Using beryllium-7 to assess cross-tropopause transport in global models

Hongyu Liu¹, David B. Considine²*, Larry W. Horowitz³, James H. Crawford², Jose M. Rodriguez⁴, Susan E. Strahan⁴,⁵, Megan R. Damon⁴,⁶, Stephen D. Steenrod⁴,⁵, Xiaojing Xu⁷, Jules Kouatchou⁴,⁶, Claire Carouge⁸**, and Robert M. Yantosca⁸

¹ National Institute of Aerospace, Hampton, VA, USA
² NASA Langley Research Center, Hampton, VA, USA
³ NOAA Geophysical Fluid and Dynamics Laboratory, Princeton, NJ, USA
⁴ NASA Goddard Space Flight Center, Greenbelt, MD, USA
⁵ Universities Space Research Association, Columbia, MD, USA
⁶ Science Systems and Applications, Inc., Lanham, MD, USA
⁷ Science Systems and Applications, Inc., Hampton, VA, USA
⁸ Harvard University, Cambridge, MA, USA

[*] now at: NASA Headquarters, Washington, D.C., USA
[**] now at: University of New South Wales, Sydney, Australia

Atmospheric Chemistry and Physics, revised, March 2016

Correspondence to: H. Liu (Hongyu.Liu-1@nasa.gov)

Chemistry and Dynamics Branch, Science Directorate
Mail Stop 401B, NASA Langley Research Center
Hampton, VA 23681
Abstract. We use the Global Modeling Initiative (GMI) modeling framework to assess the utility of cosmogenic beryllium-7 (7Be), a natural aerosol tracer, for evaluating cross-tropopause transport in global models. The GMI chemical transport model (CTM) was used to simulate atmospheric 7Be distributions using four different meteorological data sets (GEOS1-STRAT DAS, GISS II’ GCM, fvGCM, and GEOS4-DAS), featuring significantly different stratosphere-troposphere exchange (STE) characteristics. The simulations were compared with the upper troposphere / lower stratosphere (UT/LS) 7Be climatology constructed from ~25 years of aircraft and balloon data, as well as climatological records of surface concentrations and deposition fluxes. Comparison of the fraction of surface air of stratospheric origin estimated from the 7Be simulations with observationally-derived estimates indicates excessive cross-tropopause transport at mid-latitudes in simulations using GEOS1-STRAT and at high latitudes using GISS II’ meteorological data. These simulations also overestimate 7Be deposition fluxes at mid-latitudes (GEOS1-STRAT) and at high latitudes (GISS II’), respectively. We show that excessive cross-tropopause transport of 7Be corresponds to overestimated stratospheric contribution to tropospheric ozone. Our perspectives on STE in these meteorological fields based on 7Be simulations are consistent with previous modeling studies of tropospheric ozone using the same meteorological fields. We conclude that the observational constraints for 7Be and observed 7Be total deposition fluxes can be used routinely as a first-order assessment of cross-tropopause transport in global models.

1 Introduction

Stratosphere-troposphere exchange (STE) of air masses and chemical species occurs at small-, synoptic and global-scales. It is typically associated with the occurrences of tropopause folding and cutoff cyclones and, more important, the global circulation of the atmosphere (Holton et al., 1995). While stratosphere-to-troposphere transport removes many chemical species from the stratosphere, it represents a significant source of ozone and other reactive species for the tropospheric chemical system (Stohl et al., 2003). Ozone is an important greenhouse gas, especially in the upper troposphere. It is a harmful pollutant near the surface where stratospheric ozone intrusions may make significant contributions (e.g., Lin et al., 2012, 2015; Langford et al., 2014). It is also the main precursor of hydroxyl radicals (OH) and thus plays an essential role in the oxidizing capacity of the troposphere. The stratosphere may make significant contributions to In a warmer climate, the stratosphere may increase its contribution to
tropospheric ozone levels due to a stronger residual circulation (Collin et al., 2003). Quantitative understanding and prediction of anthropogenic (versus natural) perturbations to tropospheric ozone require the use of global 3-D models; correctly representing the STE flux in these models is therefore critical. However, current models show large (30%) uncertainty in predicted STE fluxes of ozone (Stevenson et al., 2006). Here we use the Global Modeling Initiative (GMI) modeling framework (Douglass, et al., 1999; Rotman et al., 2001) to assess the utility of the aerosol tracer beryllium-7 (\(^{7}\text{Be}\)) for evaluating cross-tropopause transport in global models.

Beryllium-7 has a half-life of 53.3 days and is produced by cosmic ray spallation reactions in the stratosphere and upper troposphere. After production, it attaches immediately to ubiquitous submicron aerosols in the ambient air. The fate of \(^{7}\text{Be}\) then becomes that of those aerosols, which move with the air until scavenged by precipitation or deposited to the surface. \(^{7}\text{Be}\) is a useful aerosol tracer for testing wet deposition processes in a global 3-D model and is often used in conjunction with the terrigenic \(^{210}\text{Pb}\) aerosol tracer, as wet deposition is its principal sink and its sources are relatively well known (e.g., Brost et al., 1991; Koch et al., 1996; Liu et al., 2001). On the other hand, because of its source at high altitudes and the large concentration vertical gradient, simulation of \(^{7}\text{Be}\) tests the model’s capability to describe stratosphere-to-troposphere transport and subsidence in the troposphere (e.g., Liu et al., 2001; Allen et al., 2003).

Beryllium-7 has long been recognized as a tracer of downward transport from the stratosphere to the troposphere (e.g., Husain et al., 1977; Viezee and Singh, 1980; Sanak et al., 1985; Dibb et al., 1992, 1994; Rehfeld and Heimann, 1995). Husain et al. (1977) reported that pulses of high \(^{7}\text{Be}\) concentrations were often associated with air masses of stratospheric origin, as indicated by large potential vorticity. Viezee and Singh (1980) showed that the \(^{7}\text{Be}\) concentrations over North America show strong positive correlations with the occurrence of tropopause folding events over several latitude belts. \(^{7}\text{Be}\) has also been combined with other radionuclides (e.g., \(^{10}\text{Be}, \; ^{90}\text{Sr}\)) as an indicator of transport of stratospheric air to the troposphere (Raisbeck et al., 1981; Rehfeld and Heimann, 1995; Koch and Rind, 1998; Dibb et al., 1994; Jordan et al., 2003; Zanis et al., 2003; Heikkila et al., 2008ab). Dutkiewicz and Husain (1985, hereafter referred to as DH85) analyzed \(^{7}\text{Be}\) and \(^{90}\text{Sr}\) concentrations measured simultaneously in samples from NASA’s Global Atmospheric Sampling Program (GASP) and showed that on an annual basis the stratosphere contributed ~25% of the observed \(^{7}\text{Be}\) concentration at the northern mid-latitude surface (~40% during late spring but only 10% during fall).
Beryllium-7 is also a useful tracer for vertical mixing and subsidence in the troposphere. Feely et al. (1989) examined the factors that contribute to seasonal variations in ^7Be concentrations in surface air. They found that the influences of variations both in the STE rate and in the tropospheric vertical mixing rate are evident in concentrations at most sites in mid-latitudes. Convective transport carries surface air upward and brings down the ^7Be at higher altitudes to the surface layer. This is also reflected by the $^7\text{Be}/^{210}\text{Pb}$ ratio that peaks at the surface in summer when convective activity is at its maximum (Koch et al., 1996). On the other hand, despite the UT/LS source of ^7Be and the continental surface source of ^{222}Rn (precursor of ^{210}Pb), ^7Be concentrations have been reported to be positively correlated with ^{210}Pb concentrations, reflecting mixing of subsiding middle- and upper-tropospheric air with continental lower-tropospheric air (Li et al., 2002; Dibb, 2007).

