We would like to thank the two reviewers for their thorough and constructive reviews of our manuscript. We have completely revised the manuscript based on the reviews. In summary, the most important changes are the following.

- We moved a large part of global inversion results and discussion to the supplementary materials and changed the manuscript title to “Inverse modeling of pan-Arctic methane emissions at high spatial resolution: What can we learn from assimilating satellite retrievals and using different process-based wetland and lake biogeochemical models?”;
- We did an ensemble of pan-Arctic inversions for each prior emission scenario to calculate the posterior estimate uncertainty using a Monte Carlo stochastic approximation method. And the new results are now shown in Fig. 5 and the old results in Table 3 are removed;
- We redid the bias correction of SCIAMACHY retrievals overpassing the pan-Arctic using a new method and showed the results in Fig. 3) shows the new bias correction;
- We reanalyzed the comparison between the inversion considering lake emissions and the inversion w/o considering lake emissions. The corresponding new figure (Fig. 6) shows that their difference is pronounced;
- We redrew the inversion evaluation figures (now Fig. 7 and Fig. S6). In Fig. 7, due to a direct comparison between global inversions and nested-grid inversions, We showed that the gain of using high-resolution nested grid inversion could be very promising;
- We rewrote the further discussion section to focus on the gain of assimilating satellite retrievals, using high-resolution nested-grid inversions and incorporating methane emissions from lakes. We also illustrated the impact of prior wetland emissions and the uncertainty of this study and future directions.

This response file includes (1) the point-to-point response letter to the first reviewer; (2) the point-to-point response letter to the second reviewer; (3) the manuscript revision with all changes highlighted; (4) the supplementary material revision with all changes highlighted.
General Comments

Though the authors already carried out an extensive work and analysis, the following points need clarification and revision publication in ACP.

Response: We appreciate the valuable comments from the reviewer. These comments help us improve the manuscript in both readability and scientific values.

1.1 Satellite observations and bias correction

Using satellite observations in an inversion system is a difficult task. Using SCHIAMACHY at high latitudes in support to surface in situ observations is even more difficult. The authors acknowledge this difficulty and apply filters on satellite data. They also worked on bias correction to minimize any misuse of satellite data in the inversion. However, in its current form, some questions remain unanswered and should be discussed.

1. Satellite bias is corrected along natural parameters (latitude, air mass factor, etc.) before inversion. Using the same data for debiasing and then for the inversion can be very hazardous. One should make sure that the bias patterns are totally decorrelated from the patterns used in the inversion (concentration gradients in this case). As methane emissions are dominant in tropical regions, concentration patterns could be somehow correlated with satellite bias. In this case, you risk misleading the inversion or at best reduce the number of usable information in the satellite observations. Has it be tried to include the bias correction in the inversion procedure?

Response: We have not tried to include the bias correction in the inversion procedure. In previous studies, some included and some did not. There is no claim that including the bias correction in the inversion procedure is better than the ones not including or vice versa. Given the risk that the further optimization of bias correction functions in the inversion cycle could cause bias correction to incorrectly account for the uncertainties brought by unaccounted model errors or even the uncertain sources and sinks (Houweling et al., 2014) and the inclusion also makes the inverse modeling system more complex, thus the inclusion was not chosen in this study. But as the pan-Arctic inversions are our focus, we did make an effort to detect the bias using independent observations. Specifically, we used the observed CH₄ vertical profiles from the NOAA/ESRL aircraft mission over Alaska, the NIES aircraft mission over Siberia and the NASA/ARCTAS aircraft mission over northern Canada to build a relationship between the satellite bias and specific humidity averaged over the lower 3 km. It should make the debiasing process more reliable. See Fig. 3 for details.

2. Though efforts are done to deploy new observation sites around the Arctic ocean, satellite datasets could fill some gap in the observations. In my opinion, this paper has all the elements to partly address this question and should address it. What is the impact of using satellite data on the inversions? This could be estimated by computing...
the sensitivity matrix (Cardinali et al., 2004). It could also be inquired into by comparing inversions with and without assimilating satellite observations.

Response: Thanks very much for this suggestion! Accordingly, we have used a Monte Carlo stochastic approximation method to calculate the inversion uncertainty with and without assimilating satellite retrievals. It shows that assimilating satellite retrievals does reduce the inversion uncertainty.

1.2 Inversion system and uncertainties

1. The description of the system is somehow hard to follow. Section 3.3 should be clarified, in particular, concerning the nesting procedure and the spin-up periods. It looks like observations are used several times in the different inversions, spin up and nesting procedure. This could artificially increase the weight of the observations multiply used, compared with those used only once. Please discuss this point. It may be necessary to stop the spin-up period when the inversion period starts to avoid multiple use of information, biasing the inversion.

Response: The surface sites in the pan-Arctic were used in both global and nested-grid inversions. It could increase the weight of the NOAA/ESRL observations. But if it was not used in global inversions, we believe the boundary conditions of the nested-grid inversions would have much more errors. Since the NOAA/ESRL sites in the pan-Arctic provide much less observations (sometimes less than 1/50), this double counting should introduce much less errors than the method the reviewer suggested. Also, using surface measurements in both global and nested-grid inversions can be found in other previous studies such as Wecht et al. (2014). In addition, we have rewritten the description of the optimization and spin-up processes.

2. The global inversions are used as boundary conditions for the regional inversions. It would be interesting to see the impact of the higher resolution on the inversion results. Could the posterior fluxes from the global and the regional inversions be compared for equivalent regions? Anyway, I have some concerns about the way the nesting is carried out. If I understand well, the nested regional model is run on a grid, which does not extend north of 80°. This means that the transport across the Arctic ocean is totally excluded from the regional inversion. Thus, for instance, ZEP only sees the influence of the global boundary conditions as it is really close from the side of your regional domain. ALT is excluded from the regional domain while it is expected to provide some regional information, etc. In the best case, this is a pity of missing some potential information with air masses crossing the Arctic ocean and reaching remote sites. In the
worst case, it totally biases the regional inversion and, at the end, the regional is not
better (or maybe worse) than the global inversion. This problem must be addressed,
especially as you use a relatively scarce network with Arctic sites relatively close to the
border of the regional domain.

That being said, I finally do not see what exactly brings the regional inversion to this
study.

Response: We acknowledge that the exclusion of the North Pole in the nested grid could
introduce some uncertainty to our estimates but do not agree with the reviewer’s claim that
this exclusion can totally bias the regional inversion and make the regional not better than
the global inversion. We argue that, due to the following reasons, our regional inversion can
do a much better job in helping understand CH$_4$ emissions from the pan-Arctic. First, as we
replied to one specific comment below, studies showed that in the summer time which we
are interested in, vertical and zonal transport are much stronger than meridional transport. It
is true that ALT is excluded from the regional domain. But we do not think that the
exclusion of this site would make important regional information missed. The ALT site is
located in a region far from possible CH$_4$ emission hotspots. And because satellite retrievals
in northern Canada are much more abundant than the ALT measurements, even if they are
of less quality, the regional information they can provide is much better. Thus the scenario
to damage our inversions as pointed out would hardly occur. Compared to coarse grid
inversions, high-resolution inversions have many advantages: 1) because the footprint of
satellite retrievals becomes more consistent with the finer grid cells, the chance they can be
represented well in the GEOS-Chem model is much larger; 2) the impact of earth
topography on the usability of satellite retrievals (tessellation error) is largely reduced. In
summary, it is very unlikely that there is a large bias in our regional inversions due to the
exclusion of the North Pole.

3. Concerning the prior uncertainties in the inversion, the current system uses a
regularization term γ to control the weight of prior information compared with
observations. How this term is computed? Is it based on a χ^2 criterion? Couldn’t the
same procedure be used to also adjust the in situ vs satellite observations? It has been
proven that prior uncertainties play a key role in inversion, and wrong uncertainty
matrices can lead to totally biased or inconsistent results. Furthermore, a critical point
in inversions is a correct specification of posterior uncertainties. Posterior fluxes
without posterior uncertainties are mostly worthless numbers produced by very
elaborated black boxes (to caricature...). The authors acknowledge this issue and try to
address it by comparing inversion results for 6 different wetland prior fluxes. I am
confident that these different scenarios can be sufficient to qualitatively discuss the
performance of the inversion. In addition, it seems that the 6 scenarios are sufficient
(by chance?) to reproduce a realistic range of uncertainty when comparing to Berchet
et al. (2014) numbers for Siberian Lowlands. However, as the author try to draw some
conclusions about the emissions from lakes, dominated by other sources, uncertainties might be too high. This is especially critical as the regional inversions seem kind of unsound. Additional inversions with different observation and prior uncertainty matrices would be necessary to really address this issue.

Response: The term γ is determined by analyzing its influence on the minimum of the cost function. It is a usual way to balance the prediction error and assimilation error in adjoint methods. More details can be found in Hakami et al. (2005), Yumimoto and Uno (2006) and Kopacz et al. (2009). For the emissions from lakes, we showed in Fig. 6 of the revision that the agreement between the GEOS-Chem model and SCIMACHY over a yedoma permafrost region (circled by a black polygon in Fig. 1) gets much better when the emissions from lakes were considered. There is a non-negligible possibility that the missed emissions by the DLEM scenario are from lakes because as illustrated, 56% of the water-inundated landscapes in this region are lakes. And it is possible that emissions counted for wetlands in other wetland models actually are from lakes. But we are cautious to draw a conclusion that CH$_4$ emissions from lakes must be included in inversions or are significant across the pan-Arctic because there is still very large uncertainty. But the point is that the inversions in this study can shed light on this source at large spatial scales that are unachievable from field observations and the inversions are more reliable than biogeochemical models.

1.3 Structure, content and title of the manuscript

The manuscript in its current form lacks some consistency between the title, structure and content.

The title makes the reader expects an atmospheric inversion accounting for lake and wetland emissions. Section 4.1 deviates in my opinion from the main topic of the paper.

What is the objective of this section? In the current state, it looks like an enumeration of aggregated emissions on global regions and compared with previous work. Though by itself
not uninteresting, I don’t think it is relevant for Arctic inversions. Maybe the entire section could be moved to supplementary materials (or to a different paper dedicated to global inversions).

On the other hand, Section 3.4 seems to me a key part of the manuscript. But the authors chose to put it only at the end of the method section with only limited details. I consider the satellite measurements play a key role in this work, especially as the Arctic in situ sites are very scarce during the inversion window. As noted by the authors, bias correction is essential for using both satellite and surface measurements. An amended version of the manuscript should include an extended discussion on the bias correction, on the performance of the different models, on the relative weight of satellite data in the inversion compared to surface measurements. This discussion is already partly done in Section 3.4 but should be extended and moved to Section 4. Some elements of Section 4.1 may also be used for this discussion.

The title should render the use of satellite observations as it is not common in Northern latitude.

Response: We have changed the title to “Inverse modeling of pan-Arctic methane emissions at high spatial resolution: What can we learn from assimilating satellite retrievals and using different process-based wetland and lake biogeochemical models?” In the revision, we mainly focused on the following questions: 1) how large the impacts do the wetland biogeochemical models have on pan-Arctic CH$_4$ inversions and in which direction can the wetland biogeochemical model can be improved for the use of inverse modeling? 2) Can the inclusion of CH$_4$ emissions from lakes improve the results of inverse modeling? 3) Can the assimilation of satellite retrievals reduce the uncertainty of the posterior estimates? and 4) to compare the possible debiasing method for global or pan-Arctic scale inversions? And we have moved the most part of description about the optimization steps and results of global inversions to the supplementary materials.

Technical Comments

The following points are mostly technical points that need reformulation or some clarification.

p. 32471 l. 20: the last sentence might over-sell the paper or is too vague

Response: This sentence has been deleted.

p. 32472 l. 24: I think putting together “)”(“ should be avoided as much as possible. There are other occurrences of this typo point in the manuscript
Response: We have revised all these occurrences of “) (“ in the manuscript.

p. 32474 l. 9: inversions are even more sensitive to uncertainty matrices; that should be at least partly addressed

Response: Thanks very much! In this revision, we have calculated the uncertainty of posterior estimates of methane emissions from the pan-Arctic. It shows that by using satellite retrievals the uncertainty is reduced.

p. 32476 l. 10: are the outliers numerous? What is the impact of this filtering on the inversion?

Response: We only find one outlier that can pass other quality tests in our study period. Thus we expect this filtering only has a trivial impact on the inversion.

p. 32476 l. 19: the selection is relevant, but some details on how it is done are needed for the reader. Couldn’t the excluded sites be used for evaluation? A map of all the sites excluded from the inversion, assimilated in the inversion and used for validation should be provided (at least in the supplementary material), with the borders of the nested model.

Response: For the global scale, we excluded the same sites as in Alexe et al. (2015). We have added this citation for reference. For the nested model, we now added a new figure (Fig. 1) to show the sites assimilated in the inversion and used for validation. There are no surface sites excluded from both assimilation and validation in the nested inversions.

p. 32476: Maybe I missed it but I couldn’t find anywhere whether surface observations are continuous or flask measurements.

Response: The surface observations are weekly flask measurements. We have added this information in this section.

p. 32478 l. 17: Can you give an exact definition of “lake”? This seems obvious, but the difference between wetlands and lake could be very tiny in some conditions? Does the map of lakes evolve with time?

Response: The lakes north of 60° N were retrieved from Global Lakes and Wetlands Database (GLWD). This map does not evolve with time. Tan and Zhuang (2015) have detailed description of the lake map processing. According to GLWD, lakes are defined as permanent still-water bodies (lentic water bodies) without direct connection to the sea. And wetlands are by nature
transitional between terrestrial and aquatic ecosystems and have the presence of standing water for some period during the growing season, either at the surface or within the root zone. At least in GLWD, there is no double counting of lakes or wetlands. And we have acknowledged the possible uncertainty introduced by the double counting in the revision.

We have added the definition of “lake” into this section.

p. 32479 l. 10: Is there any citation comparing GEOS-4 and GEOS-5? As you use different meteorological forcings for the different inversion windows, it could have an impact on the results. The two datasets are probably very consistent and the impact is probably very limited, but this should at least be mentioned.

Response: In our revision, the GEOS-4 meteorological forcing was only used for constructing initial conditions on January 1, 2004. Thereafter, all inversions used the GEOS-5 meteorological forcing, including global scale and nested grid inversions. Additionally, in the revision, we moved the start time of nested grid inversions from July 1, 2004 to July 1, 2005. With such a change, we expect that any signals that could be caused by the inconsistency between GEOS-4 and GEOS-5, if any, should have disappeared after the transport and assimilation processes of one and a half years.

p. 32479 l. 14: if I understand well, for instance, if an air mass from Canada crosses the pole and reaches a site in Siberia, you wouldn’t be able to recover any information on the emission with your way of dealing with the pole? It would be then mixed with “boundary” polar conditions? You might lose a lot of information on Arctic emissions considering the fast transport of air masses over the Arctic Ocean. Wasn’t it possible to implement the procedure of the global system in the nested system?

Response: We did not include the polar area for the following reasons. First, in GEOS-Chem, with the concern of numerical stability, there is a special treatment of advection in the polar region (Lin and Rood, 1996), but this treatment has not been applied and tested for the nested grid. Second, according to Miyazaki et al. (2008), the Northern Hemisphere (NH) extratropics during summer has slow mean-meridional circulation and inactive wave activity but strong vertical transport. Thus there should be very few air masses from Canada crossing the pole and reaching a site in Siberia or vice versa. Third, it is true that the boundary conditions of the nested model could miss the signals out of boundaries. But this is the drawback of all the similar applications, regardless whether it is in North America or in the pan-Arctic. The possible solution is to construct the boundaries by real data but it is out of focus of this paper. Instead, we have acknowledged this problem in our discussion and called for the improvement of the GEOS-Chem model.

p. 32480 l. 10: people unfortunately do not always define Arctic the same way... Please give your definition, so that the reader knows on which region your emissions are defined.

Response: We have removed the word “Arctic” here and the nested domain has defined in the previous paragraph (180°W–180°E and 80°N–56°N).

p. 32482 l. 22: does the system guarantee that it is not stuck in a local minimum? I guess it does, but mentioning only the 0.5% criterion might be insufficient

Response: Yes, the system guarantees that the iteration is not stuck in a local minimum. We have mentioned in the sentence “optimization changes its course automatically if local minimum reaches”.

p. 32483 l. 14: BIC seems a reasonable score but it is not commonly used, so please give a little bit of details on it.

Response: We added some descriptions of the method: “The BIC criterion is widely used for regression model selection and aims to award a model that fit measurements with the least model parameters.”

p. 32483 l. 25: Does filtering outliers influence the bias correction? What is the portion of data filtered out along this criterion?

Response: The grid squares with RSD in excess of 20 ppb are not outliers but just as indicated by Turner et al. (2015) they are more likely dominated by bias in prior emissions or strong local emissions. If these values are included, the bias correction will either remove local emission signals or account for biases not belonging to SCIAMACHY retrievals.

p. 32484 l. 15: is there a known reason for the opposite dependence of model-data differences in East Asia? This only comes from wrong emission inventories or is there a relation with regional meteorology or other?

Response: According to Peng et al. (2016), the EDGAR dataset could overestimate anthropogenic CH$_4$ emissions from China.

p. 32484 l. 22: I do not understand why you need these polynomial trends? Is it that you use monthly or 2-weekly flask measurements and extrapolate them to hourly residuals? If so, I think this might be a problem for the inversion. Extrapolating data before inversion can only bring additional uncertainties.

Response: In the revision, we directly compared the weekly flask measurements (the data records include the measurement date and UTC information) to the model.

p. 32486 l. 3: Please remind the inversion windows here. It is not always clear when the satellite data are used.

Response: The global scale inversion window is from January 2004 to December 2004 and January 2005 to December 2005. The inversions of the second time window are for analysis.

p. 32488 l. 20: it would be easier for the reader to draw a picture if the same area were compared.

Response: Our results cannot directly compare with Monteil et al. (2013) because they only reported the CH$_4$ emissions from the areas north of 50°N.

p. 32489 l. 13: without uncertainties on the posterior, it is hard to see the impact and the confidence of the inversion. The subsequent discussion is thus very speculative in my opinion. The DLEM scenario with no lakes only shows the limitation of inversion methods, I think... I do not really get the choice of DLEM. The way you put it, it only confirms that the inversion has not enough information to redistribute fluxes. But the missing fluxes could also be wetland fluxes.

