.3 Black carbon mixing state at emission impacts modelled optical properties

These novel single particle and ensemble observations of rBC mixing state were used to initialize the particle-resolved aerosol box model PartMC-MOSAIC (Supplement Sect. S6 and S7) (Zaveri et al., 2008; Riemer et al., 2009), which simulates the evolution of aerosol due to condensation and coagulation in an idealized urban setting. We simulate two cases to isolate the impact of mixing state of rBC emissions on aerosol properties. First, a uniform mixing state case in which all particles are assigned identical composition at emission (measured average \(mf_{rBC}\)), and second, a measurement-constrained mixing state case where \(mf_{rBC}\) is prescribed directly from our mixing state observations. The evolution of dry \(mf_{rBC}\) over a 24 h period is illustrated in Fig. 6a and b for the two cases. As ageing proceeds \(mf_{rBC}\) shifts to lower values, but in the uniform initial composition case no particles ever have \(mf_{rBC}\) larger than \(\sim 45\%\). Note that the bulk aerosol composition and number size distributions are identical in the two cases (Fig. S10 in the Supplement), and any differences in optical properties arise only due to the distribution of aerosol components amongst the particles.

Optical properties are determined for each particle in the population using Mie calculations and assuming a core-shell structure. We acknowledge that the underlying
assumptions of Mie calculations may not be appropriate for rBC-containing aerosol in the real atmosphere (e.g., Adachi et al., 2011; Scarnato et al., 2013), which is often not spherical and may not exhibit a core-shell configuration (e.g., China et al., 2015). In particular, the enhancement of rBC absorption due to non-absorbing coatings may be overestimated (Cappa et al., 2012; Healy et al., 2015), except in situations where rBC sources and ageing promote extensive coating (Liu et al., 2015; China et al., 2015). However, Mie calculations are commonly applied in regional and global models (Chung and Seinfeld, 2005; Zhao et al., 2013; Fast et al., 2006) to estimate optical properties, and we therefore include this comparison to illustrate the sensitivity to mixing state.

Consistent with previous studies (e.g., Zaveri et al., 2010; Matsui et al., 2013), we observe a difference in volume absorption and scattering coefficients \(B_{\text{abs}}\) and \(B_{\text{scat}}\) (Fig. 6c), and a resulting increase of 0.1 in SSA from the uniform mixing state to the measurement-constrained case that is present during the emission period in the simulation and, notably, persists throughout ageing (Fig. 6d). No significant differences in calculated cloud condensation nuclei activity were observed in these simulations (Fig. S11 in the Supplement), owing to the very similar hygroscopicity of rBC and HOA species. Calculations of aerosol DRF are very sensitive to changes in SSA (McComiskey et al., 2008) (e.g., uncertainties in SSA on the order of only 0.02 can result in a DRF uncertainty of 1 Wm\(^{-2}\) for a particular particle type Chin et al., 2009), illustrating the importance of accurately measuring and simulating mixing state for calculating climatologically relevant aerosol properties.

4 Conclusions

We present mass-based measurements of the mixing state of black carbon-containing aerosol, using a soot-particle aerosol mass spectrometer, from traffic emissions in an urban environment. Observations from single particle mass spectrometry indicate that rBC co-exists with hydrocarbon-like organic aerosol (HOA) in two distinct particle types; those containing a larger mass fraction of rBC, and those containing a larger mass
fraction of HOA. Source apportionment of ensemble mass spectral observations using positive matrix factorization also indicates two types of rBC-containing aerosol related to traffic: rBC-rich and HOA-rich aerosol, validated by single particle observations. Ensemble measurements expand the particle size range over which mixing state can be investigated, providing a better insight into the mixing state of the particle population and indicating that approximately 90 % of rBC mass resides in rBC-rich particles. These measurements were used to drive the particle-resolved aerosol box model, PartMC-MOSAIC. Our results indicate an increase in SSA of ~ 0.1 when mixing state at the point of emission is treated accurately in the model, compared to the assumption of uniform mixing state. The approach described here for quantitative assessment of black carbon mixing state from traffic can also be used to assess mixing state from other sources, and to explore the evolution of mixing state during atmospheric processing. Such measurements will be crucial to drive accurate model assessment of black carbon climate impacts on a broader scale.