A number of observational studies have demonstrated the feasibility of using ^7Be to infer the contribution of ozone-rich stratospheric air to ozone concentrations at ground level (e.g., Husain et al., 1977; Tsutsumi et al., 1998; Helmig et al., 2007) and in the free troposphere (e.g., Johnson and Viezee, 1981; Prospero et al., 1995; Graustein and Turekian, 1996; Kritz et al., 1991; Dibb et al., 2003). These studies are usually based on the correlations between concurrent measurements of ozone and ^7Be (as well as other tracers such as water vapor and calculated potential vorticity), with positive ^7Be-ozone correlations indicating the presence of the upper-tropospheric or stratospheric air. For instance, Helmig et al. (2007) showed a year-round correlation of ozone with ^7Be at Summit, Greenland and concluded that surface-layer photochemical ozone production does not appear to have a noticeable influence on surface ozone levels. However, it is important to note that under some circumstances the observed positive correlations of surface ozone with ^7Be may simply reflect the common vertical trends of tropospheric ^7Be and ozone and does not necessarily indicate the influence of stratospheric air (Li et al., 2002). Recent global modeling studies showed the models’ capability to reproduce the observed ^7Be-ozone relationships, providing useful constraints on the stratospheric (versus photochemical) contribution to tropospheric ozone in the model (Li et al., 2002; Allen et al., 2003; Liu et al., 2004).

Though correct representation of STE is essential for simulating ^7Be, ozone and other trace species in the troposphere (e.g., Riese et al., 2012), large variations exist among models. Stevenson et al. (2006) reported the average STE flux of ozone from 26 models of 552±168 Tg/year. Observation-based estimates of STE fluxes of ozone into the troposphere are typically in the range of 400-600 Tg/year (Murphy and Fahey, 1994). Some global models are able to
produce STE fluxes of ozone in this range (e.g., Olsen et al., 2004; Hsu et al., 2005; Hsu and Prather, 2009; Lin et al., 2012; Young et al., 2013; Skerlak et al., 2014). For those models with too fast (or rarely, too slow) cross-tropopause transport of ozone, one way to overcome the difficulty is to use the Synoz (synthetic ozone) method (McLinden et al., 2000). The Synoz method involves constraining the global mean cross-tropopause ozone flux to match a prescribed value consistent with observations (e.g., Bey et al., 2001). But this method yields an unrealistic stratospheric ozone field and therefore does not allow for on-line calculations of total ozone columns and photolysis rates/heating rates (McLinden et al., 2000). By contrast, the other simple model for stratospheric ozone (linearized ozone or Linoz) developed by McLinden et al. enables these on-line calculations by linearizing the ozone tendency about the local ozone mixing ratio, temperature, and the overhead column ozone density. Linoz is computationally efficient and can be readily incorporated in climate models for long-term integrations. Nevertheless, using Linoz (or full stratospheric chemistry) in global CTMs or chemistry-climate models that focus on the troposphere requires a realistic model representation of net cross-tropopause total mass fluxes. In this context, 7Be tracer simulations may provide a simple way of evaluating cross-tropopause transport in these models.

The intermodel differences in the estimated intensity and frequency of STE have been attributed to different meteorological fields used to drive the models as well as different transport algorithms and chemistry processes (Cristofanelli et al., 2003). The GMI modeling framework facilitates the reduction of uncertainties of this kind. It is a modular CTM with the ability to incorporate different inputs and components (e.g., meteorological fields, emission inventories, chemical and microphysical mechanisms, and numerical schemes) that represent the different approaches of current models. One of the distinct features of the GMI CTM is the ability to be driven by different meteorological data sets (e.g., Douglass et al., 1999; Considine et al., 2005; Liu et al., 2007) while maintaining the same algorithms for transport, deposition, emission, chemistry and other pertinent processes. This allows us to isolate the uncertainties in the model simulations due to differences in the meteorological data sets alone. The number of factors that may contribute to differences in the simulations is thus reduced, as we previously showed using the GMI simulated 222Rn and 210Pb radionuclide tracers (Considine et al., 2005).

In this paper, we present simulations of atmospheric 7Be distributions with the GMI CTM driven by four different meteorological data sets, including output from GEOS1-STRAT, GISS II’ GCM, fvGCM, and GEOS4-DAS, each featuring significantly different STE characteristics. The reader is referred to Table 1 for a list of acronyms of models and their driving
metatological data sets. We use here not only the meteorological fields that are well known to
have reasonably good representations of STE (e.g., fvGCM) but also those with poor
representations (e.g., GEOS1-STRAT). The variability in simulated STE allows us to examine
and assess the utility of ^7Be for evaluating STE in these (and other) global meteorological fields.
We will illustrate the consequences of incorrect STE in terms of the simulation of tropospheric
^7Be and show that ^7Be concentrations and deposition fluxes may be used routinely as a first-
order assessment for cross-tropopause transport in global models. We will discuss how the
constraints on STE from ^7Be are consistent with previous modeling studies of tropospheric ozone
using the same meteorological fields.

The remainder of this paper is organized as follows. Section 2 gives a brief description of the
GMI model, ^7Be source and cross-tropopause flux, and ^7Be and ozone observational datasets
used for evaluating the model. Section 3 evaluates model results with UT/LS and surface ^7Be
data. Section 4 assesses cross-tropopause transport of ^7Be in different meteorological fields.
Section 5 compares the results with previous modeling studies. Section 6 discusses the
implications for the impact of STE on tropospheric ozone, followed by summary and conclusions
in Section 7.