Response: We have calculated posterior uncertainty in the revision.

p. 32490 l. 18: both numbers looks pretty high, especially for the total column. What the difference between observed and prior total columns? Is the improvement significant? I think this is the most important here. If with the inversion, you only shift the total columns of 1 ppb without the lakes and of 2 ppb with the lakes, you got a signal; but conversely, if the inversion shifts the total columns by e.g., 30 ppb without the lakes and 31 ppb with the lake, you got nothing...

Response: We have drawn another figure to show the difference. As shown in Fig. 6, there are visible differences.

p. 32490 l. 22: I think this citation is not relevant. They could have achieved 15 ppb of improvement if taking wrong prior fluxes...

Response: We have removed this citation.
p. 32491 l. 26: Berchet et al. (2014) did find methane emissions of 1–13 TgCH4/y from Siberian wetlands, which is amazingly consistent with your figure.

Response: Our newly estimated methane emissions from Siberian wetlands are 1.6–7.6 Tg yr⁻¹.

Tab. 1: Maybe you could add correlation coefficients as you show one R in Figure 1.

Response: We have added it.

Figure 1c: it would be interesting to compare on the same figure before and after optimization and to have the same figure for all debiasing method (probably in supplementary material to avoid having dozens of figures...)

Response: As shown in Table 1, the fitting between model and SCIAMACHY does not differ too much among several methods, e.g. between “Latitude only” and “Latitude + Humidity”. Thus such plots probably will not bring much information.

Figure 4: Could you please add the prior and posterior uncertainties? Why does the seasonal cycle vanishes after 1998 in the Tropics? As for Section 4.1, I am not sure this figure is really relevant regarding the topic of the paper

Response: We think you are right – this figure seems irrelevant to our topic. It only shows the process of initial condition construction. We have removed it in the revision. For the vanishing of the seasonal cycle after 1998 in the tropics, it is related to the discontinuation of the biomass burning emission dataset. In GEOS-Chem, the GFED3 dataset covers only from 1997 to 2010 and all simulations before 1997 have to use the data of year 1997. Compared to the other years, biomass burning emissions have more apparent seasonal cycle in 1997.

Figure 8-9: Please add the prior RMS for each different scenario, so that one can see the improvement after inversion.

Response: For both figures, we have added the prior RMS for each different scenario.
Several studies have pointed to the importance of methane emissions from lakes, but so far no attempt has been made to include those estimates into global atmospheric transport model and assess their influence on inverse modeling results. This study makes a useful contribution by filling this gap. Estimates are provided of Arctic lake and wetland emissions before and after optimization using inverse modeling. This is all fine, but in the end it is still not so clear whether or not the model has improved by the inclusion of lake emission and what it means for the overall Arctic methane budget. In my opinion, some more in depth analysis in this direction would increase the usefulness of this study. Right now, the conclusion section has some general statements that don’t seem to be supported by the results, or at least not in the way the results are presented. Improvements in this direction will be needed, as explained in further detail below, to make this manuscript suitable for publication.

Response: We appreciate the valuable comments from the reviewer. To address the concerns raised by the reviewer, we have used a Monte Carlo stochastic approximation method to calculate the uncertainty of posterior estimates. Fig. 5 shows that assimilating satellite retrievals reduced the uncertainty. In Fig. 6, we did a more detailed comparison between the inversion considering lake emissions and the inversion not considering lake emissions. It shows that there should be strong CH$_4$ emissions in the specified yedoma permafrost region that is missed by the DLEM model. Since 56% of the water-inundated landscapes are lakes in the region, there is a non-negligible possibility that the missed emissions by the DLEM scenario could be from lakes. And it is possible that emissions counted for wetlands in other wetland models actually are from lakes. We are cautious to draw a conclusion that CH$_4$ emissions from lakes must be included in inversions or are significant across the pan-Arctic because there is still very large uncertainty. But the point is that the inversions in this study can shed light on this source at large spatial scales that are unachievable from field observations and the inversions are more reliable than biogeochemical models. Also, we have changed the structure of the manuscript to focus on the following questions: 1) how large the impacts do the wetland biogeochemical models have on pan-Arctic CH$_4$ inversions and in which direction can the wetland biogeochemical model be improved for the use of inverse modeling?; 2) can the inclusion of CH$_4$ emissions from lakes improve the results of inverse modeling?; 3) can the assimilation of satellite retrievals reduce the uncertainty of the posterior estimates?; and 4) to compare the possible debiasing method for global or pan-Arctic scale inversions?

General Comments

The statement in the conclusion section that “biogeochemical models tend to overestimate natural sources in the Arctic” calls for a comparison of numbers, together with their uncertainties and a discussion of possible factors influencing the comparison. The numbers are given in Table 3. Looking at the ranges they seem to support the conclusion. However, does the range of posterior estimates reflect the posterior uncertainty? If not, the difference between prior and posterior fluxes may not be significant. Since only a single lake estimate
is used this part of the uncertainty is in any case not accounted for judging only emission ranges. What factors could influence the comparison? Without the lake emission estimates the biogeochemical models would be fine. Could it be that by simply adding up lake emission estimates to the process model results, emissions end up being double counting? For example, if lakes appear in places that already count as wetlands in those models. Particularly when the model prescribes inundated area using satellite data there is no clear boundary between the two. Some further discussion is needed of how these contributions fit together and what the implications are for the uncertainty of the estimates.

Response: In the revision, the posterior uncertainty was calculated. According to Fig. 5, we can still claim that biogeochemical models could overestimate CH$_4$ emissions in the pan-Arctic. But now this is not a conclusion we are urgent to draw. Rather, we want to say that according to this figure, in addition to Table 2, the estimated uncertainty caused by unrealistic spatial and temporal patterns of biogeochemical models could be larger than the uncertainty caused by observation and prior emission magnitude uncertainties. This emphasizes the importance of improving biogeochemical models to achieve consistent spatial and temporal variabilities. The value of the estimates for lake emissions here is to shed light on the upper and lower bounds of this source. Because the lake model is combined with different wetland models in which some could have stricter definitions of wetland area and some could have wider definitions, in addition to data assimilation, the results can give us more insights on the magnitude of the source than the lake model alone. It can also be true for CH$_4$ emissions from wetlands.

It is difficult to judge the added value of the regional inversion from the way in which results are presented. Table 3 is the only place where a direct comparison between prior and posterior is made. Looking at the ranges, the results actually suggest that the inversion increases uncertainty. Otherwise the plots for the regional inversions show either prior or posterior fluxes, but no differences between the two. This makes it hard to judge where inversion results converge or diverge in the inversion process. The impact of accounting for lakes is discussed in the text – where suggestions are made that it is important to do so. This is the kind of discussion that is expected from a paper, which investigates the role of lakes. However, only one figure in the supplementary information shows any results supporting this discussion. Since it only shows posterior results, it is difficult to compare with any of the other figures. The point about the importance of including lake emissions has to be demonstrated more convincingly.

Response: To address these issues, we calculated the posterior uncertainty of emission estimates and showed it in Fig. 5. Fig. 6 shows that the inclusion of lake emissions improves the agreement between the GEOS-Chem model and satellite retrievals. We also compared the RMS of the posterior global and pan-Arctic inversions over the pan-Arctic surface and aircraft observations.

Figure 8 and 9 demonstrate how the inversion-optimized fluxes improve the fit to various measurements. What I find missing in these figures is the range of a priori RMS values (I
mean from each inversion). I wonder also whether posterior RMS’s correlate with the priors. In other words, does the pattern of posterior mismatches reflect that of the prior or not? A more important omission, however, is a quantification of the role of lakes in these figures. Is there any gain in terms of RMS by including a pattern of lake emissions in the inversion?

Response: We have improved these two figures according to the comments (see Fig. 7 and Fig. S6). Now the RMS from the prior of each scenario shows together with the RMS from the posterior. For lake emissions, Fig. 6 can show some gain in terms of RMS if lake emissions are included. We think it is difficult to explain the gain in terms of RMS using other observations because both surface sites and aircraft missions are far from the regions where lakes are obvious dominant in the GLWD map.

The final conclusion that the nested modeling approach improves the simulation of methane mixing ratios is not supported by results. The same is true for the sentence that follows about the understanding that is gained about Arctic emissions by simulating methane with more spatial detail. Either provide the supporting evidence or otherwise remove the conclusions.

Response: We have revised the discussion and conclusion according to our results. According to the results, the following conclusions can be drawn: 1) the realistic spatial and temporal variability of prior CH$_4$ emissions from wetlands are important for inverse modeling; 2) satellite retrievals can be used to reduce the uncertainty of the estimates of CH$_4$ emissions in the pan-Arctic; 3) high-resolution nested grid inversions improve the performance of inverse modeling; and 4) there could be large spatial scale CH$_4$ emissions from pan-Arctic lakes in some specific regions.

Specific Comments

Abstract, line 13: “Canadian and Siberian lakes contribute most of the estimated lake emissions” What do you mean here, to Global or Arctic lake emissions?

Response: We mean that “Canadian and Siberian lakes contributed most of the estimated CH$_4$ emissions from pan-Arctic lakes.”

Page 32475, equation 2: where does “XCO2” come from?

Response: The XCO$_2$ comes from the CarbonTracker CO$_2$ measurement and modeling system. We have added this information in the revision.

Page 32479, line 16: The Southern bound of the Arctic nested grid is 56N. Does this mean that all reported total fluxes from the nested grid inversion represent fluxes northward of
56N? In several places there is mentioning of 60N, and somewhere even 50N. Confusion should be avoided on what is called “Arctic”.

Response: Although the inversions were conducted northward of 56°N, only emissions northward of 60°N were analyzed. In the revision, we changed “Arctic” to “pan-Arctic” and defined “pan-Arctic” as a region northward of 60°N. For the place 50°N, it is because the cited study does not calculate methane emissions from 60°N separately. In that case, we have not tried to imply the emissions from 60°N and 50°N should agree.

Page 32483, line 25: Why is this condition restricted to measurements between 50S and 50N? It hints at something that requires further specification. In the studies by Bergamaschi et al and Houweling et al, SCIAMACHY retrievals are filtered out outside this latitude interval. Figure S1, indicates that higher latitude measurements are used in this study, although this line 25 suggests that data are treated differently. This should be clarified.

Response: Following Bergamaschi et al. (2009) and Houweling et al. (2014), we also filtered out measurements outside 50°S and 50°N because in these regions SCIAMACHY only delivered good-quality retrievals in local summer times and we run whole-year inversion at the global scale. Before, we applied the regression relationship of Fig. 1c to the pan-Arctic inversions. We realized that it could be problematic. In this revision, following the method of Wecht et al. (2014), we used aircraft campaign measurements from Alaska, Canada and Siberia to calculate a linear regression between bias and specific humidity. This relationship was then applied to all nested grid inversions. We showed this new regression and aircraft campaign sites in Fig. 2 and 3.

Page 32486, line 8: “this suggests that the global emissions . . .” It should be noted here that the convergence of global totals relies on the assumed atmospheric lifetime being correct. There is no mentioning that atmospheric sinks are optimized. If they were, then the measurement constraint on the global total emission would have been substantially less.

Response: We have added this assumption into the sentence: “This convergence probably suggests that surface measurements from the NOAA/ESRL network are of sufficient density and accuracy to represent the global CH₄ burden if the CH₄ lifetime is correct”.

Page 32487, line 24: “They probably underestimated . . .” This difference could be caused by a different assumption on the methane lifetime, the uncertainty of which may well exceed 10 TgCH4/yr.

Response: You are right. We have changed the tongue of this sentence.
Page 32488, line 4: “This adjustment could be primarily driven . . .” Then a list follows of every element in the inversion that influences the a priori fluxes. Therefore, effectively this sentence doesn’t say anything. However, it would actually be interesting to know the relative importance, for example, of the satellite and surface data. This has been studied in the past by others for the global domain, but not specifically for the Arctic sub domain.

Response: As our focus is on the inverse modeling of CH₄ emissions from the pan-Arctic, we did not do more work to investigate the possible reasons. But it is possibly very complex. We have deleted the sentence to reduce confusion.

Page 32490, line 11: “We conducted a nested grid inversion . . .” Somewhere in the part that follows a reference is missing to figure S3.

Response: We have added the reference to Fig. S3

Response: We have added this reference.

Page 32512, fig 3: It is not clear if the totals refer to Global or Arctic emission totals. Furthermore, please put the totals under the figures to improve readability.

Response: The totals refer to pan-Arctic emission totals. We have put the numbers under the wetland scenario or source names to make the figure more readable.

Page 32512: figure 3: Is the resolution of CLM4Me indeed so much lower than the other models?

Response: Yes, the CLM4Me model has a spatial resolution of 1.9° × 2.5° but many others have a spatial resolution of half degree (SDGVM has a resolution of one degree).

Page 32473, line 24: “Previous” i.o. “And previous”.

Response: We have revised it.

Page 32483, line 23: “SIAMACHY”

Response: We have revised it.

Page 32489, line 3: “by that the”

Response: This sentence has been removed in the revision.

Page 32491, line 26: “the CH4 budget of”

Response: We have revised it.
Page 32492, line 24: “help”?

Response: “help transport” was replaced by “quickly transport”.

Page 32510, figure c: axis titles are missing (they should be along the axis instead of in the caption).

Response: The problem is that there is no enough space to put them; otherwise this subplot will become too small. As this figure has been move to the supplement, we chose to keep the current format.
Inverse modeling and mapping of pan-Arctic methane emissions at high spatial resolution; what can we learn from assimilating satellite retrievals and adjoint atmospheric transport and inversion method and using different process-based wetland and lake biogeochemical models?

Zeli Tan1,2, Qianlai Zhuang1,2,3, Daven K. Henze4, Christian Frankenberg5, Ed Dlugokencky6, Colm Sweeney6, Alexander J. Turner7, Motoki Sasakawa8, Toshinobu Machida8

1Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, Indiana, USA

2Purdue Climate Change Research Center, Purdue University, West Lafayette, Indiana, USA

3Department of Agronomy, Purdue University, West Lafayette, Indiana, USA

4Department of Mechanical Engineering, University of Colorado, Boulder, Colorado, USA

5Jet Propulsion Laboratory/California Institute of Technology, Pasadena, California, USA

6Global Monitoring Division, NOAA Earth System Research Laboratory, Boulder, Colorado, USA

7School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA

8National Institute for Environmental Studies, Tsukuba, Japan

Correspondence to: Qianlai Zhuang (qzhuang@purdue.edu)
Abstract: Understanding methane emissions from the Arctic, a fast warming carbon reservoir, is important for projecting future changes in the global methane cycle under future climate scenarios. Here we optimized Arctic methane emissions north of 60°N (pan-Arctic) using a nested-grid high-resolution inverse model by assimilating that assimilates both high-precision surface measurements and column-average SCIAMACHY satellite retrievals of methane mole fraction. For the first time, methane emissions from lakes were integrated into an atmospheric transport and inversion estimate, together with prior wetland emissions estimated by six different biogeochemical models. In our estimates, we find that, in 2005, global methane emissions during July 2004–June 2005 ranged from 496.4 to 511.5 Tg yr⁻¹, with wetland methane emissions ranging from 130.0 to 203.3 Tg yr⁻¹. Pan-Arctic methane emissions during July 2004–June 2005 were in the range of 11.9–28.5 Tg yr⁻¹. Methane emissions from pan-Arctic wetlands and lakes were emissions ranging from 8.8 to 20.4 Tg yr⁻¹ and from 5.4 to 7.9 Tg yr⁻¹, respectively. Canadian and Siberian lakes contributed most of the estimated lake emissions. Methane emissions from Siberian wetlands and lakes could be the largest and also have the largest uncertainty. Our results indicate that the uncertainty introduced by different wetland models could be much larger than the uncertainty of each inversion. We also show that assimilating satellite retrievals can reduce the uncertainty of the nested-grid inversions. The significance of lake emissions cannot be identified across the pan-Arctic by high-resolution inversions but it is possible to identify high lake emissions in some specific regions. In contrast to global inversions, high-resolution nested-grid inversions can perform better in estimating representing near surface CH₄ concentrations. Due to insufficient measurements in the region, Arctic methane emissions are less constrained in...
northern Russia than in Alaska, northern Canada and Scandinavia. Comparison of different
inversions indicates that the distribution of global and Arctic methane emissions is sensitive to
prior wetland emissions. Evaluation with independent datasets shows that the global and Arctic
inversions improve estimates of methane mixing ratios in boundary layer and free troposphere.
The high-resolution inversions provide more details about the spatial distribution of methane
emissions in the Arctic.

1. Introduction

Methane (CH$_4$) is an important long-lived atmospheric trace gas. It is the second most
powerful carbon-based greenhouse gas in the atmosphere behind carbon dioxide (CO$_2$) and also
plays a significant role in the cycles of ozone (O$_3$), hydroxyl radicals (OH) and stratospheric
water vapor (H$_2$O) (Myhre et al., 2013; Shindell et al., 2009). The atmospheric burden of CH$_4$ is
now more than factor of 2.5 greater than the pre-industrial value of about 700 ppb (Etheridge et
al., 1998), mainly due to anthropogenic emissions. Major sources and sinks of CH$_4$ have been
identified (Denman et al., 2007); however their quantification is still of large uncertainties. Their
individual strengths and the annual causes of the observed concentration trends and inter-annual
variability fluctuations of atmospheric CH$_4$ are not well explained. For instance,
1980s (Dlugokencky et al., 2003; Bousquet et al., 2006; Aydin et al., 2011; Kai et al., 2011; Levin et al., 2012; Simpson et al., 2012; Kirschke et al., 2013) and the recent rebounding of its growth since 2007 (Rigby et al., 2008; Dlugokencky et al., 2009; Nisbet et al., 2014).

Given the uncertainty regarding drivers of trends in CH$_4$ concentrations, much effort has been made focused on refining using Bayesian inference, estimates of CH$_4$ sources or sinks to the overall CH$_4$ budget (Bergamaschi et al., 2007, 2009, 2013; Meirink et al., 2008; Cressot et al., 2014; Houweling et al., 2014; Alexe et al., 2015): “bottom-up” and “top-down” methods. In these studies, in-situ and/or satellite observations of CH$_4$ that are representative of large spatial scales were assimilated into a chemical transport model (CTM) to constrain the initial estimates of CH$_4$ sources and sinks that are inventoried we inferred from field studies, industrial investigations and biogeochemical models (Fung et al., 1991; Zhuang et al., 2004; Walter et al., 2006; Zhu et al., 2013; Tan and Zhuang, 2015a and 2015b). Bottom-up estimates are scaled up from small scale studies of emissions factors (e.g., CH$_4$ flux) and activity data (e.g., global area that applies to the particular wetland studied) or from biogeochemical models (e.g., wetlands) with environmental conditions (Fung et al., 1991; Zhuang et al., 2004; Walter et al., 2006; Tan and Zhuang, 2015a and 2015b). In contrast, top-down estimates use in situ and satellite observations of CH$_4$ that are representative of large spatial scales with a chemical transport model (CTM) to infer strengths of CH$_4$ sources and sinks (e.g., Enting, 2002; Bergamaschi et al., 2009). In Bayesian theory, a top-down estimate can reduce uncertainty in bottom-up inventories through the use of model and ambient observations. This method, called Bayesian inference, has been successfully employed in numerous studies for estimating the...
global CH\textsubscript{4} budget at coarse spatial resolutions (over 300 km) (Bergamaschi et al., 2007, 2009, 2013; Meirink et al., 2008; Cressot et al., 2014; Houweling et al., 2014; Alexe et al., 2015).