The Supplement related to this article is available online at doi:10.5194/acpd-15-33555-2015-supplement.

Acknowledgements. This work was financially supported by Natural Sciences and Engineering Research Council (NSERC) of Canada, Environment Canada, the Canada Foundation for Innovation and the Marie Curie Action FP7-PEOPLE-IOF-2011 (Project: CHEMBC, No. 299755). N. Riemer and M. West acknowledge funding from the Department of Energy under Grant DOE DE-SC0011771.

References

33569

Figure 1. Left: unit mass resolution (UMR) spectra of HOA-rich (a) and rBC-rich (d) particle classes identified by k-means cluster analysis of single particle SP-AMS data acquired in the roadside environment. Middle: high-resolution mass spectra of HOA-rich (b) and rBC-rich (e) PMF factors from ensemble data. Right: examples of UMR spectra collected at high-time resolution during HOA-rich (c) and rBC-rich (f) plumes (corresponding time series are shown in Fig. 5). Insets in the lower panels illustrate the UMR spectrum of organic species (without CO$_x^+$ fragments) in the rBC-rich mass spectra. Black and colored sticks represent the fragments of rBC (C$_x^+$) and organic species(C$_x$H$_y^+$,C$_x$H$_y$O$_w^+$), respectively.
Figure 2. The distribution of mfrBC (presented as a normalized histogram) in the HOA-rich and rBC-rich particle classes (a and c) measured in the roadside environment. Normalized histograms of mfOrg in the HOA-rich factor (b) and mfrBC in the rBC-rich factor (d), i.e., frequency distribution showing the fraction of total rBC (HOA) contributed by the rBC-rich (HOA-rich) factor. Bars represent mfrBC calculated by rBC fragments (i.e. Cx^+), whereas purple dashed lines represent the mfrBC calculated including both COx^+ and Cx^+ fragments, yielding similar results (see Supplement Sect. S1). Red dashed lines represent the impact of a 50% decrease in HOA mass loading, to illustrate the impact of uncertainty in HOA quantification (see Supplement Sect. S1).
Figure 3. Particle size distributions from the roadside study. (a) Mass-based ensemble size distribution of refractory black carbon (rBC, black), organic species (Org, green), sulphate (SO$_4$, red) and nitrate (NO$_3$, blue). (b) Ion-signal based single particle size distributions for HOA-rich and rBC-rich particle classes. Analogous size distributions from the non-roadside study are shown in Fig. S3 in the Supplement.
Figure 4. Time series of (a) ensemble organic aerosol and (b) refractory black carbon mass loadings during the roadside study. Positive matrix factorization (PMF) results for ensemble data (c) to (f): (c) regionally sourced rBC mixed with oxygenated organic aerosol, (d) biomass-burning organic aerosol mixed with rBC, and traffic-related rBC in an rBC-rich and HOA-rich factor (e, f). Mass spectra of all PMF factors are shown in Fig. S4 in the Supplement.
Figure 5. Examples of rBC-dominated (a) and organic-dominated (b) plumes observed using the SP-AMS with high-time resolution (1 Hz) sampling, with measurements of single scattering albedo (SSA) at 405 nm from a photoacoustic soot spectrometer (PASS-3). Gaps in SP-AMS data correspond to periods used for the subtraction of gas-phase contributions from particle signals. Mass spectra shown in Fig. 1c and f correspond to plumes (b, a), respectively.
Figure 6. Evolution of dry m_{frBC} for the measurement-constrained (a) and uniform initial (b) mixing state cases. See Methods and Supplement Sect. S6 for a description of the model input parameters. Evolution of volume absorption (B_{abs}), scattering (B_{scat}) and extinction (B_{ext}) coefficients at 550 nm (c), and single scattering albedo (SSA) at 550 nm over the 24 h simulation period (d) for measurement constrained (solid lines) and uniform initial mixing state (dashed lines) cases.