2 Model and data

2.1 GMI CTM

The GMI (http://gmi.gsfc.nasa.gov) CTM is a global 3-D composition model that includes
a full treatment of both stratospheric and tropospheric photochemical and physical processes. It
uses a 114-species chemical mechanism that combines the stratospheric mechanism of Douglass
et al. (2004) with the tropospheric mechanism of Bey et al. (2001). The chemical mechanism
includes both stratospheric and tropospheric heterogeneous reactions. Tropospheric aerosol
(sulfate, dust, sea salt, organic carbon, and black carbon) fields are taken from the Goddard
Chemistry, Aerosol, Radiation and Transport model (GOCART). Details of the model are
described in Duncan et al. (2007, 2008), Strahan et al. (2007), and Considine et al. (2008). There
is also a tropospheric version of the model that includes only tropospheric chemistry processes
and uses the Synoz (synthetic ozone) scheme (McLinden et al., 2000) to ensure a given value for
the total flux of ozone into the troposphere. The latter adopts a cross-tropopause ozone flux of
about 530-590 Tg/year (Stevenson et al., 2006). In this study, we simulate ^7Be using the GMI
CTM without chemistry, similar to the Considine et al. (2005) study that simulated the
radionuclides ^{222}Rn and ^{210}Pb. We use both the full-chemistry CTM and the tropospheric version of the model for ozone simulations.

The simulations presented in this paper differ only in the meteorological data used to drive the model. The four input meteorological data sets are from: (1). the Goddard Space Flight Center Data Assimilation Office (now Global Modeling and Assimilation Office or GMAO) GEOS1-STRAT data assimilation system (GEOS1-STRAT DAS, March 1997 - February 1998), (2). GISS II’ GCM (Rind and Lerner, 1996), (3). the GMAO finite-volume GCM (fvGCM), and (4). GEOS4-DAS (February 2004 – January 2005). The GISS II’ GCM data set is used for ^7Be simulations only. The two GCM data sets are intended to represent not any particular year but the contemporary climatological state of the Earth’s atmosphere. Note that these data sets do not reflect the state-of-the-art, especially the first two. However, the choices are on purpose in order to see how a meteorological input with a poor representation of cross-tropopause transport affects the simulated tropospheric ^7Be. Vertical levels, top pressure, near-tropopause resolution, and bottom layer depth for each data set are listed in Table 2. The simulations presented here use a degraded horizontal resolution ($4^\circ \times 5^\circ$) for computational expediency. Degraded horizontal resolution slightly increases cross-tropopause transport (Liu et al., 2001). Nevertheless, our objective is to assess cross-tropopause transport in meteorological data sets at the resolution used to drive the model, not necessarily at the original or finer resolution.

The model uses the flux-form semi-Lagrangian advection scheme of Lin and Rood (1996) and a convective transport algorithm adapted from the CONVTRAN routine in the NCAR CCM3 physics package. The wet deposition scheme is that of Liu et al. (2001) and includes scavenging in wet convective updrafts, and first-order rainout and washout from both convective anvils and large-scale precipitation. The gravitational settling effect of cloud ice particles included in Liu et al. (2001) is not considered here. Dry deposition of ^7Be aerosols is computed using the resistance-in-series approach. The model tracks the bulk ^7Be aerosol mass. For ^7Be simulations, each simulation was run for six years, recycling the meteorological data for each year of the simulation; we use the sixth year output for analysis. For ozone simulations, the model was spun up for 10 years to remove the effect of initial conditions. Interannual variability in STE of ^7Be is not shown in this paper. However, model simulations driven by multi-year outputs from fvGCM (1994-1998) indicate that such interannual variability is much smaller than the differences due to using different meteorological data sets and does not affect the conclusions of this study.
The GMI CTM has been used previously to study the sensitivities of model simulations to different sets of meteorological input. Douglass et al. (1999) used chemical tracers in the GMI framework to assess three meteorological data sets, i.e., the NCAR Community Climate Model (CCM2), GEOS1-STRAT, and GISS II’ GCM. They concluded that overall, CCM2 provides the best representation of the stratosphere. Considine et al. (2005) used the GMI model to simulate the radionuclides 222Rn and 210Pb using three different sets of meteorological inputs (GEOS1-STRAT, GISS II’, and CCM3) to characterize the variability occurring in their simulations. Overall no simulation was found to be superior to the others when compared with the climatological observations of these radionuclides. The role played by convective transport and scavenging was found to differ substantially among the three meteorological data sets. Liu et al. (2007) analyzed and quantified the differences and uncertainties in GMI aerosol simulations solely due to different meteorological fields (GEOS1-STRAT, GISS II’ GCM, and fvGCM). They suggested that the differences in the precipitation, convective mass flux, and horizontal advection from the three meteorological data sets explain much of the large discrepancies in the model-calculated aerosol concentrations.

2.2 Comparison of cloud and precipitation fields between meteorological data sets

Clouds and precipitation play a critical role in the transport and scavenging of 7Be aerosols and thus in determining the lifetime, burden, and distribution of 7Be in the troposphere. Figure 1 and Figure 2 compare the annual surface total precipitation and convective mass fluxes in the GEOS1-STRAT, GISS II’ GCM, fvGCM and GEOS4-DAS meteorological data sets, respectively, following Liu et al. (2007). Also shown in Figure 1 is the satellite climatology of surface total precipitation (1979-2009) from the Global Precipitation Climatology Project (GPCP) (Adler et al., 2003). The global mean precipitation rates are 1.9, 2.2, 2.6, 2.3 and 2.2 mm day$^{-1}$ for GEOS1-STRAT, GISS II’ GCM, fvGCM, GEOS4-DAS and GPCP, respectively, with lightest precipitation in GEOS1-STRAT and heaviest in fvGCM. Compared to GPCP, GEOS1-STRAT and GEOS4-DAS significantly underestimate the precipitation in the mid-latitude storm track regions, while GISS II’ GCM, fvGCM and GEOS4-DAS largely overestimate the observations in the tropics or subtropics. GISS II’ GCM also underestimates the precipitation south of 50°S and north of 40°N. There are significant differences in the convective mass fluxes among the four meteorological data sets (Figure 2). Consistent with the precipitation, GEOS1-STRAT shows the weakest convection except in the tropical middle and upper troposphere, whereas fvGCM features the strongest convection in the boundary layer at 30-60°S. The effects
of the above differences in convection and precipitation between meteorological data sets on the
results of this study will be examined through model sensitivity experiments.