Many of these studies have assimilated space-borne observations of atmospheric CH\textsubscript{4} concentrations are especially useful in inverse modeling to constrain CH\textsubscript{4} emissions because they can deliver dense and continuous coverage unachievable by surface networks or aircraft campaigns (Bergamaschi et al., 2007). There are two types of nadir satellite CH\textsubscript{4} retrievals: one from solar backscatter in the shortwave infrared (SWIR) and the other from thermal infrared radiation (TIR). Between them, SWIR retrievals were more widely used in atmospheric inversion of CH\textsubscript{4} emissions (Bergamaschi et al., 2007, 2009, 2013; Fraser et al., 2013; Cressot et al., 2014; Houweling et al., 2014; Monteil et al., 2014; Wecht et al., 2014; Alexe et al., 2015; Turner et al., 2015) because they can provide column concentrations with near-uniform vertical sensitivity down to the surface. To date, most of the inversions were operated at coarse spatial resolutions over 300 km. However, partly owing to their coarse resolutions, such coarse-resolution global inversions it is impossible for these inversions have not been able to constrain the strength of different CH\textsubscript{4} sources that are spatially co-located and the locations of CH\textsubscript{4} flux hotspots (Fung et al., 1991; Wecht et al., 2014). To address this issue, regional inverse models at fine spatial resolutions were developed (Miller et al., 2013; Wecht et al., 2014; Thompson et al., 2015). For example, Wecht et al. (2014) and Turner et al. (2015) have used the 1/2° × 2/3° horizontal resolution GEOS-Chem adjoint model to constrain CH\textsubscript{4} emissions over North America.

Estimating CH\textsubscript{4} emissions from the Arctic is important for understanding the global carbon cycle because the fast warming of Arctic permafrost, one of the largest organic carbon reservoirs (Tarnocai et al., 2009), could lead to a rapid rise of CH\textsubscript{4} emissions (Zhuang et al., 2006; Walter et al., 2007; Koven et al., 2011). Natural sources dominate the Arctic CH\textsubscript{4}
inventory (Fisher et al., 2011), e.g. wetlands (McGuire et al., 2012), lakes (Walter et al., 2006; Bastviken et al., 2011), sea shelves (Shakhova et al., 2013) and oceans (Kort et al., 2012). As the factors governing natural CH$_4$ production (methanogenesis) and oxidation (methanotrophy) are notoriously heterogeneous, estimates of Arctic CH$_4$ emissions are still poorly constrained, even with decades of site-level and modeling studies (Zhuang et al., 2004; Bastviken et al., 2011; Schuur et al., 2015; Tan and Zhuang, 2015a; Tan and Zhuang, 2015b). Previous CH$_4$ inversions over the Arctic only assimilated surface measurements that were too sparse to constrain fine-scale CH$_4$ fluxes. Also, possibly important CH$_4$ sources that were newly identified, e.g. CH$_4$ emissions from Arctic lakes (Walter et al., 2006 and 2007; Bastviken et al., 2011; Tan and Zhuang, 2015a) and the East Siberian Shelf (Shakhova et al., 2013; Berchet et al., 2016) have not been included in these studies. Further, an important consideration is specification of realistic prior fluxes, given the ill-posed nature of trace-gas inversions, realistic prior fluxes could be important for successful inverse modeling of CH$_4$ emissions from the Arctic (Kaminski and Heimann, 2001). While CH$_4$ emissions from lakes could be of comparable magnitude to CH$_4$ emissions from wetlands in the Arctic (Walter et al., 2006 and 2007; Bastviken et al., 2011; Tan and Zhuang, 2015a), this source has not been included in past global or regional inverse modeling studies.

To address these issues, we used this study uses the adjoint of a 3-D chemical transport model at high spatial resolution (less than 60 km) to improve the quantification of pan-Arctic CH$_4$ emissions in 2005. We explored the feasibility of using satellite CH$_4$ retrievals overpassing the pan-Arctic to further constrain regional CH$_4$ emissions, with the integration of both process-based wetland and lake biogeochemical models and atmospheric CH$_4$ mixing fractions to improve the quantification of Arctic CH$_4$ emissions for July 2004–June 2005. For the
first time, we include CH$_4$ emissions from pan-Arctic lakes were included in a high-resolution Bayesian inverse modeling inversion of CH$_4$ emissions fluxes in the Arctic. As wetland emissions are likely the largest pan-Arctic CH$_4$ source, we also investigated this study also considers the sensitivity of our estimates inversion to prior wetland fluxes, the use of different wetland emission scenarios. Section 2 describes the observation data of atmospheric satellite retrievals and surface CH$_4$ observations that were used to infer CH$_4$ emissions fluxes and evaluate posterior estimates. Section 3 describes the details of the wetland and lake biogeochemical models that were used in this study for wetland and lake emissions (Section 3.1), the pan-Arctic nested-grid CTM chemical transport model and the prior budgets of other CH$_4$ sources and sinks (Section 3.2), and the adjoint-based inversion method (Section 3.3). Section 4 presents the posterior CH$_4$ emissions, and their evaluation and further discussion.

2. Observations

2.1. Satellite Retrievals

SWIR CH$_4$ retrievals are available from SCanning Imaging Absorption spectroMeter for Atmospheric CHartogrpHy (SCAMACHY) for 2003–2012 (Frankenberg et al., 2006, 2008, 2011) and Greenhouse Gases Observing SATellite (GOSAT) for 2009 to present (Parker et al., 2011). SCIAMACHY, aboard the European Space Agency’s environmental research satellite ENVISAT, retrieves column-averaged CH$_4$ mixing ratios (XCH$_4$) from the SWIR nadir spectra (channel 6: 1.66–1.67 μm) using the IMAP-DOAS algorithm (Frankenberg et al., 2006, 2008, 2011). The satellite operates in a near polar, sun-synchronous orbit at an altitude of 800 km. At channel 6, the ground pixel size of the retrievals is about 30 km (along-track) × 60 km (across-track). We use version 6.0 proxy CH$_4$ retrievals from Frankenberg et al. (2011) that provide a weighted
column average dry-mole fraction of CH$_4$ with 10-layer averaging kernels and prior CH$_4$ profiles. The averaging kernels show near-uniform vertical sensitivity in the troposphere and declining sensitivity above the tropopause (Butz et al., 2010). Some auxiliary data, e.g. the air mass factor $A_F = 1/\cos \theta + 1/\cos \xi$, where θ is the solar zenith angle and ξ is the viewing angle of the satellite), water column density and dry air column density, are also published with the IMAP-DOAS v6.0 XCH$_4$ product.

The estimated single-retrieval precision is scene-dependent and averages roughly 1.5% or 25 ppb (Frankenberg et al., 2011). With this order of instrument precision, SCIAMACHY cannot resolve day-to-day variability of emissions but can strongly constrain a multi-year average (Turner et al., 2015). The retrieving algorithm firstly calculates CH$_4$ total column density Ω_{CH_4} (molecules cm$^{-2}$):

$$\Omega_{CH_4} = \Omega_A + a^T (\omega - \omega_A)$$

(1)

where ω is the true 10-layer sub-column densities of CH$_4$ (molecules cm$^{-2}$), ω_A is the 10-layer prior CH$_4$ sub-column density (molecules cm$^{-2}$), Ω_A is the corresponding a priori CH$_4$ total column density, and a is an averaging kernel vector that defines the sensitivity of the retrieved total column to each sub-column in ω. To account for the impact of aerosol scattering and instrument effects on the observed light path, Frankenberg et al. (2006) used the CO$_2$ column density Ω_{CO_2} as a proxy to normalize and convert Ω_{CH_4} to a column mixing ratio XCH$_4$ (ppb):

$$XCH_4 = \left(\frac{\Omega_{CH_4}}{\Omega_{CO_2}}\right) XCO_2$$

(2)

where XCO$_2$ is the column-weighted mixing ratio of CO$_2$ from NOAA’s CarbonTracker CO$_2$ measurement and modeling system. CO$_2$ is used as a proxy because it is retrieved in a spectrally
neighboring fitting window and, relative to CH$_4$, its mixing ratio is known with much higher precision.

As general retrieval quality deteriorates after November 2005 due to the dysfunction of two important detector pixels (Frankenberg et al., 2011), only observations during the period of January 2003 to October 2005 are used. The quality of SCIAMACHY observations is controlled by a filtering scheme that selects only daytime, over land and with cloud free or partially cloud scenes and good fitting accuracy (http://www.temis.nl/climate/docs/TEMIS_SCIA_CH4_IMAPv60_PSD_v2_6.pdf). Further, a surface elevation filter is applied to filter out observations that are different from the model grids at surface altitude by more than 250 m (Bergamaschi et al., 2009; Alexe et al., 2015). This filtering process ensures that the atmospheric columns seen by SCIAMACHY are well represented by the model columns. To avoid spurious outliers that may have a large impact on the inversion, XCH$_4$ retrievals of less than 1500 ppb or larger than 2500 ppb are discarded (Alexe et al., 2015). For the pan-Arctic, most of qualified XCH$_4$ retrievals were recorded in the summer time when local solar zenith angles are higher, surface reflectance is lower and impact of Arctic vortex is smaller. Fig. 1S4 shows the SCIAMACHY retrievals (n = 37,439,899) of the weighted column-average CH$_4$ dry mixing ratio for July 2005–September 2005 in the pan-Arctic that have passed all quality control tests.

2.2. Surface Observations

The NOAA/ESRL Carbon Cycle Cooperative Global Air Sampling Network provides high-precision weekly flask measurements of surface atmospheric CH$_4$ dry-air mole fraction (Dlugokencky et al., 2014). CH$_4$ measurements that were calibrated against the WMO X2004 CH$_4$ standard scale maintained at NOAA (Dlugokencky et al., 2005). Due to the coarse
resolution of the GEOS-Chem model, we include only marine and continental background sites and exclude sites that are strongly influenced by sub-grid local sources (Alexe et al., 2015), as listed in Table S1. The flask-air samples in the NOAA/ESRL network that were taken from regular ship cruises in Pacific Ocean serve to evaluate simulated surface mixing ratios of global inversions over the remote ocean and downwind the continental sources (Alexe et al., 2015). Fig. 1 shows the Arctic sites that were used for data assimilation and nested-grid inversion evaluation. (Pallas-Sammaltunturi, Finland (PAL)) that was excluded from the assimilation is used to evaluate the nested-grid inversions.

2.3. Aircraft Campaign Observations

To derive the bias of SCIAMACHY CH4 retrievals overpassing the pan-Arctic and evaluate the modeled CH4 vertical profiles in the troposphere, we used CH4 measurements that were collected by three aircraft campaigns: are evaluated by the NOAA/ESRL Carbon Cycle Cooperative Global Air Sampling Network’s aircraft program (http://www.esrl.noaa.gov/gmd/ccgg/aircraft/data.html; Sweeney et al., 2015), the National Institute for Environmental Studies (NIES) aircraft program (Machida et al., 2001; Sasakawa et al., 2013), and the NASA’s Arctic Research of the Composition of the Troposphere from Aircraft and Satellite (ARCTAS) mission. For the NOAA/ESRL aircraft mission observations, CH4 was routinely collected using 0.7 L silicate glass flasks on planned flights with maximum altitude limits of 300–350 hPa. The sampling vertical resolution is up to 400 m in the boundary layer and all samples were analyzed by NOAA/ESRL in Boulder, Colorado. For the NIES aircraft mission, air samples were collected in 550 mL glass flasks over Surgut, West Siberia (61.5°N, 73.0°E) at altitude ranging from 0.5 to 7 km with 0.5–1.5 km intervals. The precision of gas chromatograph analysis for CH4 measurement was estimated to be 1.7 ppb and the NIES-94
scale used in analysis was higher than the NOAA/GMD scale by 3.5–4.6 ppb in a range of 1750–1840 ppb. In ARCTAS, CH₄ was measured over northern Canada by the DACOM tunable diode laser instrument with an estimated accuracy/precision of 1%/0.1%. Central locations of their flights in the pan-Arctic are shown in Fig. 1. Table S2 lists the locations and profiles of the NOAA/ESRL aircraft mission flights used in evaluation.

3. Modeling

Here we describe the prior emissions, the forward model, and the inversion method used to optimize CH₄ emissions in the pan-Arctic on the basis of SCIAMACHY and NOAA/ESRL observations.

3.1. Wetland and Lake CH₄ Emissions

CH₄ emissions estimated by the inverse modeling method can be sensitive to the choice of prior wetland CH₄ fluxes (Bergamaschi, 2007). To assess this sensitivity, we used wetland CH₄ emissions simulated by six well-known wetland biogeochemical models (CLM4Me, DLEM, LPJ-Bern, LPJ-WSL, ORCHIDEE and SDGVM) to setup six different inverse modeling experiments at our inverse model. All wetland CH₄ simulations follow the same protocol of WETland and Wetland CH₄ Inter-comparison of Models Project (WETCHIMP) as described in (Melton et al., 2013; and Wania et al., 2013). Melton et al. (2013) demonstrated that the difference of these estimates primarily arises from the model distinction in CH₄ biogeochemistry and wetland hydrology. These models estimated that the annual global CH₄ emissions from wetlands during 2004–2005 were in the range of 121.7–278.1 Tg yr⁻¹ (Fig. S12 and Table 2) and wetland CH₄ emissions are the highest in tropical regions (e.g., Amazon, Southeast Asia and Tropical Africa) where extensive floodplains and warm environment coexist. In the pan-Arctic,
the modeled annual wetland CH\textsubscript{4} emissions \textit{in 2005 during 2004–2005} were in the range of 9.114–20.925 Tg yr-1 (Fig. 23 and Table 3), and their spatial distribution was mainly
controlled by the modeled or mapped wetland coverage (Melton et al., 2013). As shown in Fig. 23, because of some consistency in simulating wetland hydrology, nearly all models suggest that there were high CH\textsubscript{4} fluxes in West Siberia Lowlands, Finland and Canadian Shield. As our focus is on 2004–2005, we only use one wetland emission scenario from LPJ WSL in our inverse model during 1993–2003 to construct initial conditions. As presented in Fig. S2, before optimization, this prior wetland scenario gives the best fit between GEOS-Chem modeled CH\textsubscript{4} and GLOBALVIEW-CH\textsubscript{4} (GLOBALVIEW-CH\textsubscript{4}, 2009).

Lakes, permanent still-water bodies without direct connection to the sea, are abundant in the pan-Arctic (Lehner and Döll, 2004). Recent studies indicated that pan-Arctic lakes could contribute a significant amount of CH\textsubscript{4} to the atmosphere (Walter et al., 2006; Tan and Zhuang, 2015a) and the emissions could be driven by factors different from wetland emissions, e.g. the supply of labile yedoma permafrost carbon (Walter et al., 2006) and water deep mixing (Schubert et al., 2012). Because the WETCHIMP models cannot account for this source, the biogeochemical models involved in the WETCHIMP project have not included CH\textsubscript{4} emissions from lakes. As CH\textsubscript{4} emissions from pan-Arctic lakes could be significant (Walter et al., 2006; Tan and Zhuang, 2015a) and have different drivers relative to wetland emissions, e.g. the supply of labile yedoma permafrost carbon (Walter et al., 2006) and water deep mixing (Schubert et al., 2012), it is necessary to include this source into the Arctic CH\textsubscript{4} inventory. Instead of the prior CH\textsubscript{4} emissions from pan-Arctic lakes are simulated with a one-dimension process-based lake biogeochemical model, bLake4Me, to simulate CH\textsubscript{4} emissions from pan-Arctic lakes (Tan et al., 2015; Tan and Zhuang, 2015a). The bLake4Me model explicitly parameterizes the control
of temperature and carbon substrate availability on methanogenesis, the control of temperature
and oxygen level on methanotrophy and the transport of gaseous CH₄ by diffusion and ebullition.

The model also includes two thermal modules, governing the heat transport and water phase
echange in both water and sediments column of lakes. A detailed model description and
evaluation can be found in Tan et al. (2015). Model quantification estimates of CH₄
emissions from all lakes north of 60°N was are described by Tan and Zhuang (2015a and 2015b).
On average, the estimated CH₄ emissions from pan-Arctic lakes during the studied period are
approximately 11 Tg CH₄ yr⁻¹, see Fig. 23.

3.2. GEOS-Chem Model

Atmospheric CH₄ mole fractions are simulated by GEOS-Chem v9-01-03
(http://acmg.seas.harvard.edu/geos/index.html), a global 3-D CTM model (Bey et al., 2001). For
the period of 2004–2005, GEOS-Chem could be is driven by either GEOS-4 or GEOS-5
meteorological (met) data from NASA’s Global Modeling Assimilation Office (GMAO). As
GEOS-5 is available only from December 2003, in this study we use GEOS-4 met data from
1993 to 2005 for inverse simulations when only surface measurements are assimilated and
GEOS-5 met data from 2004 to 2005 for inverse simulations when both satellite retrievals and
surface measurements are assimilated. Both the GEOS-4 and The GEOS-5 met data have
horizontal resolution of 1/2° latitude × 2/3° longitude, and 6-hour temporal resolution of 6 hours
and 55 and 72 hybrid sigma-pressure levels extending from Earth’s surface to 0.01 hPa for
GEOS-4 and GEOS-5 met data respectively. In contrast to the global GEOS-Chem
model, the nested-grid version does not include contain algorithms for handling advection near
the North and South Poles (Lin and Rood, 1996). To avoid polar grid boxes, we crop the native
1/2° × 2/3° resolution GEOS-5 met data to a window region (180°W–180°E and 80°N–56°N) for
the pan-Arctic nested grid. To make it consistent with the bLake4Me model, only CH₄ emissions north of 60°N are would be analyzed. We expect that the avoidance of the North Pole only has a minor impact on our inversions because according to Miyazaki et al. (2008) the Northern Hemisphere (NH) extratropics during summer has slow mean-meridional circulation and inactive wave activity but strong vertical transport. Boundary conditions for nested grid simulations are produced using for the same period with by the same period GEOS-Chem 4° × 5° resolution global scale forward runs at 3-hour intervals.