2.3 \(^7\text{Be}\) source

There is a large discrepancy in the published estimates of \(^7\text{Be}\) production rates (Lal and
Peters, 1967, referred to as LP67 hereafter; O’Brien et al., 1991; Masarik and Reedy, 1995;
Masarik and Beer, 1999; Usoskin and Kovaltsov, 2008). Global mean column production rates
over an average solar cycle range from 0.035 atoms cm\(^{-2}\) s\(^{-1}\) (Masarik and Beer, 1999), 0.063
atoms cm\(^{-2}\) s\(^{-1}\) (O’Brien et al., 1991), to 0.081 atoms cm\(^{-2}\) s\(^{-1}\) (LP67). The Masarik and Beer
(1999) production function is smaller than other estimates by a factor of 2 or more. It
may have underestimated the rate of \(^7\text{Be}\) production and slightly overestimated changes in the production
rate due to variations in geomagnetic and solar magnetic field strength (Koch et al., 2006; Field
et al., 2006). We use in the model the LP67 source for 1958 (solar maximum year) since it leads
to the best simulation of aircraft \(^7\text{Be}\) observations in the stratosphere where \(^7\text{Be}\) concentrations
are mainly determined by a balance between production and radioactive decay (Koch et al.,
1996; Liu et al., 2001). Koch et al. (1996) previously found that the O’Brien (1991) source yields
model \(^7\text{Be}\) concentrations near the surface and in the stratosphere that are much lower than
observed. The rates of \(^7\text{Be}\) production reported more recently by Usoskin and Kovaltsov (2008)
broadly agree with those of LP67 with slightly (about 25%) lower global production rate and will
be tested in a separate model study. The LP67 source is represented as a function of latitude and
altitude (pressure) and does not vary with season (see Figure 1 of Koch et al., 1996). About 2/3
of atmospheric \(^7\text{Be}\) is generated in the stratosphere and 1/3 in the troposphere. The \(^7\text{Be}\)
production rate correlates inversely with solar activity. At higher solar activity, cosmic rays are
deflected away from the solar system and the \(^7\text{Be}\) production rate is thus lower.

2.4 Constraint on stratospheric contribution to \(^7\text{Be}\) at the surface

Cross-tropopause transport is important for simulating \(^7\text{Be}\) in the troposphere. A useful
constraint on the stratospheric contribution to tropospheric \(^7\text{Be}\) is DH85’s analysis of the
observed \(^7\text{Be}/^{90}\text{Sr}\) ratio in the stratosphere and \(^{90}\text{Sr}\) concentrations at the surface. The presence of
fissiogenic \(^{90}\text{Sr}\) in the troposphere is due entirely to downward transport from the stratosphere,
except for a few weeks right after a nuclear detonation. Both \(^7\text{Be}\) and \(^{90}\text{Sr}\) are associated with
submicron particles; their fates during transport from the stratosphere are expected to be similar
(no differential removal is expected). The stratospheric \(^7\text{Be}\) component in surface air can
therefore be determined as the product of the stratospheric \(^7\text{Be}/^{90}\text{Sr}\) ratio and the surface \(^{90}\text{Sr}\)
concentration (DH85). By this procedure, DH85 showed that annually 23-27% (or about 25% on
average) of the ^7Be in surface air at northern mid-latitudes is of stratospheric origin. To use this constraint, we diagnose stratospheric contribution to ^7Be concentrations in the troposphere by transporting separately in the model the ^7Be produced in the stratosphere, as we previously applied in GEOS-Chem with GEOS1-DAS meteorological data (Liu et al., 2001). Since wet deposition removes both the stratospheric and tropospheric components of ^7Be at the same rate within each model gridbox, the diagnosed stratospheric fraction of ^7Be concentrations in the troposphere does not significantly depend on the rate of wet removal.

In the stratosphere, the production of ^7Be (source) is balanced by radioactive decay and net STE fluxes of ^7Be into the troposphere (sinks), i.e.,

$$\text{source} (^7\text{Be}) = \text{decay} (^7\text{Be}) + \text{STE} (^7\text{Be}).$$ \hspace{1cm} (1)

Since the time scale for downward transport from the stratosphere to troposphere (~1-2 years) is much longer than that for radioactive decay (half-life 53.3 days), the radioactive decay term is much larger than the STE flux term. Nevertheless, the STE term would become more important for a model atmosphere where STE is too fast. For the simulation of tropospheric (not stratospheric) ^7Be, the stratospheric influx to the troposphere may be adjusted by artificially scaling down (in the case of excessive STE) or up (in the case of too slow STE) the stratospheric ^7Be source. The extent to which ^7Be cross-tropopause transport is excessive or too slow in the model can be indicated by a scaling factor A, which is defined as the ratio of model to observed STE fluxes of ^7Be. We derive the scaling factor A as follows.

According to the DH85 constraint, we have for the observations

$$[^7\text{Be}]_{T,G} /[^7\text{Be}]_{S,G} = (1-0.25)/0.25 = 3$$ \hspace{1cm} (2)

where the left-hand side denotes the ratio of the tropospheric ($[^7\text{Be}]_{T,G}$) to stratospheric ($[^7\text{Be}]_{S,G}$) component of annual mean ^7Be concentrations in ground air at NH mid-latitudes. On the other hand, we have for a global model

$$[^7\text{Be}]_{T,G} /[^7\text{Be}]_{S,G} = (1-F)/F$$ \hspace{1cm} (3)

where $[^7\text{Be}]_{T,G}$ and $[^7\text{Be}]_{S,G}$ are the model tropospheric and stratospheric components of annual mean ^7Be concentrations in surface air at NH mid-latitudes, respectively, and F is the corresponding fraction of surface air of stratospheric origin in the model. If the model reasonably represents the vertical transport and wet scavenging processes in the troposphere, we have

$$[^7\text{Be}]_{T,G} =[^7\text{Be}]_{T,G}$$ \hspace{1cm} (4)

Combining equations (2)-(4), we obtain the scaling factor

$$A \approx[^7\text{Be}]_{S,G}/[^7\text{Be}]_{S,G} \approx 3F/(1-F).$$ \hspace{1cm} (5)
We will discuss the sensitivity of F and A to the assumptions with respect to convective transport and scavenging processes in Section 4. The validity of equation (5) will also be evaluated with actual model calculations in that section. Unless otherwise specified, ^7Be cross-tropopause fluxes in the model calculations presented in this paper are not adjusted. However, we will use the scaling factor A as one of the metrics for comparing the STE characteristics of different meteorological data sets.

2.5 ^7Be and ozone observational data

^7Be. We estimate an average solar year value simply by averaging the long-term records of ^7Be observations multiplied by 0.72 to correct to the 1958 solar maximum source (Koch et al., 1996). The ^7Be deposition flux observations are from the compilation of Koch et al. (1996) and there are about 25 northern mid-latitude sites with available long-term ^7Be observations. The ^7Be surface concentration observations are from the data archive of the US Department of Energy (DOE) Environmental Measurements Laboratory (EML, now part of the Department of Homeland Security) Surface Air Sampling Program (SASP) beginning in the 1980’s. We also use the long-term climatological data of ^7Be concentrations in the UT/LS constructed from ~25 years of aircraft and balloon observations. Between the late 1950s and the early 1980s, EML collected tropospheric and stratospheric aircraft and balloon measurements of numerous radionuclides as part of the DOE High Altitude Sampling Program (HASP). The data was compiled into a database in 1997 by R. Leifer and N. Chan of EML, called RAdioNuclide DAtaBase (RANDAB). The reader is referred to Considine et al. (2005) for a brief description of the RANDAB database. This database is available at the Oak Ridge National laboratory’s Carbon Dioxide Information Analysis Center (http://cdiac.esd.ornl.gov/ndps/db1019.html).

Ozone. We use tropospheric ozone column (TOC) determined with the tropospheric ozone residual method by subtracting measurements of MLS stratospheric column ozone (SCO) from OMI total column ozone (Ziemke et al., 2006; URL: http://acdb-ext.gsfc.nasa.gov/Data_services/cloud_slice) or using the TOMS and Solar Backscatter Ultraviolet (SBUV) combination (Fishman et al., 2003; URL: http://science.larc.nasa.gov/TOR). The OMI/MLS TOCs are from October 2004 - July 2008, and the TOMS/SBUV TOCs are from 1979-2005. We use climatological monthly average ozone profiles from 23 ozonesonde stations as constructed by Considine et al. (2008), based on Logan (1999) and Thompson et al. (2003). The ozonesonde data record is from 1985-2000 for extratropical stations, and from all available data prior to 2005 for tropical stations. The number of sondes at each station is adequate for
defining monthly means used to evaluate the accuracy of the model results (Considine et al., 2008). Surface ozone data are taken from Logan (1999).

3 Model evaluation with UT/LS and surface 7Be data

In this section, we present model results of 7Be simulations driven by four meteorological archives and evaluate them against long-term measurements at the surface and in the UT/LS. Figure 3 shows the annual zonal mean concentrations (in units of millibecquerel per standard cubic meter or mBq/SCM$^{-1}$) of 7Be in the four radionuclide simulations using GMI CTM. All four simulations overall show a similar pattern of tropospheric distribution. The highest concentrations are seen in the dry subsiding subtropics. Lowest 7Be concentrations in surface air are found in the Southern Hemisphere mid-latitudes owing to scavenging by frequent large-scale precipitation (Figure 1). Low 7Be concentrations are also associated with ITCZ, which is characterized by strong convergence and convective precipitation. It appears, however, that among all four simulations the GEOS1-STRAT simulation gives the highest concentrations in the subtropics and the GISS simulation shows the highest concentrations in the high latitudes. This is partly attributed to the differences in the latitudinal distribution of total precipitations in these meteorological archives (Figure 1).

Figure 4 compares four 7Be simulations in the upper troposphere / lower stratosphere (UT/LS) with climatological distributions constructed from the 7Be data contained in the RANDAB database, following Considine et al. (2005) who previously made a similar comparison for 210Pb. Model output are sampled at the months, longitudes, latitudes, and altitudes of the 7Be observations. Figure 4a compares the meridional distribution of 7Be measurements made in the 12-16km altitude range with the four GMI simulations. Figure 4b shows the same comparison, but for the 16-20km altitude range. The 12-16km (about 200-100hPa) range lies within the upper troposphere in the tropics and the lower stratosphere at mid to high latitudes. The 16-20km (about 100-50hPa) range lies within the stratosphere at all latitudes.

At 12-16km (Figure 4a), the observations indicate comparatively low tropical upper tropospheric values of ~35 mBq SCM$^{-1}$, with increasing trends toward high latitudes. The distribution is nearly symmetric about the equator, with more observations available in NH high latitudes. This latitudinal distribution of 7Be concentrations reflects a larger production of 7Be in the lower stratosphere at high latitudes and precipitation scavenging associated with deep convection in the tropics. All four simulations capture the observations at 12-16 km reasonably
well. The differences between the four simulated 7Be concentrations are comparable or smaller than the error limits.

At 16-20km (Figure 4b), the observations show a tropical minimum of ~150 mBq SCM$^{-1}$, with increasing concentrations toward high latitudes in both hemispheres. In the tropics and the SH, the four 7Be simulations indicate small differences. In the NH, the four 7Be simulations reveal large differences and bracket the observations. In particular, the GMI/GEOS1-STRAT simulation gives the lowest 7Be concentrations among the four simulations and is lower than the observations. This appears to be due to excessive cross-tropopause transport in GEOS1-STRAT, as further discussed below. On the other hand, as we will also discuss later, the fvGCM and GEOS4-DAS meteorological fields have reasonable cross-tropopause transport. In the latter case, stratospheric 7Be concentrations are primarily determined by a balance between production and radioactive decay in the stratosphere. Therefore the slightly overestimated 7Be at 16-20km suggests a slightly overestimated global production rate of 7Be in the LP67 source. The Usoskin and Kovaltsov (2008) source, which is about 25% lower than the LP67 source, would probably yield better agreements with the 7Be observations in the lower stratosphere.

Figure 5a compares the simulated and observed annual average concentrations of 7Be near the surface as a function of latitude. Observed data are from the EML SASP database and are averaged into 10° latitude bins. Observations from sites with elevation higher than 500m are not included because of uncertainties involved in sampling coarse-resolution models at high elevation sites. Model results are sampled at observation locations and month. Figure 5b shows the annual zonal mean surface 7Be concentrations in the model to indicate the global representativeness of the averages over the sampling sites. The observations indicate concentration maxima in the subtropics associated with subsidence and minima in the tropics. The tropical minimum reflects rapid scavenging within the ITCZ. Low 7Be concentrations are also observed at mid-latitudes due to efficient scavenging in the mid-latitude storm tracks. Latitudinal trends (i.e., minima and maxima) of 7Be concentrations are well simulated with all meteorological fields except GISS II’. The GMI/GISS simulation shows too high 7Be concentrations at high latitudes; this is because of the well-known excessive cross-tropopause transport at high latitudes in the GISS II’ meteorological fields (e.g., Koch and Rind, 1998; McLinden et al., 2000; Shindell et al., 2003). The overall positive biases in all simulations are partly due to our correction of the long-term records of 7Be observations (by a factor of 0.72) to the 1958 solar maximum source (Section 2.5). We find that without this correction, the biases would be significantly reduced.
Figure 5c compares the model-simulated annual mean total deposition fluxes of 7Be at 25 northern mid-latitude sites from which long-term records of observations are available. The 7Be deposition flux observations are from the compilation of Koch et al. (1996), previously used in Liu et al. (2001). The data from individual sites are averaged over 4° latitude bins. The model is sampled at observation locations. Figure 5d shows the annual zonal mean total deposition fluxes of 7Be in the model to indicate the global representativeness of the sites. The observations show a maximum (~2100 Bq/m²/yr) in the subtropics (~30°N) and the fluxes fall off with increasing latitude. The four 7Be simulations show large discrepancies especially in the subtropics (~30°N). Overall, the GMI/fvGCM simulation agrees better with the magnitude of the observed fluxes while the GMI/GEOS4 simulation yields better latitudinal trends. GMI/GEOS4 simulates best the observations at the latitudes of 45°N-60°N, but overestimates the observations by ~50% at 20°N-40°N. The GMI/GISS simulation overestimates the observations at higher latitudes (45°N-60°N) by a factor of ~2. The GMI/GEOS1-STRAT simulation overestimates the observed 7Be deposition fluxes at subtropical latitudes by up to a factor of 2.5 (30°N). As with the above model-observation comparison of surface 7Be concentrations, the overall positive biases in model total deposition fluxes would be lower without the correction of 7Be observations (by a factor of 0.72) to the 1958 solar maximum source (Section 2.5). However, we will show in the next section that these overestimated 7Be deposition fluxes are largely due to model excessive cross-tropopause transport, especially with the GEOS1-STRAT and GISS II’ meteorological fields.