The GEOS-Chem CH₄ simulation was originally introduced by Wang et al. (2004) and updated by Pickett-Heaps et al. (2011). As described by Wecht et al. (2014), the prior anthropogenic sources, including oil/gas production, coal mining, livestock, waste treatment, rice paddies, biofuel burning and other processes, were extracted from Emission Database for Global Atmospheric Research v4.2 (EDGAR4.2) with 0.1° × 0.1° resolution and no seasonality (European Commission, Joint Research Centre/Netherlands Environmental Assessment Agency, 2009). CH₄ emissions from termites and biomass burning were obtained from the study of Fung et al. (1991) and daily Global Fire Emissions Database Version 3 (GFED3) of van der Werf et al. (2010), respectively. CH₄ emissions from wetlands and lakes are from the model simulations were simulated by biogeochemical models described in Section 3.1. Atmospheric CH₄ is mainly removed by tropospheric oxidation initiated by reaction with tropospheric OH, which was computed using a 3-D OH climatology of monthly average concentrations from a previous simulation of tropospheric chemistry (Park et al., 2004). The global mean pressure-weighted tropospheric OH concentration is 10.8×10⁵ molecules cm⁻³. For minor sinks, CH₄ uptake by upland soils was derived from Fung et al. (1991) and CH₄ oxidation in the stratosphere was calculated from the archived CH₄ loss frequency described by Murray et al.
The resulting atmospheric lifetime of CH$_4$ is about 8.9 years, consistent with the observational constraint of 9.1±0.9 years (Prather et al., 2012). We regridded and cropped the anthropogenic and natural CH$_4$ emissions in EDGAR4.2, GFED3 and Fung et al. (1991) for our nested pan-Arctic domain using the Harvard-NASA Emissions Component (HEMCO) software (Keller et al., 2014), marked as “other” in Fig. 23. Compared to CH$_4$ emissions from natural sources Arctic wetlands and lakes, these emissions are relatively small in 2005 (~2.13±2 Tg yr$^{-1}$).

3.3. Inversion Method

Atmospheric inversion is a procedure for using observations of atmospheric gases as constraints to estimate surface gas fluxes. The inverse problem can be characterized by solution of

$$y = F(x) + \varepsilon \quad (3)$$

By applying Bayesian theorem and assuming Gaussian errors, the inverse problem can be solved by minimizing the cost function, $J(x)$, that measures the model deviations from both prior assumptions and observations (Enting et al., 2002; Kopacz et al., 2009):

$$J(x) = (F(x) - y)^T C_d^{-1} (F(x) - y) + \gamma (x - x_0)^T C_{x_0}^{-1} (x - x_0) \quad (4)$$

where y is a vector of observations from SCIAMACHY and NOAA/ESRL, F is a model operator that maps emissions to observations, x represents CH$_4$ emissions to be constrained, x_0 is the a priori estimate of x, C_d is the observational error covariance matrix that includes contributions from model error, representation error (sampling mismatch between observations and the model) and measurement error, and C_{x_0} is the parameter error covariance matrix (containing the uncertainties of the parameters and their correlations). The regularization parameter γ controls
the relative constraints applied by the observational and a priori parts of \(J(x) \) (Kopacz et al., 2009). In the adjoint method, \(\gamma \) is not fixed at unity but determined by analyzing its influence on the minimum of \(J(x) \) (Henze et al., 2007; Kopacz et al., 2009).

Minimization of \(J(x) \) yields the following expression for the maximum a posteriori solution for the state vector \(\hat{x} \) and its associated error covariance \(\hat{C}_x \) (Rodgers, 2000):

\[
\hat{x} = x_0 + \left((\nabla_x F)^T C_d^{-1} \nabla_x F + \gamma C_{x_0}^{-1} \right)^{-1} (\nabla_x F)^T C_d^{-1} (y - F(x_0))
\]

(5)

\[
\hat{C}_x^{-1} = (\nabla_x F)^T C_d^{-1} \nabla_x F + \gamma C_{x_0}^{-1}
\]

(6)

where \(\nabla_x F \) is the Jacobian matrix of the forward model. \(J(x) \) is minimized iteratively through successive forward and backward simulations with the GEOS-Chem model and its adjoint, developed by Henze et al. (2007) and previously applied to CO, CO\(_2\) and CH\(_4\) source inversions (Jiang et al., 2011; Deng et al., 2014; Wecht et al., 2014). The GEOS-Chem adjoint model is a 4DVAR inverse modeling system that allows optimization of a very large number of parameters using at the same time very large sets of observational data, such as satellite data. Rather than optimizing CH\(_4\) emissions directly, it optimizes an exponential scale factor \(e_x \) (\(e_x = \ln(x/x_0) \)) at each grid cell to avoid negative emissions. The posterior error covariance \(\hat{C}_x \) could be approximated by the Davidon-Fletcher-Powell (DFP) or the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) optimization algorithm (Singh et al., 2011; Deng et al., 2014). But the performances of these deterministic methods are usually not promising, subjecting to the choice of initial Hessian, so-called preconditioning (Bousserez et al., 2015). In contrast, approximating \(\hat{C}_x \) by stochastic methods, i.e. Monte-Carlo sampling and Gradient-based randomization, could help avoid the impact of setting initial Hessian (Bousserez et al., 2015). For example, Bousserez et al. (2015) demonstrated that for high-dimensional inverse problems using
a Monte Carlo stochastic approach that samples ensemble members by perturbing x_0 and y in line with C_x and C_y respectively, could guarantee a low relative error (10%) in the variance with as few as 50 members. In this study, the posterior uncertainty of nested-grid inversions was estimated using this method.

For prior emissions, their uncertainties were set as 100% in each grid box and the spatial correlation was set as an e-folding function with spatial correlation lengths of 500 km at the global coarse-4° × 5° resolution (4° × 5°) and of 300 km at the nested grid 1/2° × 2/3° resolution (1/2° × 2/3°) (Bergamaschi et al., 2009). Six global coarse-resolution inversions using different wetland emission scenarios and assimilating both surface CH$_4$ measurements and satellite CH$_4$ retrievals were performed during the period of 2005/01–2005/12. These inversions provided boundary conditions for the following nested-grid inversions. For 1/2° × 2/3° nested-grid inversions, we ran the adjoint model for 50 times over the period of 2005/07–2005/09 for each of twelve scenarios: six wetland scenarios by two data assimilation scenarios. The two data assimilation scenarios include one scenario assimilating only NOAA/ESRL measurements and another scenario assimilating both NOAA/ESRL measurements and SCIAMACHY retrievals.

As described above, the 50-member ensemble run is for the calculation of posterior estimate uncertainty. The steps to construct optimal initial conditions for global and nested inversions are described in the supplementary materials. Optimization is performed in three steps. First, a global coarse-resolution inversion using the LPJ-WSL wetland scenario is run from 1993 to 2005 using surface measurements only. This inversion provides the optimized CH$_4$ fields for the calculation of bias correction functions and initial conditions for the next set of inversions. Next, we run six global coarse-resolution inversions using the wetland CH$_4$ scenarios described in Section 3.1 at two time windows: 2004/01–2004/12 and 2004/07–2005/06. In these global
inversions, both surface measurements and satellite retrievals are assimilated. The inverse
modeling at the 1st time block servers as a spin-up period and the analysis time period is from
July 2004 to June 2005 (Deng et al., 2014; Alexe et al., 2015). Besides optimizing global CH$_4$
fluxes, the global inversions also provide boundary conditions for our nested grid inversions.
Following Turner et al. (2015), we construct time-dependent boundary conditions for the nested
simulations of the adjoint model from the forward model at $4\degree \times 5\degree$ horizontal resolution using
the posterior emissions from a global inversion performed first. This is different from the method
of Wecht et al. (2014) where both emissions and boundary conditions were optimized by
minimizing two separate cost functions iteratively. The last step is thus to run nested grid
inversions in the Arctic at $1/2\degree \times 2/3\degree$ resolution to optimize Arctic CH$_4$ emissions. The
modeling period is from June 24, 2004 to Oct 1, 2004 and the real analysis time is from July 1,
2004 to Oct 1, 2004. As in Wecht et al. (2014), observations in the first week were not assimilated and each optimization was run iteratively at least 40 times until the reduction of its
cost function became less than 0.5% with each successive iteration. This time period is selected
based on two factors. First, due to snow cover and large solar zenith angle, the quality of
SCIAMACHY retrievals in winter is usually low. Second, CH$_4$ fluxes from pan-Arctic wetlands
and lakes are the most pronounced in summer. In the GEOS-Chem adjoint model all steps,
optimization changes its course automatically if local minimum reaches are run iteratively at least
40 times until the reduction of the cost function becomes less than 0.5% with each successive
iteration (Wecht et al., 2014).

3.4. Satellite Retrieval Bias Correction

The importance of bias correction for the assimilation of satellite retrievals in inversion
of CH$_4$ fluxes has been discussed emphasized in many earlier studies (Bergamaschi et al., 2007,
Alexe et al., 2015; Turner et al., 2015). Usually, these studies represented satellite retrieval bias as a regression function of one proxy parameter. These methods relied on regression between a proxy parameter (i.e., latitude, air mass factor or specific humidity) and retrieval bias. Air mass factor was used as a proxy parameter by some studies due to its correlation to spectroscopic errors and residual aerosol errors. Air mass factor was chosen because of the co-variation of spectroscopic errors with the sampled air mass and residual aerosol errors (Cressot et al., 2014; Houweling et al., 2014) and specific humidity was chosen because water vapor is the main cause of SCIAMACHY seasonal bias that lags the variations of solar zenith angle (Houweling et al., 2014). Relative to air mass factor and humidity, many studies used seasonal and latitudinally varying functions for bias correction because they can represent the changes in both solar zenith angle and climate variables (Bergamaschi et al., 2007, 2009, 2013). It was used by more studies. Considering that different proxies can account for different errors, the system bias of satellites may be better represented by multiple proxy parameters. It is likely that retrieval bias can be better represented if the effects of air mass change and climate system change can be accounted for together.

To test this hypothesis, we compared the performances of three traditional one-proxy methods (latitude φ, air mass factor A_F, specific humidity H_S) and two new two-proxy methods (latitude + humidity, air mass factor + humidity), listed in Table 1. These methods were evaluated using two reference values: the difference between the satellite-retrieved and the GEOS-Chem modeled CH$_4$ column mixing ratios and the Bayesian Information Criterion (BIC) score. The BIC criterion is widely used for regression model selection and aims to award a model that fit measurements with the least model parameters. After constraining the GEOS-
Chem model with surface measurements. In the study, we would select the bias correction method that gives the smallest difference between the measured and modeled CH$_4$ column mixing ratios and the lowest Bayesian Information Criterion (BIC) BIC score will be used.

Specific humidity is taken from the European Centre for Medium-Range Weather Forecasts (ECMWF)'s ERA-20C reanalysis product (http://apps.ecmwf.int/datasets/data/era20c-daily), averaged by the column between the surface and 3 km altitude (Houweling et al., 2014). The air mass factor and central latitude of CH$_4$ retrievals are directly available in the SCIAMACHY IMAP v6.0. For bias correction, we first optimize the GEOS-Chem 4-D CH$_4$ mixing ratios by an inversion using surface measurements and then sample the modeled XCH$_4$ at the coordinates and time of SCIAMACHY retrievals and with local averaging kernels applied. The difference between SCIAMACHY and GEOS-Chem values (Fig. 1a) is regressed with proxy factors to obtain the optimal bias correction. As suggested by Turner et al. (2015), it is more likely that grid squares between 50°S and 50°N with residual standard deviation (RSD) in excess of 20 ppb are dominated by model bias in prior emissions. Thus, we exclude such grid squares in regressions. Further, satellite retrievals with low precisions (the ratio of retrieval precision error to retrieval is larger than 3%) are removed from analysis. In our experiments, all bias correction functions were updated monthly. Unlike Bergamaschi et al. (2009), we do not further optimize bias correction functions in the inversion cycle because such an optimization could make bias correction account for the uncertainties that should not be dealt with by correction, e.g., unaccounted model errors or even the sources and sinks (Houweling et al., 2014). As listed in Table 1, the “latitude only” correction performs the best among within the three single-proxy correction methods and is only slightly worse than the best correction method “latitude + humidity” correction method in our test. The “air mass factor only” method does not work as well.
in our experiment. Turner et al. (2015) suggested that it could be attributed to a potential bias in the GEOS-Chem simulation of CH$_4$ in the polar stratosphere. This implies that the latitude polynomial correction used in most previous CH$_4$ inversions is appropriate. As the “latitude + humidity” method has the smallest model-data difference and the lowest BIC score performs the best, we applied it is applied for satellite bias correction in all global inversions this study.

For SCIAMACHY retrievals overpassing the pan-Arctic, because the modeled atmospheric CH$_4$ could be less reliable, we used another bias correction method. According to a comparison between SCIAMACHY and the high-precision Total Carbon Column Observing Network (TCCON) measurements, the system bias of SCIAMACHY retrievals could be closely correlated with specific humidity averaged over the lowest 3 km of the atmosphere (Houweling et al., 2014). And Wecht et al. (2014) has demonstrated that this humidity-proxy method shows promising performance in debiasing SCIAMACHY retrievals overpassing North America. In this study, we sought a similar linear regression relationship between SCIAMACHY bias and specific humidity. First, we detected the SCIAMACHY bias by comparing SCIAMACHY retrievals with CH$_4$ vertical profiles measured by the NOAA/ESRL aircraft mission over Alaska, USA, the NIES aircraft mission over Siberia, Russia and the NASA/ARCTAS aircraft mission over Alberta, Canada. Before comparison, these CH$_4$ vertical profiles had been mapped to the SCIAMACHY retrieval pressure grid using Eq. (1) and (2). Fig. 3 (left) shows that the retrieved system bias (ΔXCH$_4$) has a negative relationship with air humidity. Because the pan-Arctic is normally dry, SCIAMACHY retrievals could be lower than atmospheric CH$_4$ column average mixing ratios in most of days.

After bias correction, we estimated the error variances of SCIAMACHY observations retrievals were estimated (Fig. 1b) using the relative residual error (RRE) method described by
Heald et al. (2004). Fig. S2 shows the error variances of SCIAMACHY retrievals in the global scale and Fig. 3 (right) shows the error variances in the nested grid. In both global and nested grid inversions, the total error of individual SCIAMACHY retrievals is assumed to be at least 1.5% (Bergamaschi et al., 2007; Frankenberg et al., 2011). Fig. 1d indicates that the correction greatly reduces model-satellite differences in tropical areas of America, Africa and South Asia and also reduces the difference in Australia and some areas of the United States. As shown in Fig. 1c, the agreement between GEOS-Chem and SCIAMACHY XCH₄ is also improved at the global scale. However, because the model-data difference in East Asia has an opposite latitude dependence to that in other areas of the same latitudes (Fig. 1a), the correction deteriorates the model-satellite agreement there (Fig. 1d). The observational error of the NOAA/ESRL CH₄ mixing ratios is estimated as the sum of measurement error (~0.2%) and representation error. Similar to satellite retrievals, the representation error of surface measurements is defined as the standard deviation of the difference of surface CH₄ concentration residuals differences between NOAA/ESRL measurements and GEOS-Chem. And the CH₄ residuals are calculated by subtracting the simulated or observed CH₄-mixing ratios by a fitted polynomial trend (Masarie and Tans, 1995).

4. Results and Discussion

4.1. Optimized Global CH₄ Emissions

As shown in Fig. 4, the posterior global and regional CH₄ emissions exhibit a strong seasonal variability during 1993–2005, which is mainly driven by the sensitivity of methanogenesis in natural sources to temperature (e.g., wetlands). During this period, there are prominently positive CH₄ emission anomalies in 1994 (+27.4 Tg CH₄) and 1998 (+34.6 Tg CH₄), and prominently negative anomalies in 1997 (−18.4 Tg CH₄), 2001 (−20.5 Tg CH₄) and 2005 (−
22.3 Tg CH$_4$). The 1998 CH$_4$ emission peak has been documented in many studies (e.g., Dlugokencky et al., 2001; Rigby et al., 2008). Dlugokencky et al. (2001) attributed this anomaly to an increase in the imbalance between CH$_4$ sources and sinks equal to ~24 Tg CH$_4$, suggested to be caused by an increase of wetland emissions in both tropical regions (13 Tg CH$_4$) and the Northern Hemisphere (11.6 Tg CH$_4$) and a severe fire year in boreal regions (5.7 Tg CH$_4$).

However, according to Fig. 4, wetlands only contributed a small amount of emission increase during 1998 (9.1 Tg CH$_4$) and most of the increase was from other sources (e.g., biomass burning) in both tropical and high-latitude regions. Our findings are consistent with the claim of Langenfelds et al. (2002) that two CH$_4$ emission pulses in 1994 and 1998 could be linked with large biomass burning events in tropical and boreal regions. During 1993–1996, the annual mean of global CH$_4$ emissions was 534 Tg CH$_4$ yr$^{-1}$, slightly lower than the estimate (549±7 Tg CH$_4$ yr$^{-1}$) of Dlugokencky et al. (1998). During 1993–2005, there are no visible trends for wetland emissions in tropical, northern mid-latitude and northern high-latitude regions. Also, the annual mean of global CH$_4$ emissions did not change between 1993 and 2004, coinciding with the leveling off of CH$_4$ growth rate since the 1990s (Dlugokencky et al., 1998 & 2003). Kai et al. (2011) claimed that the evolution of CH$_4$ mixing ratios in the recent decades was a result of long-term reduction in agricultural emissions (i.e., rice paddies) or landfills emissions within the Northern Hemisphere. In Fig. 4b, the long-term decline of CH$_4$ emissions from tropical non-wetland sources seems to provide some support to this argument. But as the finding of inter-hemispheric δ13CH$_4$ is questionable (Levin et al., 2012), it is uncertain whether this declined tropical source is in the Northern Hemisphere.