4 Assessment of cross-tropopause transport of 7Be in different meteorological archives

The above results indicate different levels of success with four meteorological fields in reproducing long-term records of surface and UT/LS 7Be concentrations as well as total deposition fluxes. In this section, we quantify the contribution of 7Be produced in the stratosphere to tropospheric 7Be concentrations and deposition fluxes, followed by an assessment of cross-tropopause transport of 7Be in the meteorological fields used.

Figure 6a shows the stratospheric fraction (%) of annual zonal mean atmospheric 7Be concentrations (i.e., fraction of atmospheric 7Be produced in the stratosphere) in the model simulations as a function of latitude and pressure. The fractions of significantly less than 100% in the lower stratosphere in all four simulations reflect mainly the seasonal movement of the tropopause. With GEOS1-STRAT, stratospheric contribution to lower-tropospheric 7Be concentrations maximizes at 25-50°N (35-45%) and 25-40°S (30-35%). The tropical middle and
upper troposphere show the minimum in stratospheric impact (<30%). With GISS II’, the stratospheric contribution to lower-tropospheric 7Be concentrations peaks (30-40%) at southern high latitudes and remains nearly constant (30-35%) north of 30°N while it is quite small (<~10-20%) in the tropical middle and upper troposphere. The strong gradients in the sub-tropics suggest that the tropics are strongly isolated from the mid-latitudes in the GISS II’ meteorological field. fvGCM and GEOS4-DAS show similar pattern of stratospheric influence on the troposphere; both indicate maximum contribution from stratosphere near 30-35°N (~25%) and 25-30°S (~20-25%) in the lower troposphere. However, GEOS4-DAS shows larger contributions from the stratosphere to the troposphere (especially the free troposphere) than fvGCM does by a few percent, consistent with the overestimated deposition fluxes at 20°N-40°N by GEOS4-DAS (Figure 5c). The area of minimal stratospheric influence in the tropics is also narrower in GEOS4-DAS.

Figure 6b shows the stratospheric fraction (%) of annual zonal mean surface 7Be concentrations and that of annual zonal mean 7Be total deposition fluxes (Bq/m²/yr) in the model simulations as a function of latitude. With all meteorological fields except GISS II’, maximum stratospheric contribution to total deposition fluxes (versus surface 7Be concentrations) is shifted toward higher latitudes, reflecting scavenging by frequent mid-latitude precipitation and the dry subsidence in the sub-tropics. Stratospheric fractions of surface 7Be concentrations at NH mid-latitude are about 38% (GEOS1-STRAT), 33% (GISS II’), and 23-24% (fvGCM and GEOS4-DAS). As discussed in Section 2.4, the observed 7Be/90Sr ratio suggests that 23-27% of the 7Be in surface air at northern mid-latitudes is of stratospheric origin (DH85). According to this constraint, cross-tropopause transport of 7Be and subsequent transport to the surface in the GEOS1-STRAT and GISS II’ meteorological fields is excessive. On the other hand, it should be noted that the fvGCM and GEOS4-DAS simulations show results remarkably consistent with the DH85 constraint, suggesting that stratospheric influences on surface 7Be concentrations in these two meteorological fields are reasonable. However, DH85 did not provide constraints on latitudinal variation of stratospheric influence on surface 7Be. Of the four meteorological fields, GEOS1-STRAT, fvGCM and GEOS4-DAS show very similar latitudinal distribution of stratospheric influence at the surface (i.e., peak in the sub-tropics and valley in the tropics or polar regions). By contrast, GISS II’ shows the largest impact of the stratosphere at high latitudes.

Similarly, as shown above, the model overestimates the long-term records of 7Be deposition flux observations at mid-latitudes (and sub-tropics) with GEOS1-STRAT and at high latitudes with GISS II’ (Figure 5c). Interestingly, the fvGCM (and to a lesser extent GEOS4-DAS)
simulation yields ^7Be deposition fluxes close to the observations. This suggests that the DH85 constraint and observed ^7Be deposition fluxes are two complementary constraints on cross-tropopause transport of ^7Be. We therefore use the DH85 constraint to assess the cross-tropopause transport of ^7Be in the meteorological fields.

Using the approach described in Section 2.4 (i.e., reduced cross-tropopause transport flux by artificially scaling down the stratospheric ^7Be source in the simulation of tropospheric ^7Be), we determine the scaling factors for GEOS1-STRAT and GISS to be 1.92 and 1.35, respectively. With the adjustment of ^7Be cross-tropopause fluxes for GEOS1-STRAT and GISS, the model calculated stratospheric fraction of ^7Be concentrations in surface air at NH mid-latitudes are indeed close to 25% (i.e., agree with the DH85 constraint) (Figure 7), thus supporting the validity of equation (5). With the adjustment, some simulations also simulate better surface ^7Be concentrations and total deposition fluxes at the sub-tropics (GEOS1-STRAT) and at high latitudes (GISS II’) (Figure 8 vs. Figure 5). The improvement is clearer for total deposition fluxes than for surface concentrations. As discussed below, on a global scale total deposition fluxes are sensitive to STE fluxes of ^7Be into the troposphere, while surface concentrations are principally dependent on the overall wet removal rate.

Table 3 shows the annual average global budgets of tropospheric ^7Be in the four GMI simulations. With an adjustment of ^7Be cross-tropopause fluxes, the global burdens and residence times of tropospheric ^7Be in GMI/GEOS1-STRAT and GMI/GISS are reduced. In GMI/GEOS1-STRAT the source and sink terms become much closer to that in fvGCM and GEOS4-DAS. A reduction of global ^7Be STE fluxes of 0.04 g d$^{-1}$ results in a decrease of total deposition fluxes of 0.03 g d$^{-1}$ and radioactive decay of 0.01 g d$^{-1}$. In GMI/GISS the changes in the budget terms are relatively small due to the smaller adjustment of ^7Be cross-tropopause fluxes. Nevertheless, a reduction of global ^7Be STE fluxes of 0.01 g d$^{-1}$ results in a decrease of total deposition fluxes of 0.01 g d$^{-1}$. These calculations indicate that globally the ^7Be total deposition fluxes are sensitive to STE fluxes of ^7Be into the troposphere.