As listed in Table 2, when both NOAA/ESRL measurements and SCIAMACHY retrievals were assimilated, the posterior estimates of total emissions in 2005 show good
convergence at a narrow range of 496.4–511.5 Tg CH$_4$ yr$^{-1}$, albeit our six prior scenarios span in a wide range (471.5–627.8 Tg CH$_4$ yr$^{-1}$). The posterior global CH$_4$ emissions using both NOAA/ESRL and SCIAMACHY observations and different prior wetland scenarios are shown in Fig. 5 and also listed in Table 2. Since total emissions are constrained by the atmospheric burden of CH$_4$ and the CH$_4$ lifetime, while the prior CH$_4$ fluxes in six scenarios are different in a wide range of estimates (471.5–627.8 Tg CH$_4$ yr$^{-1}$), the posterior global CH$_4$ emissions converge into a very narrow zone (496.4–511.5 Tg CH$_4$ yr$^{-1}$). Because the total of global emissions is constrained by the atmospheric CH$_4$ burden and lifetime, this convergence probably suggests that the surface measurements from the NOAA/ESRL network observations are of sufficient density and accuracy to represent the global CH$_4$ burden and emissions if assuming the CH$_4$ lifetime is being correct. However, in contrast, the posterior CH$_4$ emissions differ largely between different wetland emission scenarios in the TransCom3 land regions. For example, in the DLEM inversion, the estimated CH$_4$ emissions from the Eurasian temperate region are as large as 146.1 Tg CH$_4$ yr$^{-1}$. But in the CLM inversion, the total of these emissions is only 84.9 Tg CH$_4$ yr$^{-1}$. Also, for CH$_4$ emissions from the South American tropical region, the estimate is 31.4 Tg CH$_4$ yr$^{-1}$ in the DLEM inversion but nearly two times larger (62.3 Tg CH$_4$ yr$^{-1}$) in the SDGVM inversion. There are several possible explanations for the large differences between the scenarios: high-precision surface measurements could be not of sufficient density in regional scales, satellite retrievals could be not of sufficient accuracy, and the GEOS-Chem model and its priors could be not of high temporal and spatial resolutions to resolve satellite retrievals. There are still not enough high-precision measurements at regional scales, resulting in large differences between the posterior emissions in the TransCom3 land regions (Table 2). A
detailed comparison between our estimates and previous inversion studies at the global scale is presented in the supplementary materials.

There have been many studies that assimilated surface and/or satellite observations into a CTM inverse model to constrain global CH$_4$ fluxes, see Kirschke et al. (2013) for review. For instance, using the same observations suite, Bergamaschi et al. (2009) estimated that in 2004, CH$_4$ emissions in global, tropical (30°S–30°N), northern extratropical (30°N–90°N) and southern extratropical (90°S–30°S) zonal areas were 506.7 Tg CH$_4$ yr$^{-1}$, 323.5 Tg CH$_4$ yr$^{-1}$, 172.8 Tg CH$_4$ yr$^{-1}$ and 10.4 Tg CH$_4$ yr$^{-1}$, respectively. These large-scale estimates are consistent with our calculations: 284.5–319.6 Tg CH$_4$ yr$^{-1}$ (tropical), 165.3–206.6 Tg CH$_4$ yr$^{-1}$ (northern extratropical) and 10.0–13.9 Tg CH$_4$ yr$^{-1}$ (southern extratropical). This agreement reflects that GEOS-Chem adjoint and TM5-4DVAR are consistent in the atmospheric transport, chemistry and inverse modeling methods. In contrast to Bergamaschi et al. (2009), our inversions tend to allocate more emissions to extratropical regions. As a result, the tropical total (SATr + NAF + SAF + TrA) of the six inversions is in the range of 114.1–169.7 Tg CH$_4$ yr$^{-1}$, which is much lower than their estimate of 203.2 Tg CH$_4$ yr$^{-1}$. The most likely reason for this discrepancy from Bergamaschi et al. (2009) is that we use a much larger correction to the SCIAMACHY data in tropical regions.

The posterior CH$_4$ emissions from wetlands in our four scenarios (Bern, CLM4Me, SDGVM and WSL) are close to the estimate (~161 Tg CH$_4$ yr$^{-1}$) of Bloom et al. (2010) for 2003–2007 based on CH$_4$ and gravity-spaceborne data to constrain large-scale methanogenesis. Our estimates are also close to the inferred CH$_4$ emissions (175±33 Tg CH$_4$ yr$^{-1}$) from natural wetlands by Kirschke et al. (2013). By using artificial neural networks, Zhu et al. (2013) estimated that from 1990 to 2009, annual wetland CH$_4$ emissions from northern high latitudes (>45°N) are in the
range of 44.0–53.7 Tg CH$_4$ yr$^{-1}$, agreeing with the estimates of the Bern, CLM4Me and SDGVM scenarios.

The renewed growth of atmospheric CH$_4$ since 2007 has been observed by several studies (Rigby et al., 2008; Dlugokencky et al., 2009; Nisbet et al., 2014). According to Nisbet et al. (2014), the global growth rate was about 6 ppb yr$^{-1}$ from 2007 to 2012. Assuming 1 ppb equivalent to 2.75 Tg CH$_4$ in the entire atmosphere (Khalil et al., 2007) and the lifetime of atmospheric CH$_4$ constant, the estimated global CH$_4$ emissions during 2010–2011 should be at most 49.5 Tg larger than the estimated during 2004–2005. The higher CH$_4$ emissions after 2007 were also demonstrated by other top-down studies: 539 Tg CH$_4$ yr$^{-1}$ during 2009–2011 (Turner et al., 2015) and 538±15 Tg CH$_4$ yr$^{-1}$ during August 2009–July 2010 (Cressot et al., 2014). When comparing the estimate of Alexe et al. (2015) for 2010–2011 with our estimates (Table 2), the difference is in the range of 29–44.1 Tg CH$_4$ (Table 2), consistent with these independent studies. Our estimates also agree well with the inference of Houweling et al. (2014) that global CH$_4$ emissions in 2004 were close to 500 Tg CH$_4$ yr$^{-1}$ and the emissions rose by 27–35 Tg CH$_4$ yr$^{-1}$ after July 2006. In contrast, the ensemble Kalman filter assessment in Fraser et al. (2013) involving GOSAT observations and GEOS-Chem is 510.6±18.4 Tg CH$_4$ yr$^{-1}$ for the period June 2009–December 2010 (Table 2). If we assume GEOS-Chem simulated correct CH$_4$ sink, they mean Fraser et al. (2013) may probably underestimated the emissions during this period because the calculated increase from 2004 to 2009 is too low (~10 Tg CH$_4$ yr$^{-1}$).

As shown in Fig. 5a, the highest CH$_4$ fluxes are located in the Amazon, China, Southeast Asia, North America and Europe where extensive wetlands or large population exist. Our inversions indicate that the Eurasian temperate regions, including China, North America and Europe, emitted much more CH$_4$ than other regions (Table 2), showing the dominance of
anthropogenic sources in the global CH$_4$ inventory. As presented in Fig. 5c, our inverse model reduces the CH$_4$ emissions from China, the Amazon basin and Eurasian boreal region (scale factor < 1) but enhances the emissions in Europe and Southeast Asia (scale factor > 1) relative to the prior. This adjustment could be primarily driven by the constraints of the surface measurements and satellite retrievals and secondarily by the satellite bias correction.

4.2. Optimized pan-Arctic CH$_4$ Emissions

When using both surface measurements and satellite retrievals, our estimated CH$_4$ emissions over the pan-Arctic are in the range of 11.9–28.5 Tg CH$_4$ yr$^{-1}$. The simulation is the largest in the ORCHIDEE scenario and the smallest in the SDGVM scenario: 24.9±3.6 Tg CH$_4$ yr$^{-1}$ and 16.1±4.2 Tg CH$_4$ yr$^{-1}$, respectively. Regionally, posterior CH$_4$ emissions from Alaska, northern Canada, northern Europe and Siberia are 0.3–3.4 Tg CH$_4$ yr$^{-1}$, 1.3–7.9 Tg CH$_4$ yr$^{-1}$, 0.8–8.1 Tg CH$_4$ yr$^{-1}$ and 4.4–14.9 Tg CH$_4$ yr$^{-1}$, respectively. Same as the global inversions, the difference of the nested-grid inversions between different scenarios is much larger than the total uncertainty of priors and observations of each scenario: 16.6 Tg CH$_4$ yr$^{-1}$ vs. 5.5 Tg CH$_4$ yr$^{-1}$. In these regions, CH$_4$ emissions from Siberia are more uncertain (Fig. 5), a possible indication of the lack of high-quality measurements in Siberia for assimilation. Our results also indicate that the assimilation of SCIAMACHY retrievals overpassing the pan-Arctic can reduce the estimate uncertainty. For example, for the BERN scenario, the posterior uncertainty is about 18%, much smaller than the inversion that only assimilates NOAA/ESRL measurements (27%). And for the CLM scenario, the posterior uncertainty increases from 16% to 23% when only surface measurements were assimilated. In contrast to the global CH$_4$ inversions, total posterior CH$_4$ emissions from the Arctic nested-grid inversions span a wide range: 14.6–30.4 Tg CH$_4$ yr$^{-1}$ (Table 3). It reflects a strong influence from both the priors (Fig. 3) and the nested-grid...
boundaries (Berchet et al., 2015) on the posteriors (Fig. 6). Across six Arctic inversions, the
range of the posterior is not smaller than the range of the prior (25.7–39.9 Tg CH$_4$ yr$^{-1}$) and the
mean departure of the posterior from the prior is 10.1 Tg CH$_4$ yr$^{-1}$. This divergence implies that
due to uncertain boundary conditions (Berchet et al., 2015), the surface and satellite observations
in the Arctic cannot provide sufficient constrains to reduce the estimate uncertainty. Further, as
presented in Table 3 and Fig. 6, this lack of constraint from the observations mainly occurs in
Siberia and causes large uncertainties in the estimates of Siberian wetland CH$_4$ emissions (2.0–
12.7 Tg CH$_4$ yr$^{-1}$). Our estimates are consistent with other inverse modeling estimates. For
example, Kirschke et al. (2013) reviewed a series of top-down estimation of CH$_4$ emissions and
suggested that CH$_4$ emissions north of 60°N could be in the range of 12–28 Tg CH$_4$ yr$^{-1}$, very
close to our estimate. This consistency could reflect the robustness of our nested-grid GEOS-
Chem adjoint model and the good constraint of the NOAA/ESRL sites over the pan-Arctic on the
atmospheric CH$_4$ field. Our estimates also imply that CH$_4$ emission from the pan-Arctic could
constitute a large fraction of CH$_4$ emissions in the northern high latitudes (> 50°N). In
comparison with the inverse modeling of Based on the estimate (50 Tg CH$_4$ yr$^{-1}$) of Monteil et al.
(2013), we calculated that we estimate that the annual total CH$_4$ emission from the pan-Arctic (> 60°N) is 29.2–60.8% of their estimate (50 Tg CH$_4$ yr$^{-1}$) for CH$_4$ emissions in the northern high
latitudes could be emitted from the pan-Arctic (> 60°N). For all scenarios, the inverse modeling
adjusts total CH$_4$ emissions downward compared to prior emissions. It is possible that CH$_4$
emissions are overestimated by the biogeochemical models or double counted between the
wetland and lake models or both. This adjustment could also be explained by the underestimate
of CH$_4$ absorption by soils in biogeochemical models due to the missing of high-affinity
methanotrophy (Oh et al., 2016). Because all inversions estimate lower CH$_4$ emissions than the
priors, it is possible that CH₄ emissions from Arctic wetlands, lakes and other sources are overestimated by the biogeochemistry models and EDGAR dataset. In contrast to other sources, the estimated CH₄ emissions from Arctic lakes are less divergent in the nested-grid inversions except for the ORCHIDEE scenario, as presented in Fig. 7 and Table 3. There are two reasons for this convergence: 1) CH₄ fluxes from lakes are low in those poorly constrained regions, e.g. Northeastern Europe and Central Siberia, and 2) we only use one lake prior scenario in the inversions. The exception of the ORCHIDEE inversion could be explained by that the ORCHIDEE model simulates very high wetland CH₄ fluxes in Canadian Shield, West Siberia Lowlands and East Siberia Coastal Lowlands where high CH₄ fluxes from lakes are also possible (Fig. 3). For CH₄ emissions from Arctic lakes, our estimates, 5.4–7.9 Tg CH₄ yr⁻¹, are close to the lower bound of the estimate (7.1–17.3 Tg CH₄ yr⁻¹) in Bastviken et al. (2011) with upscaling site-level observations. Even if the lake source is reduced, on average, by 40% by the inversions, the remaining amounts are still much higher than the previous estimate of ~4 Tg CH₄ yr⁻¹ in Gao et al. (2013). This emphasizes the importance of including pan-Arctic lakes in the carbon cycle. When the ORCHIDEE scenario is excluded, annual CH₄ emissions from lakes in Alaska, northern Canada, northern Europe and northern Siberia are, on average, 1.0 Tg CH₄ yr⁻¹, 3.1 Tg CH₄ yr⁻¹, 0.6 Tg CH₄ yr⁻¹ and 2.8 Tg CH₄ yr⁻¹, respectively. These estimates correspond to 1.2 Tg CH₄ yr⁻¹, 5.0 Tg CH₄ yr⁻¹, 0.6 Tg CH₄ yr⁻¹ and 5.0 Tg CH₄ yr⁻¹ in Tan and Zhuang (2015a) without optimization. The posterior CH₄ emissions from lakes in northern Canada are closer to the estimate of 2.6±0.4 Tg CH₄ yr⁻¹ in Tan and Zhuang (2015b) because thermokarst lakes in northern Canada can be better identified by a high-resolution landscape evolution model in Tan and Zhuang (2015b) than by coarse-resolution geographic datasets in Tan and Zhuang (2015a). The posterior lake emissions from northern Siberia are much smaller than the modeled (Tan and
There are two possible reasons for the larger estimates of the lake model: 1) the model overestimates thermokarst active zone of yedoma lakes; and 2) four high-flux yedoma lakes that are used for calibration are not good representative of all yedoma lakes. For European lakes, Saarnio et al. (2009) estimated that they are a CH\(_4\) source of 1.48 Tg CH\(_4\) yr\(^{-1}\). This means that CH\(_4\) emissions from lakes in northern Europe (>60°N) could constitute 40% of CH\(_4\) emissions from all European lakes. By upscaling site observations to northern Canada, Laurion et al. (2010) found that annual diffusive CH\(_4\) emission from Canadian thaw ponds was 1.0 Tg CH\(_4\). Since ebullition could be much stronger than diffusion in transporting CH\(_4\) (Bastviken et al., 2011), our estimate of 3.1 Tg CH\(_4\) yr\(^{-1}\) from Canadian lakes should not be considered a large overestimate, as indicated in Tan and Zhuang (2015b).

In contrast to CH\(_4\) emissions from pan-Arctic wetlands, CH\(_4\) emissions from pan-Arctic lakes at large spatial scales are still largely unknown. Consensus has not been reached yet on how to apply the knowledge learnt from individual lakes to the pan-Arctic scale, because even lakes in a small area could have much different transport pathways (ebullition vs. diffusion), morphology (deep vs. shallow and large vs. small), eutrophication (eutrophic vs. oligotrophic) and carbon source (thermokarst vs. non-thermokarst and yedoma vs. non-yedoma). Scientists have not reached a consensus on the importance of Arctic lakes to the global CH\(_4\) cycle because only a limited number of Arctic lakes have been observed and their characteristics (e.g., morphology, eutrophication and carbon input) are more heterogeneous. Because wetlands and lakes, both inundation landscapes, are usually neighbored, it is difficult to use inverse modeling at coarse spatial scales to detect strong CH\(_4\) emissions that are emitted solely by lakes. To test whether high-resolution inversions can better represent CH\(_4\) emissions from lakes, we conducted a comparison test ("DLEM only") over the East Siberia Coastal Lowlands (Fig. 1) using the
DLEM model and excluding CH$_4$ emissions from lakes. We chose the East Siberia Lowlands to test our hypothesis as lakes there occupy 56% of the water-inundated landscapes, i.e. lakes, wetlands and rivers (Lehner and Döll, 2004) and a large fraction of lakes in the region are high-flux yedoma lakes (Walter et al., 2006). We chose the DLEM model considering that the simulated wetland CH$_4$ emissions in this model are weak for the East Siberia Lowlands. This design is also aimed to alleviate the impact of one major shortcoming: because there are not sufficient high-quality observations. In this study, as the constraints of observations are limited, we only optimized total CH$_4$ emission in each grid cell separately for wetlands and lakes and fix the weight of each source during our inversions. Since wetlands and lakes are usually spatially neighbored, this operation could attribute and in this manner - a fraction of lake emissions could be attributed incorrectly to wetlands or vice versa. To verify the possibility of large CH$_4$ emissions from pan-Arctic lakes, we conducted a nested-grid inversion in the Arctic based on the DLEM scenario that did not include CH$_4$ emissions from lakes as a comparison. The DLEM scenario was chosen because as presented in Fig. 3 its simulated wetland emissions are less spatially overlapped with the simulated lake emissions. The inversion of the “DLEM only” scenario is shown in Fig. S5. In comparison to Fig. 4c, CH$_4$ emissions from the East Siberia Coastal Lowlands are low in Fig. S5. A further comparison of model-satellite agreement between the DLEM scenario and this no-lake scenario reveals that the agreement improves impressively when lake emissions are considered (see Fig. 6). It implies that CH$_4$ emissions from regional lakes could be significant. As illustrated above, however, the spatial neighborhood of wetlands and lakes makes it difficult to conduct operate similar experiments in other areas. Thus we are cautious to claim that CH$_4$ emissions from lakes are ubiquitously strong across the pan-Arctic. Rather, since we used six wetland models that can simulate very different wetland emission
distributions at spatial and temporal scales, our estimates of $2.4 - 14.2 \text{Tg CH}_4 \text{yr}^{-1}$ for lake emissions could be more useful in explaining the range of this source. This no-lake inversion shows that there are low CH$_4$ fluxes in the East Siberia Coastal Lowlands, a region with extensive high-flux yedoma lakes (Walter et al., 2006). In comparison with the original test, this no-lake inversion produces a larger mean difference between the observed and simulated posterior SCIAMACHY XCH$_4$, 27.4 ppb vs. 26.5 ppb. The 0.9 ppb difference is impressive considering the influence of nested-grid model boundaries. For instance, Berchet et al. (2015), even using high-precision surface measurements collected from eight West Siberian Plain sites, only reduced the difference of the observed and simulated posterior GOSAT XCH$_4$ by 1.5 ppb in an Eurasian-scale inversion. Another sign that SCIAMACHY XCH$_4$ can be much better represented by including lake emissions is that the no-lake inversion only reduces the simulated prior SCIAMACHY XCH$_4$ deviation by 0.1 ppb. Thus, the no-lake scenario probably misses some significant CH$_4$ emissions in the coastal lowlands. Because 56% of the water-inundated landscapes (i.e., lakes, wetlands and rivers) in this region are lakes (Lehner and Döll, 2004), lakes, especially yedoma lakes, could have contributed a large fraction of the missed CH$_4$ emissions. The lower bound of our estimate is much smaller than the estimate of $7.1 - 17.3 \text{Tg CH}_4 \text{yr}^{-1}$ by Bastviken et al. (2011) in the use of extensive site-level observations. In contrast, the upper bound of our estimate is within the range. Given the wide span of this estimate, it is difficult to say whether CH$_4$ emissions from pan-Arctic lakes can be significant across the region.

Arctic tundra is regarded as an important source of CH$_4$ in the northern high latitudes. By using process-based models and atmospheric CH$_4$ observations, McGuire et al. (2012) estimated that Arctic tundra was a source of 25 Tg CH$_4$ yr$^{-1}$ to the atmosphere during 1990–2006. By using the TM5-4DVAR inverse model and assimilating with SCIAMACHY and NOAA/ESRL
observations, Alexe et al. (2015) estimated that CH$_4$ emissions from Arctic wetlands were 18.2 Tg CH$_4$ yr$^{-1}$ for 2010–2011. A similar estimate of 16±5 Tg CH$_4$ yr$^{-1}$ was also made by Bruhwiler et al. (2014) using the CarbonTracker-CH$_4$ assimilation system. Our estimates of 14.2±0.4 Tg CH$_4$ yr$^{-1}$ overlaps with the estimate of Bruhwiler et al. (2014) but is much lower than the estimates of Alexe et al. (2015) and McGuire et al. (2012). However, McGuire et al. (2012) did not use complex inverse models and Alexe et al. (2015) used the coarse-resolution TM5-4DVAR inverse model. As our global inversions (Table 2) are consistent with the estimate of Alexe et al. (2015), this difference is likely introduced by the use of the nested-grid inverse model. In other words, the nested-grid inverse model reveals some information that could be missed in global coarse-resolution inversions, encompass the estimates of Alexe et al. (2015) and Bruhwiler et al. (2014) but are lower than that of McGuire et al. (2012). For Siberian wetlands, they could emit much more CH$_4$ (1.6–7.6 Tg yr$^{-1}$) than any other areas. But the uncertainty of this source is also the largest. Using several flux towers near to Siberian wetlands, Berchet et al. (2015) estimated that CH$_4$ emissions from Siberian wetlands were in the range of 1–13 Tg CH$_4$ yr$^{-1}$, wider than our estimated range. In addition, our estimate is also much smaller than the estimate of 21.63 ± 5.25 Tg CH$_4$ yr$^{-1}$ by Kim et al. (2012) for annual mean CH$_4$ emissions from Siberian wetlands during 2005–2010. As discussed, the uncertainty mainly arises from CH$_4$ emissions from Siberian wetlands. Regionally, when the ORCHIDEE scenario is excluded, annual CH$_4$ emissions from wetlands in Alaska, northern Canada, northern Europe and northern Siberia are, on average, 0.129 Tg CH$_4$ yr$^{-1}$, 0.4–4.8 Tg CH$_4$ yr$^{-1}$, and 0.7–3.6 Tg CH$_4$ yr$^{-1}$, respectively. For Alaskan wetlands, the estimated total of posterior CH$_4$ emissions from Alaskan wetlands is much lower than the inferred value of 4.1 Tg CH$_4$ yr$^{-1}$ for the Alaskan Yukon River basin during 1986–2005 using the
modeling of process-based CH$_4$ biogeochemistry and large-scale hydrology (Lu and Zhuang, 2012) and also much lower than the inferred value of 3 Tg CH$_4$ yr$^{-1}$ for the whole of Alaska (Zhuang et al., 2007). As wetlands in Europe are predominantly located north of 60$^\circ$N, our estimate of wetland emissions from northern Europe is very close to a European-scale estimate of 3.6 Tg CH$_4$ yr$^{-1}$ by Saarnio et al. (2009), agreeing with the investigation that wetlands in Europe are predominantly located north of 60$^\circ$N. The posterior CH$_4$ emissions from Siberian wetlands show a wide range (2.0–12.7 Tg CH$_4$ yr$^{-1}$), which are much smaller than the estimate of 21.63 ± 5.25 Tg CH$_4$ yr$^{-1}$ by Kim et al. (2012) for the annual mean CH$_4$ emissions from Siberian wetlands during 2005–2010. Assimilating in situ CH$_4$ measurements collected at 13 Eurasian sites in Siberia, Finland, Mongolia, China and South Korea, Berchet et al. (2015) estimated that CH$_4$ budget on the West Siberian Plain was 5–28 Tg CH$_4$ for 2010. It is also larger than our estimate but shows a similar large uncertainty.

4.3 Method Evaluation

Fig. 8 shows the difference between the modeled and observed CH$_4$ mixing ratios at NOAA ship board sampling stations and aircraft vertical profile sites under different wetland scenarios before and after the global scale inversions. For most scenarios, inversion improves the representation of CH$_4$ mixing ratios in GEOS-Chem at both marine and inland boundary layers and free troposphere. Specifically, the CLM4Me scenario performs best in the evaluation by reducing the difference by more than 10 ppb. Because this scenario also produces global and wetland CH$_4$ fluxes consistent with earlier studies (as described in Section 4.1), it is likely that the spatial pattern of CH$_4$ fluxes simulated by the CLM4Me model is more realistic than the other scenarios at the global scale.
As shown in Fig. 7, in most of scenarios, the nested grid inversions perform much better than both the forward simulations and the global inversions at NOAA/ESRL pan-Arctic flask sites (Fig. 1). For example, for the ORCHIDEE scenario, the nested grid inversion reduces the model bias by 44 ppb relative to the forward run and by 20 ppb relative to the global inversion, respectively. Also, for the SDGVM scenario, it reduces the model bias by 22 ppb relative to the forward run and by 13 ppb relative to the global inversion, respectively. But for aircraft CH$_4$ measurements, it is more complex. The nested grid inversions can reduce the model bias in some scenarios greatly, i.e. the CLM4Me scenario and the SDGVM scenario. But in many cases, they do not perform visibly better than the forward runs and the global inversions. One possible reason is that the aircraft CH$_4$ RMS has already been low and thus the remaining errors, including the representation error of model diurnal variability, cannot be resolved by our current inversion system. For example, CH$_4$ emissions from Alaska can be well constrained by three NOAA/ESRL surface sites in Alaska (BRW, CBA and SHM) and the CH$_4$ mixing ratios at the aircraft PFA site are representative of the interior of Alaska as pointed out in Sweeney et al. (2015). It is also possible that the increase of grid cells in the nested grid inversions introduced more transport and computation errors. Fig. 9 compares the modeled and observed CH$_4$ mixing ratios at the PAL surface station, in Finland and the PFA aircraft vertical profile site, in Alaska before and after the nested grid inversions. These two stations are near the main CH$_4$ sources in northern Europe and Alaska, respectively. For PFA, the nested grid inversions perform better than the nested grid forward run but do not have clear advantage over the global inversions. The reason for this could be that CH$_4$ emissions from Alaska can be well constrained by three NOAA/ESRL surface sites in Alaska (BRW, CBA and SHM) and the CH$_4$ mixing ratios at PFA are representative of the interior of Alaska as was pointed out in Sweeney et al. (2015).
4.34. Further Discussion

Both the global and nested-grid inversions indicate that the inverse modeling is more sensitive to different wetland models than prior emission error and data error. Thus, to gain better understandings of the global and pan-Arctic CH$_4$ cycles, it is important to develop more realistic biogeochemical models. Especially, from the perspective of inverse modeling, focus should be put on improving the spatial and temporal representation of the models rather than emission magnitude.

For the high-resolution inverse modeling, transport and computation errors of the nested-grid CTMs need to be reduced for better performance. These CTMs can also benefit the efforts to assimilate aircraft CH$_4$ measurements. For the purpose of satellite data bias correction, more coordination between satellite missions and aircraft missions is demanded. The treatment of the SCIAMACHY bias could be an important uncertainty source for our estimates, as suggested by Houweling et al. (2014). Future top-down studies could benefit from a more reasonable bias correction method, even for low bias satellite products, e.g. GOSAT (Alexe et al., 2015).

As described in Section 4, there are still several issues limiting the accuracy of our estimates. First, although the stronger zonal and weaker vertical transport characteristics of northern high latitudes is thought to help transport flux information to the pan-Arctic sites (e.g., Shemya, Barrow and Cold Bay), CH$_4$ sources in some regions of the Arctic, e.g. Siberia, are still poorly constrained by the assimilated measurements. In theory, because surface and aircraft measurements have much lower uncertainties than satellite retrievals, it is possible to refine our estimates by incorporating site measurements near Siberia, such as the Surgut site of National Institute for Environmental Studies (NIES) (Machida et al., 2001). The uncertainty of
SCIAMACHY retrievals likely also need to be revisited. The assumed 1.5% minimum uncertainty for SCIAMACHY retrievals in this study could be somewhat overestimated (Bergamaschi et al., 2007), which limits their potentials to provide constraints on CH$_4$ fluxes. The treatment of the SCIAMACHY bias could be an important uncertainty source for our estimates, as suggested by Houweling et al. (2014). Future top-down studies could benefit from a more reasonable bias correction method, even for low bias satellite products, e.g. GOSAT (Alexe et al., 2015).

The attribution of CH$_4$ fluxes to spatially overlapped sources, e.g. wetlands and lakes, could be problematic for even high-resolution inversions. Carbon isotope measurements (δ^{13}CH$_4$) are widely used to separate biogenic and geologic CH$_4$ sources (Langenfelds et al., 2002) but are not useful for two biogenic sources with similar carbon isotope ratios (Walter et al., 2008; Fisher et al., 2011). In our study, lake and wetland emissions were simulated separately by different models. This raised the possibility of double counting emissions of the two sources. A possible solution is to simulate them in a single earth system model using a consistent wetland and lake pixel identification method. One possible solution is to constrain the flux ratio of wetlands to lakes using very fine resolution geographical information. For instance, the flux ratio should be well constrained by the area ratio of these two landscapes. Another possible solution is to jointly constrain CO$_2$ and CH$_4$ fluxes in a nested-grid inversion. As known, although both wetlands and lakes are CH$_4$ sources, wetlands are a CO$_2$ sink and lakes are a CO$_2$ source (Zhu et al., 2013; Walter Anthony et al., 2014). This opposite correlations of CH$_4$ and CO$_2$ emissions could possibly be used to constrain the optimization of the flux ratio in inverse models.
Our nested grid adjoint model currently does not cover the regions near the North Pole. While it could be rare in the summer time, if air mass transports across the Arctic Ocean, it may not be represented in the model. In the following studies, we will try to adapt the advection algorithm for the polar region from the global adjoint model to the nested-grid model and validate the adaptation. These refinements shall may reduce the uncertainty of our estimates. It is also valuable to discuss the integration of other natural CH$_4$ sources found in the pan-Arctic, such as CH$_4$ emissions from subsea permafrost of East Siberian shelf (Shakhova et al., 2013).

Our Arctic inversions did not include natural CH$_4$ sources (e.g., CH$_4$ emissions from subsea permafrost of East Siberian shelf) other than wetlands and lakes in the Arctic. It could lead to more uncertainties in our estimates. But our study also suggests that it is unlikely that CH$_4$ emissions from sea shelf are as large as 17 Tg CH$_4$ yr$^{-1}$ as suggested by Shakhova et al. (2013) because the posterior CH$_4$ emissions from Arctic wetlands are no more than 20.4 Tg CH$_4$ yr$^{-1}$.

5. Conclusion

In this study, we used a nested-grid high-resolution nested-grid chemical transport inverse-adjoint model in the pan-Arctic domain to constrain CH$_4$ emissions from pan-Arctic wetlands, lakes and anthropogenic sources. The sensitivity of the method to different prior wetland CH$_4$ fluxes was also tested. When assimilating both NOAA/ESRL measurements and SCIAMACHY retrievals-observations, we estimated that during July 2004–June 2005, in 2005, the total of global total CH$_4$ emissions was in the range of 496.4–511.5 Tg CH$_4$ yr$^{-1}$, with wetlands contributing 130.0–203.3 Tg CH$_4$ yr$^{-1}$. Both of these estimates are consistent with some widely accepted expert assessments. The estimated CH$_4$ emissions in the pan-Arctic were in the
range of 11.9–28.5 Tg yr\(^{-1}\), with wetland and lake emissions ranging from 5.5 to 14.2 Tg yr\(^{-1}\) and from 2.4 to 14.2 Tg yr\(^{-1}\), respectively. The largest CH\(_4\) emissions in the pan-Arctic are from Siberian wetlands and lakes. The study demonstrates that the assimilation of satellite retrievals can reduce the uncertainty of the nested grid inversions. The nested-grid inversions demonstrate that biogeochemical models tend to overestimate CH\(_4\) emissions from natural sources of the Arctic (e.g., wetlands and lakes). The posterior CH\(_4\) emissions from Arctic lakes from July 2004 to June 2005 are 5.4–7.9 Tg CH\(_4\)-yr\(^{-1}\), a significant contribution to the Arctic CH\(_4\)-cycle. CH\(_4\) emissions from lakes in Alaska, northern Canada, northern Europe and northern Siberia, on average, are estimated to be 1.0 Tg CH\(_4\)-yr\(^{-1}\), 3.1 Tg CH\(_4\)-yr\(^{-1}\), 0.6 Tg CH\(_4\)-yr\(^{-1}\) and 2.8 Tg CH\(_4\)-yr\(^{-1}\), respectively. Except for the emissions from northern Siberia, other estimates are consistent with the lake biogeochemical model simulations. The posterior CH\(_4\) emissions from Arctic wetlands from July 2004 to June 2005 are 8.8–20.4 Tg CH\(_4\)-yr\(^{-1}\). CH\(_4\) emissions from wetlands in Alaska, northern Canada, northern Europe and northern Siberia are, on average, 1.0 Tg CH\(_4\)-yr\(^{-1}\), 3.3 Tg CH\(_4\)-yr\(^{-1}\), 4.2 Tg CH\(_4\)-yr\(^{-1}\) and 5.8 Tg CH\(_4\)-yr\(^{-1}\), respectively. The nested-grid inversions indicate that CH\(_4\) emissions from northern Canada, Alaska, Scandinavia and East Siberia Coastal lowlands are better constrained by the inversions than from other Arctic regions, e.g. most of Siberian wetlands. Evaluation with independent datasets shows that the global inversions and the Arctic inversions with a nested approach the nested inversions can better improve estimates the representation of CH\(_4\) methane mixing ratios in lower boundary layer rather than top boundary layer and free troposphere. The high-resolution inversions provide more details about the spatial distribution of methane emissions in the Arctic, which helps understand the CH\(_4\)-cycle in this climate-sensitive region.
Acknowledgements: We would like to thank the WETCHIMP investigators for making their simulations of wetland methane emissions available. We appreciate the help from Guang-Dih Lei and Bhagirath M. Trivedi at NASA and Robert Yantosca at Harvard for processing nested grid GOES-5 met data and the help from Christoph A. Keller at Harvard for processing nested grid emission data by HEMCO. This study is supported through projects funded to Q. Z. by the NASA Land Use and Land Cover Change program (NASA-NNX09AI26G), Department of Energy (DE-FG02-08ER64599), the NSF Division of Information and Intelligent Systems (NSF-1028291), and the NSF Carbon and Water in the Earth Program (NSF-0630319). This research is also in part supported by the Director, Office of Science, Office of Biological and Environmental Research of the US Department of Energy under Contract No. DE-AC02-05CH11231 as part of their Earth System Modeling Program. D. K. H. acknowledges NOAA grant no. NA14OAR4310136. A. J. T. was supported by a Department of Energy (DOE) Computational Science Graduate Fellowship (CSGF). The supercomputing resource is provided by Rosen Center for Advanced Computing at Purdue University.

References

Aydin, M., Verhulst, K. R., Saltzman, E. S., Battle, M. O., Montzka, S. A., Blake, D. R., Tang, Q.
and Prather, M. J.: Recent decreases in fossil-fuel emissions of ethane and methane derived from

Bastviken, D., Tranvik, L., Downing, J., Crill, P. M. and Enrich-Prast, A.: Freshwater methane
emissions offset the continental carbon sink, Science, 331, 50–50, 2011.

Berchet, A., Pison, I., Chevallier, F., Paris, J.-D., Bousquet, P., Bonne, J.-L., Arshinov, M. Y.,
Belan, B. D., Cressot, C., Davydov, D. K., Dlugokencky, E. J., Fofonov, A. V., Galanin, A.,

Berchet, A., Bousquet, P., Pison, I., Locatelli, R., Chevallier, F., Paris, J.-D., Dlugokencky, E. J.,
Lowry, D. and Ivakhov, V.: Atmospheric constraints on the methane emissions from the East

Bergamaschi, P., Krol, M., Dentener, F., Vermeulen, A., Meinhardt, F., Graul, R., Ramonet, M.,
Peters, W. and Dlugokencky, E. J.: Inverse modelling of national and European CH\textsubscript{4} emissions

chartography of atmospheric methane from SCIAMACHY on board ENVISAT: 2. Evaluation
2007.
Bergamaschi, P., Frankenberg, C., Meirink, J. F., Krol, M., Villani, M. G., Houweling, S.,
modeling of global and regional CH4 emissions using SCIAMACHY satellite retrievals, J.
Bergamaschi, P., Houweling, S., Segers, A., Krol, M., Frankenberg, C., Scheepmaker, R. A.,
Dlugokencky, E., Wofsy, S. C., Kort, E. a., Sweeney, C., Schuck, T., Brenninkmeijer, C., Chen,
modeling analysis using SCIAMACHY satellite retrievals and NOAA surface measurements, J.
Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q., Liu, H. Y.,
Mickley, L. J., and Schultz, M. G.: Global modeling of tropospheric chemistry with assimilated
Bloom, A. A., Palmer, P. I., Fraser, A., Reay, D. S. and Frankenberg, C.: Large-Scale Controls of
Methanogenesis Inferred from Methane and Gravity Spaceborne Data, Science, 327, 322–325,
Ramonet, M., Schmidt, M., Steele, L. P., Tyler, S. C. and White, J.: Contribution of
anthropogenic and natural sources to atmospheric methane variability, Nature, 443(7110), 439–
D. B. A.: Improved analysis-error covariance matrix for high-dimensional variational inversions:
application to source estimation using a 3D atmospheric transport model, Q. J. R. Meteorol. Soc.,

Bruhwiler, L. M., Dlugokencky, E., Masarie, K., Ishizawa, M., Andrews, A., Miller, J., Sweeney,
C., Tans, P. and Worthy, D.: CarbonTracker-CH4: an assimilation system for estimating
emissions of atmospheric methane, Atmos. Chem. Phys., 14, 8269–8293, doi:10.5194/acp-14-

Butz, A., Hasekamp, O. P., Frankenberg, C., Vidot, J., and Aben, I.: CH4 retrievals from space-
based solar backscatter measurements: Performance evaluation against simulated aerosol and

Cressot, C., Chevallier, F., Bousquet, P., Crevoisier, C., Dlugokencky, E. J., Fortems-Cheiney,
A., Frankenberg, C., Parker, R., Pison, I., Scheepmaker, R. A., Montzka, S. A., Krummel, P. B.,
Steele, L. P. and Langenfelds, R. L.: On the consistency between global and regional methane
emissions inferred from SCIAMACHY, TANSO-FTS, IASI and surface measurements, Atmos.