The model calculated stratospheric fraction of ^7Be in the troposphere may be sensitive to the model diagnosed location of the tropopause, for which there is some uncertainty. For instance, Stajner et al. (2008) used four different definitions of the tropopause on the basis of temperature lapse rate (World Meteorological Organization or WMO definition), potential vorticity (PV), and isentropic surfaces or ozone surfaces. They found that the WMO tropopause was about 0.7-1 km (in the northern mid-latitude) or 0.5-1 km (in the tropics) higher than the ozone or PV determined tropopause. We examine the sensitivity of model diagnosed stratospheric fraction of
tropospheric 7Be concentrations to the location of tropopause (not shown) by lowering
tropopause height by one model level (approximately 1.2 km, 1.7 km, 1.1 km, and 1.1 km for
GEOS1-STRAT, GISS II', fvGCM and GEOS4-DAS, respectively). Results indicate that
stratospheric fractions of surface 7Be concentrations increase by 5-10%, thus requiring larger
adjustments of cross-tropopause transport of 7Be in the meteorological fields in order to meet the
DH85 constraint. This also suggests that using the DH85 constraint requires relatively high
vertical resolution near tropopause in the model.

While the model diagnosed stratospheric fraction of tropospheric 7Be concentrations is
mainly determined by the STE processes in the UT/LS, it may also be sensitive to precipitation
scavenging and convective transport in the troposphere. Figure 9 shows the latitude-pressure
cross sections of the differences in the stratospheric fraction (%) of annual zonal mean
tropospheric 7Be concentrations between the standard simulation and a simulation where
precipitation scavenging is turned off. Also shown are the corresponding differences near the
surface. The stratospheric fraction of tropospheric 7Be is found to be only weakly dependent on
precipitation scavenging, with <5% change in most of the troposphere and <2.5% change near
the mid-latitude surface. Figure 10 shows a similar plot, except that convective transport and
scavenging are turned off in the sensitivity simulation. Similarly, the stratospheric fraction of
tropospheric 7Be is not sensitive to convective transport and scavenging processes, with <1%
changes near the mid-latitude surface.

5 Comparison with previous modeling studies

In this section we compare the GMI CTM results for cross-tropopause transport of 7Be with
previous modeling studies based on the same or similar meteorological fields.

Liu et al. (2001) found that STE flux of 7Be was overestimated with the GEOS1-STRAT
fields in the GEOS-Chem model, consistent with this study using GMI CTM. However, Liu et al.
(2001) found that the reduction required to match the DH85 constraint is a factor of 3.5 for the
GEOS1-STRAT archive with $4^\circ \times 5^\circ$ resolution, compared to a factor of 2.5 in the present study.
The larger reduction in the former reflects the inclusion of ice particle gravitational settling
effect, which results in increased transport from the upper to lower troposphere, as well as the
inclusion of the diagnosed tropopause model layer as part of the stratosphere (versus the
troposphere). Interestingly, when specifying ozone concentrations in the lower stratosphere
(70hPa) and letting the model (GEOS-Chem) transport this ozone as an inert tracer into the
troposphere, Bey et al. (2001) found a similar overestimate in an ozone simulation with the
GEOS-1 data, as diagnosed by the simulation of tropospheric ozone concentrations at high latitudes in winter where transport from the stratosphere is a major source. This indicates that the simulation’s deficiency in cross-tropopause transport as diagnosed using 7Be tracers has similar consequences for cross-tropopause transport of ozone.

Koch and Rind (1998) used a 31-layer version of the GISS GCM to simulate 7Be and 10Be and used tropospheric 10Be/7Be as indicator of STE. Based on limited observations, they suggested that leakage into the troposphere is somewhat excessive in the model, particularly at high latitudes. Using the GISS II’ GCM, McLinden et al. (2000) found that a large fraction of the cross-tropopause transport of ozone occurs at the poles which is inconsistent with the current understanding of stratosphere-troposphere exchange, despite that the global stratosphere-troposphere exchange fluxes of ozone compare well with their best estimate of 475±120 Tg/year based on measurements and tracer-tracer correlation. Shindell et al. (2003) presented an updated version of the GISS II’ climate model which still overestimates ozone in the middle troposphere at high latitudes, likely reflecting deficiencies in the model’s downward transport of stratospheric air. Our conclusions about cross-tropopause transport of 7Be in GISS II’ in this work are consistent with these previous studies. Overestimated STE fluxes of 7Be as diagnosed in GMI/GISS based on the DH85 constraint simply reflect the incorrect latitudinal distribution of cross-tropopause transport, that is, too fast STE at higher latitudes and too slow STE at lower latitudes. The DH85 constraint was only applicable and applied for NH mid-latitude surface and thus does not provide constraint on the model global STE flux of 7Be if the latitudinal distribution of STE is incorrect.

The large-scale stratospheric transport (Brewer-Dobson circulation) in fvGCM has been shown to be realistic (Douglass et al., 2003) and mean age of stratospheric air is similar to observations (Strahan and Douglass, 2004; Douglass et al., 2008; Strahan et al., 2009). This suggests credible cross-tropopause transport of mass and ozone in fvGCM because the large-scale exchange between the stratosphere and troposphere is largely tied to the Brewer-Dobson circulation through the overworld wave driving (Holton et al., 1995; Olsen et al., 2004). Based on this finding, the meteorological data from fvGCM was used to drive GMI CTM by several authors to study tropospheric ozone. Considine et al. (2008) evaluated near-tropopause ozone distributions with ozonesonde data. Terao et al. (2008) examined the role of variability in the input of stratospheric ozone on the interannual variability of tropospheric ozone in the northern extratropics. Liang et al. (2009) investigated the impact of stratosphere-to-troposphere transport on tropospheric ozone and NOx chemistry over the Arctic. By contrast, GEOS4-DAS tends to
have too strong of a residual circulation, and the age of air is too young as compared to observations (Schoeberl et al., 2003; Schoeberl, 2004; Douglass et al., 2008). A GMI CTM simulation driven with the GEOS4-DAS meteorological fields showed the model’s inadequancy in simulating upper-tropospheric ozone (Liang et al., 2009). These findings are consistent with what we illustrated in this study from a perspective of 7Be tracers. That is, GEOS4-DAS features larger impact of STE on the troposphere (especially UT) than fvGCM does, while the latter has more credible cross-tropopause transport as constrained by observed 7Be deposition fluxes (Figure 5c) and the DH85 criterion (Figure 6).

6 Implications for cross-tropopause transport of ozone

In this section we discuss the implications of different characteristics of cross-tropopause transport of 7Be for stratospheric influence on tropospheric ozone in different meteorological fields. At the time of this study, the GMI full-chemistry model can be driven with GEOS1-STRAT, fvGCM and GEOS4-DAS, but not GISS II’ meteorological fields. This allows us to examine any potential relationship between the cross-tropopause transport of 7Be and ozone when these fields are used to drive the model.