O’Dell, C., Wunch, D., Wennberg, P. O., Kort, E. A., Wofsy, S. C., Blumenstock, T., Deutscher,
N. M., Griffith, D. W. T., Hase, F., Heikkinen, P., Sherlock, V., Strong, K., Sussmann, R. and
Warneke, T.: Inferring regional sources and sinks of atmospheric CO2 from GOSAT XCO2 data,

Denman, K. L., Brasseur, G., Chidthaisong, A., Ciais, P., Cox, P. M., Dickinson, R. E.,
Hauglustaine, D., Heinze, C., Holland, E., Jacob, D., Lohmann, U., Ramachandran, S., da Silva
Dias, P. L., Wofsy, S. C., and Zhang, X.: Couplings Between Changes in the Climate System and

from SCIAMACHY onboard ENVISAT, Geophys. Res. Lett., 35, L15811,

Frankenberg, C., Aben, I., Bergamaschi, P., Dlugokencky, E. J., van Hees, R., Houweling, S.,
vander Meer, P., Snel, R., and Tol, P.: Global column-averaged methane mixing ratios from
2003 to 2009 as derived from SCIAMACHY: Trends and variability, J. Geophys. Res., 116,

Fraser, A., Palmer, P. I., Feng, L., Boesch, H., Cogan, A., Parker, R., Dlugokencky, E. J., Fraser,
P. J., Krummel, P. B., Langenfelds, R. L., O’Doherty, S., Prinn, R. G., Steele, L. P., van der
of surface and GOSAT mole fraction measurements, Atmos. Chem. Phys., 13, 5697–5713,

Fung, I., John, J., Lerner, J., Matthews, E., Prather, M., Steele, L. P., and Fraser, P. J.: Three-
dimensional model synthesis of the global methane cycle, J. Geophys. Res., 96, 13,033–13,065,

GLOBALVIEW-CH4: Cooperative Atmospheric Data Integration Project - Methane. CD-ROM,
Gurney, K. R., Law, R. M., Denning, A. S., Rayner, P. J., Baker, D., Bousquet, P., Bruhwiler, L.,
Chen, Y.-H., Ciais, P., Fan, S., Fung, I. Y., Gloor, M., Heimann, M., Higuchi, K., John, J., Maki,
T., Maksyutov, S., Masarie, K., Peylin, P., Prather, M., Pak, B. C., Randerson, J., Sarmiento, J.,
Taguchi, S., Takahashi, T., and Yuen, C.-W.: Towards robust regional estimates of CO₂ sources
W., Gille, J. C., Hoffman, R. N. and Nehrkorn, T.: Comparative inverse analysis of satellite
(MOPITT) and aircraft (TRACE-P) observations to estimate Asian sources of carbon monoxide,
Houweling, S., Krol, M., Bergamaschi, P., Frankenberg, C., Dlugokencky, E. J., Morino, I.,
and Aben, I.: A multi-year methane inversion using SCIAMACHY, accounting for systematic
errors using TCCON measurements, Atmos. Chem. Phys., 14, 3991–4012, doi:10.5194/acp-14-
impact of model errors on top-down estimates of carbon monoxide emissions using satellite
Kai, F. M., Tyler, S. C., Randerson, J. T. and Blake, D. R.: Reduced methane growth rate
explained by decreased Northern Hemisphere microbial sources, Nature, 476(7359), 194–197,
doi:10.1038/nature10259, 2011.

Monteil, G., Houweling, S., Butz, A., Guerlet, S., Schepers, D., Hasekamp, O., Frankenberg, C., Scheepmaker, R., Aben, I. and Röckmann, T.: Comparison of CH$_4$ inversions based on 15

Parker, R., Boesch, H., Cogan, A., Fraser, A., Feng, L., Palmer, P. I., Messerschmidt, J.,
observations from the Greenhouse Gases Observing SATellite: Comparison to ground-based
TCCON data and model calculations, Geophys. Res. Lett., 38, L15807,

Y., and Zhou, F.: Inventory of anthropogenic methane emissions in Mainland China from 1980

Pickett-Heaps, C. A., Jacob, D. J., Wecht, K. J., Kort, E. A., Wofsy, S. C., Diskin, G. S., Worthy,
D. E. J., Kaplan, J. O., Bey, I., and Drevet, J.: Magnitude of seasonality of wetland methane
emissions from the Hudson Bay Lowlands (Canada), Atmos. Chem. Phys., 11, 3773–3779,
doi:10.5194/acp-11-3773-2011, 2011.

Prather, M. J., Holmes, C. D., and Hsu, J.: Reactive greenhouse gas scenarios: systematic
exploration of uncertainties and the role of atmospheric chemistry, Geophys. Res. Lett., 39,

Rigby, M., Prinn, R. G., Fraser, P. J., Simmonds, P. G., Langenfelds, R. L., Huang, J., Cunnold,

Figure Captions

Figure 1. SCIAMACHY retrievals (n = 37743) of the weighted column-average CH$_4$ dry mole fractions for July 2005–September 2005 in the pan-Arctic that have passed all quality control tests described in Section 2.1 and the locations of surface flask stations and aircraft missions used for data assimilation or inversion evaluation.

Figure 1. Comparison of column averaged CH$_4$ mole fractions from SCIAMACHY with those from GEOS-Chem model calculated with prior emissions. (a and b) show the mean bias and residual standard deviation of the satellite-model difference, (c) shows the comparison of the model (x axis) and satellite (y axis) XCH$_4$ after applying the “latitude + humidity” correction from the linear regression (weighted R2 is shown inset and the red 1:1 line is also shown), and (d) shows the satellite-model difference after bias removal.
Figure 2. Prior average wetland CH$_4$ emissions during 2004–2005 from different wetland biogeochemical models used for the GEOS-Chem global inversion at 4° × 5° resolution. Annual total emission (orange) is presented in units of Tg CH$_4$ yr$^{-1}$.

Figure 23. Prior average CH$_4$ fluxes from wetlands, lakes and other sources (i.e. anthropogenic and biomass burning) in 2005 during 2004–2005 used for the GEOS-Chem-pan-Arctic nested grid inversions at 1/2° × 2/3° resolution. Annual total emission (orange) for each pan-Arctic source is presented in units of Tg CH$_4$ yr$^{-1}$.

Figure 3. Bias correction function (left) and standard deviation (right) for SCIAMACHY retrievals overpassing the pan-Arctic. ΔXCH$_4$ is the difference between SCIAMACHY and column-average mixing ratios mapped from aircraft vertical profiles. The red line in the left shows a linear regression weighted by the number of SCIAMACHY retrievals.

Figure 4. Optimized total (green) and wetlands (orange) CH$_4$ emissions from 1993 to 2005 by assimilating NOAA/ESRL measurements for (a) global, (b) tropics (30°S–20°N), (c) northern mid latitude (20°N–50°N) and (d) northern high latitude (>50°N). The smooth lines indicate the 12-month average of total and wetlands CH$_4$ fluxes. The prior wetland CH$_4$ fluxes are simulated by LPJ-WSL.

Figure 5. Optimized global CH$_4$ emissions and emissions scale factors (posterior emissions relative to prior emissions) in the period of July 2004 to June 2005 at 4° × 5° resolution using both SCIAMACHY and NOAA/ESRL observations. a) The posterior CH$_4$ emissions averaged over six inversions; b) the standard deviation of the posterior CH$_4$ emissions over six inversions; c) the optimized scale factor averaged over six inversions.
Figure 4. Optimized pan-Arctic CH₄ fluxes in 2005 from July 2004 to June 2005 at 1/2° × 2/3° resolution using both SCIAMACHY and NOAA/ESRL observations. a) BERN; b) CLM4Me; c) DLEM; d) ORCHIDEE; e) SDGVM; f) WSL.

Figure 5. Comparison of prior and posterior pan-Arctic CH₄ emissions and their uncertainties. “NOAA only” represents posterior emissions assimilating only surface measurements. “NOAA + SCIA” represents posterior emissions assimilating both surface measurements and satellite retrievals. The uncertainty of prior emissions is 100%. Scenarios are represented by their name initials: “B” for BERN, “C” for CLM4Me, “D” for DLEM, “O” for ORCHIDEE, “S” for SDGVM and “W” for WSL.

Figure 6. Distribution of the relative difference between the observed and simulated posterior SCIAMACHY column-average mixing ratios. The “DLEM + Lake” scenario includes CH₄ emissions from both wetlands and lakes and the “DLEM only” scenario only includes CH₄ emissions from wetlands. Relative difference is calculated as a percentage of absolute differences between GEOS-Chem and SCIAMACHY relative to SCIAMACHY retrievals.

Figure 7. Optimized CH₄ emissions from Arctic lakes from July 2004 to June 2005 at 1/2° × 2/3° resolution using both SCIAMACHY and NOAA/ESRL observations. a) BERN; b) CLM4Me; c) DLEM; d) ORCHIDEE; e) SDGVM; f) WSL.

Figure 8. Evaluation of the posterior GEOS-Chem CH₄ mole fractions from the global inversions with independent data sets. The plot shows the root mean square (rms) of differences between modeled and observed CH₄ mixing ratios. APRI indicates the average rms using different prior wetland emissions.
Figure 79. Evaluation of the posterior GEOS-Chem CH$_4$ mole fractions from the pan-Arctic nested-grid inversions with independent data sets from the NOAA flask PAL stations, and the NOAA aircraft PFA profiles and the NIES aircraft Surgut profiles. APRI indicates the average rms using different prior wetland emissions. APOR indicates the average rms calculated from six global inversions. Black symbols indicate the rms of the forward GEOS-Chem runs and red symbols indicate the rms of the global inversions.
Table 1. Summary of bias correction methods and of mean absolute satellite-model difference (ppb) for 2003-2005 before and after applying bias correction. ΔBIC is the BIC score increase of a bias correction method when referring to the latitude only method.

<table>
<thead>
<tr>
<th></th>
<th>Bias correction function*</th>
<th>Mean absolute difference</th>
<th>ΔBIC</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>No correction</td>
<td></td>
<td>9.271</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latitude only</td>
<td>$p_0 + p_1 \varphi + p_2 \varphi^2$</td>
<td>6.305</td>
<td>0.62</td>
<td></td>
</tr>
<tr>
<td>Air mass factor only</td>
<td>$p_0 + p_1 A_F$</td>
<td>7.071</td>
<td>161</td>
<td>0.52</td>
</tr>
<tr>
<td>Humidity only</td>
<td>$p_0 + p_1 H_S$</td>
<td>6.786</td>
<td>73</td>
<td>0.56</td>
</tr>
<tr>
<td>Latitude + Humidity</td>
<td>$p_0 + p_1 \varphi + p_2 \varphi^2 + p_3 H_S$</td>
<td>6.230</td>
<td>-7</td>
<td>0.62</td>
</tr>
<tr>
<td>Air mass factor +</td>
<td></td>
<td>6.396</td>
<td>12</td>
<td>0.60</td>
</tr>
<tr>
<td>Humidity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* p_0, p_1, p_2, p_{11}, p_{12} and p_{21} are regression parameters.
Table 2. Estimated annual CH$_4$ emissions (units: Tg CH$_4$ yr$^{-1}$) for TransCom 3 land regions (NAB: North American Boreal, NAT: North American Temperate, SATr: South American Tropical, SAT: South American Temperate, NAf: Northern Africa, SAf: Southern Africa, ErB: Eurasian Boreal, ErT: Eurasian Temperate, TrA: Tropical Asia, Aus: Australasia, and Eur: Europe). The priors are the range of the initial CH$_4$ emissions given by the six scenarios.

<table>
<thead>
<tr>
<th>Region</th>
<th>Priors</th>
<th>Posterior</th>
<th>Fraser et al. (2013)</th>
<th>Alexe et al. (2015)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bern</td>
<td>CLM4Me</td>
<td>DLEM</td>
<td>ORCHIDEE</td>
</tr>
<tr>
<td>NAB</td>
<td>7.9–26.0</td>
<td>24.3</td>
<td>16.2</td>
<td>16.8</td>
</tr>
<tr>
<td>NAT</td>
<td>38.5–59.2</td>
<td>33.2</td>
<td>32.8</td>
<td>42.8</td>
</tr>
<tr>
<td>SATr</td>
<td>29.6–100.0</td>
<td>43.0</td>
<td>60.8</td>
<td>31.4</td>
</tr>
<tr>
<td>SAT</td>
<td>29.1–55.8</td>
<td>31.2</td>
<td>27.1</td>
<td>35.2</td>
</tr>
<tr>
<td>NAf</td>
<td>26.8–31.2</td>
<td>34.0</td>
<td>41.3</td>
<td>27.9</td>
</tr>
<tr>
<td>SAf</td>
<td>16.0–27.0</td>
<td>18.4</td>
<td>16.2</td>
<td>19.0</td>
</tr>
<tr>
<td>ErB</td>
<td>11.5–32.7</td>
<td>19.2</td>
<td>14.3</td>
<td>16.5</td>
</tr>
<tr>
<td>ErT</td>
<td>114.9–133.5</td>
<td>97.0</td>
<td>84.9</td>
<td>146.1</td>
</tr>
<tr>
<td>TrA</td>
<td>33.1–45.8</td>
<td>47.3</td>
<td>51.4</td>
<td>35.8</td>
</tr>
<tr>
<td>Aus</td>
<td>5.8–8.3</td>
<td>7.3</td>
<td>7.7</td>
<td>6.6</td>
</tr>
<tr>
<td>Eur</td>
<td>43.6–53.5</td>
<td>54.9</td>
<td>52.2</td>
<td>46.4</td>
</tr>
<tr>
<td>Wetlands</td>
<td>121.7–278.1</td>
<td>166.8</td>
<td>164.6</td>
<td>130.0</td>
</tr>
<tr>
<td>Global</td>
<td>471.5–627.8</td>
<td>501.0</td>
<td>497.7</td>
<td>511.5</td>
</tr>
</tbody>
</table>
Table 3. Summary of the prior and posterior CH$_4$ emissions (Tg CH$_4$ yr$^{-1}$) from the Arctic from July 2004 to June 2005. The priors are the range of the initial CH$_4$ emissions given by the six scenarios.

<table>
<thead>
<tr>
<th>Region</th>
<th>Priors</th>
<th>Bern</th>
<th>CLM4Me</th>
<th>DLEM</th>
<th>ORCHIDEE</th>
<th>SDGVM</th>
<th>WSL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alaska</td>
<td>2.8–3.9</td>
<td>3.3</td>
<td>2.5</td>
<td>2.2</td>
<td>2.6</td>
<td>1.8</td>
<td>2.3</td>
</tr>
<tr>
<td>Northern Canada</td>
<td>6.2–12.4</td>
<td>7.2</td>
<td>9.0</td>
<td>6.9</td>
<td>5.2</td>
<td>4.4</td>
<td>4.3</td>
</tr>
<tr>
<td>Northern Europe</td>
<td>5.6–9.7</td>
<td>8.5</td>
<td>5.8</td>
<td>4.8</td>
<td>4.6</td>
<td>6.7</td>
<td>7.5</td>
</tr>
<tr>
<td>Northern Siberia</td>
<td>7.0–18.0</td>
<td>8.2</td>
<td>12.7</td>
<td>3.8</td>
<td>2.0</td>
<td>7.2</td>
<td>8.8</td>
</tr>
<tr>
<td>Arctic total</td>
<td>25.7–39.9</td>
<td>27.8</td>
<td>30.4</td>
<td>18.1</td>
<td>14.6</td>
<td>20.3</td>
<td>20.0</td>
</tr>
<tr>
<td>Wetlands</td>
<td>11.4–25.6</td>
<td>18.7</td>
<td>20.4</td>
<td>9.2</td>
<td>8.8</td>
<td>12.5</td>
<td>10.9</td>
</tr>
<tr>
<td>Lakes</td>
<td>11.1</td>
<td>7.7</td>
<td>7.9</td>
<td>7.5</td>
<td>5.4</td>
<td>7.0</td>
<td>7.7</td>
</tr>
<tr>
<td>Other</td>
<td>3.2</td>
<td>1.4</td>
<td>2.1</td>
<td>1.4</td>
<td>0.3</td>
<td>0.9</td>
<td>1.4</td>
</tr>
</tbody>
</table>
Figure 1.
Figure 1.
Figure 2.
Figure 3.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 46.
Figure 5.
Figure 6.
Figure 7.
Figure 78.
Figure 9.
S1. Methods and Results

In the text S1, the steps to construct optimal initial conditions for global and nested grid inversions are described. We also describe the steps to construct an optimal GEOS-Chem CH$_4$ field for SCIAMACHY bias correction purpose and the comparison between our estimates and previous inversion studies in the global scale.

To start global and nested-grid inversions, the initial CH$_4$ field of the GEOS-Chem model needs to be optimized to minimize its error. As our focus is in the period of 2004–2005, to speed up the whole process, we only ran one inversion from 1993 to 2003 using the LPJ-WSL scenario and NOAA/ESRL measurements. The main purpose of this inversion is to construct initial CH$_4$ field in 2004. As presented in Fig. S2, without optimization, the LPJ-WSL scenario gives the best fit of the GEOS-Chem modeled CH$_4$ to the GLOBALVIEW-CH4 data (GLOBALVIEW-CH4, 2009). During the 1993–2003 inversion, GEOS-Chem was driven by GEOS-4 meteorological (met) data from NASA’s Global Modeling Assimilation Office (GMAO). Relative to GEOS-5, the GEOS-4 met data has the same horizontal resolutions but less vertical hybrid sigma-pressure levels (55 vertical levels).

To construct optimal atmospheric CH$_4$ fields for the bias correction of SCIAMACHY retrievals at the global scale, we ran a global inversion during 2004–2005 using the LPJ-WSL wetland emission scenario and NOAA/ESRL measurements. In this inversion, the GEOS-Chem model was driven by the GEOS-5 met data. The global inversions of different scenarios that assimilated both surface measurements and satellite retrievals were then run in two sequential time windows: 2004/01–2004/12 and 2005/01–2005/12. Only the inversions in the second time window are for analysis and the first time window is designed to minimize the impacts of the
transition from GEOS-4 to GEOS-5 and from the LPJ-WSL scenario to other scenarios. In the above inversions, we included surface measurements from pan-Arctic sites but excluded satellite retrievals out of 50°S–50°N. The global inversions during 2005 also provided initial conditions and time-dependent boundary conditions for the nested grid simulations of the adjoint model. Following Turner et al. (2015), we did not optimize boundary conditions in the nested-grid inversions as did in Wecht et al. (2014). The nested grid inversions of the pan-Arctic were run at 1/2° × 2/3° resolution from July 1, 2005 to Oct 1, 2005.

Specific humidity for bias correction was retrieved from the European Centre for Medium-Range Weather Forecasts (ECMWF)’s ERA-20C reanalysis product (http://apps.ecmwf.int/datasets/data/era20c-daily), averaged by the column between the surface and 3 km altitude (Houweling et al., 2014). The air mass factor and coordinates of satellite CH₄ retrievals have been included in the SCIAMACHY IMAP v6.0. For global-scale bias correction, we first optimized the GEOS-Chem 4-D CH₄ mixing ratios using only surface measurements and then sampled the modeled XCH₄ at the coordinates and time of SCIAMACHY retrievals and with local averaging kernels applied. Following Bergamaschi et al. (2009) and Houweling et al. (2014), only satellite retrievals between 50°S and 50°N were utilized. The XCH₄ differences between SCIAMACHY and GEOS-Chem are shown in Fig. S3a. A regression relationship was then built to represent the satellite system bias by proxy factors. Turner et al. (2015) suggested that it is more likely that grid squares residual standard deviation (RSD) in excess of 20 ppb are dominated by model bias in prior emissions. Thus, we excluded such grid squares in regressions. And satellite retrievals with low precisions (the ratio of retrieval precision error to retrieval is larger than 3%) were also removed from analysis. Following Houweling et al. (2014), we did not optimize bias correction functions in the inversion cycle in the concern that this process could
cause bias correction to incorrectly account for the uncertainties caused by unaccounted model errors or even the uncertain sources and sinks. As shown in Fig. S3d, bias correction reduced model-satellite differences greatly in tropical areas of America, Africa and South Asia and also reduced the differences in Australia and some areas of the United States. And the agreement between GEOS-Chem and SCIAMACHY is also improved at the global scale (Fig. S3c). However, the model-data agreement is deteriorated in East Asia. It could be caused by the overestimate of anthropogenic CH$_4$ emissions from China in the EDGAR dataset (Peng et al., 2016).

The results of the global inversions are presented in Table 2 and Fig. S4. There have been many studies that assimilated surface measurements and/or satellite retrievals into a CTM inverse model to constrain global CH$_4$ emissions, see Kirschke et al. (2013) for review. For instance, using the same observations suite, Bergamaschi et al. (2009) estimated that in 2004, CH$_4$ emissions in global, tropical (30°S–30°N), northern extratropical (30°N–90°N) and southern extratropical (90°S–30°S) zonal areas were 506.7 Tg CH$_4$ yr$^{-1}$, 323.5 Tg CH$_4$ yr$^{-1}$, 172.8 Tg CH$_4$ yr$^{-1}$ and 10.4 Tg CH$_4$ yr$^{-1}$, respectively. These large-scale estimates are consistent with our calculations: 284.5–319.6 Tg CH$_4$ yr$^{-1}$ (tropical), 165.3–206.6 Tg CH$_4$ yr$^{-1}$ (northern extratropical) and 10.0–13.9 Tg CH$_4$ yr$^{-1}$ (southern extratropical). This agreement could imply that the GEOS-Chem adjoint and TM5-4DVAR are consistent in the atmospheric transport, chemistry and inverse modeling methods. In contrast to Bergamaschi et al. (2009), our inversions allocate more emissions to extratropical regions. As a result, the tropical total (SATr + NAF + SAF + TrA) of the six inversions is in the range of 114.1–169.7 Tg CH$_4$ yr$^{-1}$, which is much lower than their estimate of 203.2 Tg CH$_4$ yr$^{-1}$. The likely reason for this discrepancy is that we did not optimize bias correction functions in the inversion cycle. Our posterior wetland CH$_4$ emissions estimated
in the Bern, CLM4Me, SDGVM and WSL scenarios are close to the estimate of 161 Tg CH$_4$ yr$^{-1}$ for 2003–2007 in Bloom et al. (2010). The latter was based on CH$_4$ and gravity spaceborne data to constrain large-scale methanogenesis. Our estimates are also close to the inferred wetland CH$_4$ emissions (175±33 Tg CH$_4$ yr$^{-1}$) by Kirschke et al. (2013). By using artificial neural networks, Zhu et al. (2013) estimated that from 1990 to 2009, annual wetland CH$_4$ emissions from northern high latitudes (> 45°N) were in the range of 44.0–53.7 Tg CH$_4$ yr$^{-1}$, agreeing with the estimates of the Bern, CLM4Me and SDGVM scenarios.

Fig. S4a shows that CH$_4$ fluxes are the highest in the Amazon, China, Southeast Asia, North America and Europe where there are either a large area of wetlands and rice paddies or advanced coal and oil industries or both. Our results indicate that the Eurasian temperate zone, including China, North America and Europe, emitted much more CH$_4$ than any other geographic zones (Table 2), implying the dominance of anthropogenic sources in the global CH$_4$ inventory.

As presented in Fig. S4c, our inverse modeling reduced the CH$_4$ emissions from China, the Amazon basin and the Eurasian boreal region (scale factor < 1) but increased the emissions in Europe and Southeast Asia (scale factor > 1) relative to the prior.

Fig. S6 shows the difference between the modeled and observed CH$_4$ mixing ratios at NOAA ship board sampling stations and aircraft vertical profile sites under different wetland scenarios before and after the global scale inversions. For most scenarios, inversion improves the representation of CH$_4$ mixing ratios in GEOS-Chem at both marine and inland boundary layers and free troposphere. For example, the BERN scenario inversion reduced the bias by about 18 ppb for ship stations and about 6 ppb for aircraft sites. Also the DLEM scenario inversion reduced the bias by about 20 ppb for ship stations and about 19 ppb for aircraft sites. For the
CLM4Me and SDGVM scenarios with low prior biases, the inversions did not improve the performance. This could be caused by the errors introduced by the inversion process itself. For example, as the optimization is designed to address total emissions, the representation of diurnal variability in GEOS-Chem could be made worse during inversion.
<table>
<thead>
<tr>
<th>Station ID</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Altitude [m]</th>
<th>Station Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALT</td>
<td>82.45</td>
<td>-62.52</td>
<td>210.0</td>
<td>Alert, Nunavut, Canada</td>
</tr>
<tr>
<td>ZEP</td>
<td>78.90</td>
<td>11.88</td>
<td>475.0</td>
<td>Ny-Alesund, Svalbard (Spitsbergen), Norway and Sweden</td>
</tr>
<tr>
<td>SUM</td>
<td>72.58</td>
<td>-38.48</td>
<td>3238.0</td>
<td>Summit, Greenland</td>
</tr>
<tr>
<td>BRW</td>
<td>71.32</td>
<td>-156.60</td>
<td>11.0</td>
<td>Barrow, Alaska, USA</td>
</tr>
<tr>
<td>ICE</td>
<td>63.34</td>
<td>-20.29</td>
<td>127.0</td>
<td>Heimay, Vestmannaeyjar, Iceland</td>
</tr>
<tr>
<td>CBA</td>
<td>55.20</td>
<td>-162.72</td>
<td>25.0</td>
<td>Cold Bay, Alaska, USA</td>
</tr>
<tr>
<td>SHM</td>
<td>52.72</td>
<td>174.10</td>
<td>40.0</td>
<td>Shemya Island, Alaska, USA</td>
</tr>
<tr>
<td>UUM</td>
<td>44.45</td>
<td>111.10</td>
<td>914.0</td>
<td>Ulaan Uul, Mongolia</td>
</tr>
<tr>
<td>NWR</td>
<td>40.05</td>
<td>-105.58</td>
<td>3526.0</td>
<td>Niwot Ridge, Colorado, USA</td>
</tr>
<tr>
<td>AZR</td>
<td>38.77</td>
<td>-27.38</td>
<td>40.0</td>
<td>Terceira Island, Azores, Portugal</td>
</tr>
<tr>
<td>WLG</td>
<td>36.29</td>
<td>100.90</td>
<td>3810.0</td>
<td>Mt. Waliguan, People’s Republic of China</td>
</tr>
<tr>
<td>BMW</td>
<td>32.27</td>
<td>-64.88</td>
<td>30.0</td>
<td>Tudor Hill, Bermuda, UK</td>
</tr>
<tr>
<td>IZO</td>
<td>28.30</td>
<td>-16.48</td>
<td>2360.0</td>
<td>Tenerife, Canary Islands, Spain</td>
</tr>
<tr>
<td>MID</td>
<td>28.21</td>
<td>-177.38</td>
<td>7.7</td>
<td>Sand Island, Midway, USA</td>
</tr>
<tr>
<td>ASK</td>
<td>23.18</td>
<td>5.42</td>
<td>2728.0</td>
<td>Assekrem, Algeria</td>
</tr>
<tr>
<td>MLO</td>
<td>19.53</td>
<td>-155.58</td>
<td>3397.0</td>
<td>Mauna Loa, Hawaii, USA</td>
</tr>
<tr>
<td>KUM</td>
<td>19.52</td>
<td>-154.82</td>
<td>3.0</td>
<td>Cape Kumukahi, Hawaii, USA</td>
</tr>
<tr>
<td>GMI</td>
<td>13.43</td>
<td>144.78</td>
<td>6.0</td>
<td>Mariana Islands, Guam</td>
</tr>
<tr>
<td>Code</td>
<td>longitude 1</td>
<td>latitude 1</td>
<td>altitude 1</td>
<td>Location</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>RPB</td>
<td>13.17</td>
<td>-59.43</td>
<td>45.0</td>
<td>Ragged Point, Barbados</td>
</tr>
<tr>
<td>CHR</td>
<td>1.70</td>
<td>-157.17</td>
<td>3.0</td>
<td>Christmas Island, Republic of Kiribati</td>
</tr>
<tr>
<td>SEY</td>
<td>-4.67</td>
<td>55.17</td>
<td>7.0</td>
<td>Mahe Island, Seychelles</td>
</tr>
<tr>
<td>ASC</td>
<td>-7.92</td>
<td>-14.42</td>
<td>54.0</td>
<td>Ascension Island, UK</td>
</tr>
<tr>
<td>SMO</td>
<td>-14.24</td>
<td>-170.57</td>
<td>42.0</td>
<td>Tutuila, American Samoa, USA</td>
</tr>
<tr>
<td>CGO</td>
<td>-40.68</td>
<td>144.68</td>
<td>94.0</td>
<td>Cape Grim, Tasmania, Australia</td>
</tr>
<tr>
<td>CRZ</td>
<td>-46.45</td>
<td>51.85</td>
<td>120.0</td>
<td>Crozet Island, France</td>
</tr>
<tr>
<td>TDF</td>
<td>-54.87</td>
<td>-68.48</td>
<td>20.0</td>
<td>Tierra Del Fuego, La Redonda Isla, Argentinia</td>
</tr>
<tr>
<td>PSA</td>
<td>-64.92</td>
<td>-64.00</td>
<td>10.0</td>
<td>Palmer Station, Antarctica, USA</td>
</tr>
<tr>
<td>SYO</td>
<td>-69.00</td>
<td>39.58</td>
<td>14.0</td>
<td>Syowa Station, Antarctica, Japan</td>
</tr>
<tr>
<td>HBA</td>
<td>-75.58</td>
<td>-26.50</td>
<td>33.0</td>
<td>Halley Station, Antarctica, UK</td>
</tr>
<tr>
<td>SPO</td>
<td>-89.98</td>
<td>-24.80</td>
<td>2810.0</td>
<td>South Pole, Antarctica, USA</td>
</tr>
</tbody>
</table>
Table S2. NOAA aircraft profiles used for validation.

<table>
<thead>
<tr>
<th>CODE</th>
<th>Location</th>
<th>Latitude (deg)</th>
<th>Longitude (deg)</th>
<th>Start Date</th>
<th>End Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFA</td>
<td>Poker Flat, Alaska, United States</td>
<td>65.07</td>
<td>-147.29</td>
<td>06/27/1999</td>
<td>06/05/2015</td>
</tr>
<tr>
<td>ESP</td>
<td>Estevan Point, British Columbia, Canada</td>
<td>49.6</td>
<td>-126.4</td>
<td>11/22/2002</td>
<td>06/09/2015</td>
</tr>
<tr>
<td>DND</td>
<td>Dahlen, North Dakota, USA</td>
<td>48.1</td>
<td>-98.0</td>
<td>09/21/2004</td>
<td>05/31/2015</td>
</tr>
<tr>
<td>LEF</td>
<td>Park Falls, Wisconsin, USA</td>
<td>45.9</td>
<td>-90.3</td>
<td>04/10/1998</td>
<td>05/28/2015</td>
</tr>
<tr>
<td>FWI</td>
<td>Fairchild, Wisconsin, USA</td>
<td>44.7</td>
<td>-91.0</td>
<td>09/20/2004</td>
<td>11/18/2005</td>
</tr>
<tr>
<td>NHA</td>
<td>Worcester, Massachusetts, USA</td>
<td>43.0</td>
<td>-70.6</td>
<td>09/21/2003</td>
<td>06/10/2015</td>
</tr>
<tr>
<td>BGI</td>
<td>Bradgate, Iowa, USA</td>
<td>42.8</td>
<td>-94.4</td>
<td>09/13/2004</td>
<td>11/18/2005</td>
</tr>
<tr>
<td>HFM</td>
<td>Harvard Forest, Massachusetts, USA</td>
<td>42.5</td>
<td>-72.2</td>
<td>11/11/1999</td>
<td>11/18/2007</td>
</tr>
<tr>
<td>WBI</td>
<td>West Branch, Iowa, USA</td>
<td>42.4</td>
<td>-91.8</td>
<td>09/14/2004</td>
<td>05/28/2015</td>
</tr>
<tr>
<td>OIL</td>
<td>Oglesby, Illinois, USA</td>
<td>41.3</td>
<td>-88.9</td>
<td>09/16/2004</td>
<td>11/19/2005</td>
</tr>
<tr>
<td>THD</td>
<td>Trinidad Head, California, USA</td>
<td>41.0</td>
<td>-124.2</td>
<td>09/02/2003</td>
<td>05/16/2015</td>
</tr>
<tr>
<td>BNE</td>
<td>Beaver Crossing, Nebraska, USA</td>
<td>40.8</td>
<td>-97.2</td>
<td>09/15/2004</td>
<td>05/11/2011</td>
</tr>
<tr>
<td>CAR</td>
<td>Briggsdale, Colorado, USA</td>
<td>40.6</td>
<td>-104.6</td>
<td>11/09/1992</td>
<td>04/21/2015</td>
</tr>
<tr>
<td>HIL</td>
<td>Homer, Illinois, USA</td>
<td>40.1</td>
<td>-87.9</td>
<td>09/16/2004</td>
<td>05/21/2015</td>
</tr>
<tr>
<td>TGC</td>
<td>Sinton, Texas, USA</td>
<td>27.7</td>
<td>-96.9</td>
<td>09/09/2003</td>
<td>06/05/2015</td>
</tr>
<tr>
<td>HAA</td>
<td>Molokai Island, Hawaii, USA</td>
<td>21.2</td>
<td>-158.9</td>
<td>05/31/1999</td>
<td>04/22/2008</td>
</tr>
<tr>
<td>RTA</td>
<td>Rarotonga, Cook Islands</td>
<td>-21.3</td>
<td>-159.8</td>
<td>04/16/2000</td>
<td>05/29/2015</td>
</tr>
</tbody>
</table>
Figure S1. Average of prior wetland CH$_4$ annual emissions during 2004–2005 from six different wetland biogeochemical models used for the GEOS-Chem global inversion at 4° × 5° resolution. Annual total emission (orange) is presented in units of Tg CH$_4$ yr$^{-1}$.
Figure S2. The comparison between the GEOS-Chem simulated and GLOBALVIEW-CH4 atmospheric CH$_4$ (units: ppbv) at five stations (Mace Head, Ireland; Trinidad, California; Ragged Point, Barbados; Cape Matatula, Samoa; Cape Grim, Tasmania). The wetland CH$_4$ emissions used are pre-optimized model simulations provided by the WETCHIMP project.
Figure S3. Comparison of column averaged CH$_4$ mole fractions from SCIAMACHY with those from GEOS-Chem model calculated with prior emissions. (a and b) show the mean bias and residual standard deviation of the satellite-model difference, (c) shows the comparison of the model (x axis) and satellite (y axis) XCH$_4$ after applying the “latitude + humidity” correction from the linear regression (weighted R^2 is shown inset and the red 1:1 line is also shown), and (d) shows the satellite-model difference after bias removal.
Figure S4. Optimized global CH$_4$ emissions and emission scale factors in 2005 at 4° × 5° resolution. Emission scale factor is defined as posterior emissions relative to prior emissions. a) Posterior CH$_4$ emissions averaged over inversions of six scenarios; b) standard deviation of posterior CH$_4$ emissions over inversions of six scenarios; c) optimized emission scale factors averaged over inversions of six scenarios.
Figure S5. Posterior CH₄ emissions from the pan-Arctic in 2005 estimated by the inversion of the “DLEM wetland only” scenario. The “DLEM wetland only” scenario uses the simulated wetland CH₄ emissions from the DLEM model and does not incorporate CH₄ emissions from pan-Arctic lakes.
Figure S6. Evaluation of posterior GEOS-Chem CH₄ mole fractions from the global inversions with independent data sets. The plot shows the root mean square (rms) of differences between the modeled and the observed CH₄ mixing ratios. Black symbols indicate the rms of the forward GEOS-Chem runs.