Ozonesonde, surface and satellite observations provide useful constraints on the stratospheric contribution to tropospheric ozone (e.g., Rind et al., 2007; Lin et al., 2012). Figure 11 shows comparisons of model tropospheric ozone profiles with annual mean ozonesonde observations for a range of latitudes (Considine et al., 2008). These results are typical of other stations at similar latitudes. The GMI/GEOS1-STRAT simulation produces excessive ozone throughout the troposphere at all latitudes except in the tropics while the GMI/fvGCM and GMI/GEOS4-DAS simulations are generally in agreement with the observations (with slightly overpredicted ozone in the mid-latitude upper troposphere). The GEOS1-STRAT simulation has the largest overestimate of O_3 in spring. We also compared model surface ozone concentrations with the Logan (1999) surface ozone dataset (not shown). Among the three GMI simulations, the GMI/GEOS1-STRAT simulation shows the largest errors in surface ozone concentrations during winter and spring when stratospheric contribution is at its peak. These are in line with the relative magnitudes of cross-tropopause transport efficiencies of 7Be in the three meteorological fields (i.e., too fast STE in GEOS1-STRAT), discussed in previous sections. Indeed, the tropospheric version of the GMI/GEOS1-STRAT model with constrained STE flux of ozone using the Synoz approach (about 579 Tg/year) simulates ozonesonde observations of tropospheric ozone reasonably well (dotted line, Figure 11).
Figure 12 shows GMI simulated annual zonal mean tropospheric ozone column (TOC), in Dobson Units, compared with observed climatologies from TOMS/SBUV (1979-2005; Fishman et al., 2003) and OMI/MLS (October 2004 - July 2008; Ziemke et al., 2006). The WMO definition of thermal tropopause is used to calculate the model TOC. While the GMI/fvGCM and GMI/GEOS4-DAS simulations are similar and overestimate TOC by up to ~20 DU, the GMI/GEOS1-STRAT simulation overestimates TOC by as much as ~40 DU. The excessive O$_3$ in the GMI/GEOS1-STRAT simulation with maxima at 30°N and 30°S suggests downward transport of ozone from the stratosphere is too fast. The tropospheric version of the GMI/GEOS1-STRAT model with constrained STE flux of ozone provides a much better simulation of global TOCs (red dashed line, Figure 12), which are comparable to those from GMI/fvGCM and GMI/GEOS4-DAS simulations. However, model TOCs are still ~10-14DU larger than satellite observations in the subtropics and mid-latitudes. Previously, Ziemke et al. (2006) considered uncertainties in both model and observations and subjectively interpreted model-OMI/MLS TOC differences of 10 DU and higher as significant. As Stajner et al. (2008) noted, a low extratropical tropopause used by Ziemke et al. (2006) may have played an important role in the underestimation of OMI/MLS TOC. Yang et al. (2010) also found that their OMI/MLS potential vorticity mapped TOCs are smaller than ozonesonde TOCs by 5.9 DU with a standard deviation of the differences of 8.4 DU. On the other hand, the GMI/fvGCM simulation tends to overestimate ozone just below the tropopause at mid-latitudes (Figure 11); these biases do not appear to be due to excessive stratospheric influence (Considine et al., 2008). Current global models also tend to overpredict surface ozone during summer and early fall over the eastern U.S. and Japan (Fiore et al., 2009). Therefore the simulated TOCs are very likely biased high.

We further examine the relationship between the cross-tropopause transport of 7Be and ozone with the GEOS1-STRAT meteorological fields, in which case STE is known to be too fast. Figure 13a shows the latitudinal variations of annual zonal mean tropospheric 7Be column overestimate (Δ^7Be) and TOC overestimate (ΔTOC) in the GMI/GEOS1-STRAT simulation. Δ^7Be is obtained by subtraction of the STE-flux-adjusted simulation (Section 2.4) from the standard simulation. ΔTOC is obtained by subtracting the GMI tropospheric model simulation (with STE flux of ozone about 579 Tg/year) from the GMI full-chemistry model simulation. Figure 13b shows the correlation between the global distributions of Δ^7Be and ΔTOC. The lines of best fit are calculated using the reduced-major-axis (RMA) method (Hirsch and Gilroy, 1984). Standard errors for the intercept and the slope are computed as described by Miller and Kahn.
(1962). Overall, the location of overestimated ozone follows that of overestimated 7Be, with both maxima near 30°N and 30°S. The strong correlation between Δ^7Be and ΔTOC implies that 7Be is a good indicator of cross-tropopause transport of ozone. These support our conclusion that 7Be is a useful utility for assessing cross-tropopause transport of ozone in global models.

7 Summary and conclusions

We have assessed the ability of the Global Modeling Initiative (GMI) chemical transport model (CTM) using different meteorological data sets to simulate the atmospheric distributions of 7Be, a natural aerosol tracer originating from the upper troposphere/lower stratosphere and removed from the troposphere primarily by wet deposition. The model was driven by four meteorological data sets (GEOS1-STRAT, GISS II’, fvGCM, GEOS4-DAS) which feature significantly different cross-tropopause transport characteristics. The GMI modeling framework was configured such that the variability between the simulations mainly reflects the use of different meteorological data. Our goal was to assess the utility of 7Be as a tracer of cross-tropopause transport in global models and develop a methodology to exploit such a utility. We have also discussed the implications of excessive cross-tropopause transport as revealed by 7Be simulations for the modeling of tropospheric ozone.

We evaluated the four simulations of 7Be with RANDAB, a unique database of upper atmosphere radionuclide climatological observations compiled by the DOE (now DHS) Environmental Measurement Laboratory, as well as long-term measurements at the surface. Model simulations capture the UT/LS observations with respect to latitudes. The GMI/GEOS1-STRAT simulation shows the lowest 7Be concentrations among the four simulations in the lower stratosphere, and underestimates the observations. This reflects the well-known highly overestimated cross-tropopause transport in GEOS1-STRAT DAS. At the surface, GMI/GISS II’ reproduces the observed latitudinal trends of 7Be concentrations, but shows too high concentrations at high latitudes. The GMI/fvGCM simulated 7Be deposition fluxes are the closest to the observations, while the GMI/GEOS1-STRAT overestimates the observed 7Be deposition fluxes at subtropical latitudes by up to a factor of 2.5 (30°N) and the GMI/GISS simulations at high latitudes (45-60°N) are too high by a factor of 2. We were able to show that the observed 7Be deposition fluxes offer a strong constraint on stratosphere-to-troposphere transport in global models.

We examined the observational constraint from Dutkiewicz and Husain (1985) (DH85) on the stratospheric contribution to tropospheric 7Be using the GMI modeling framework. DH85
analyzed the observed 7Be/89Sr ratio, which suggests that 23-27% of the 7Be in surface air at northern mid-latitudes is of stratospheric origin. This constraint offers a sensitive test of cross-tropopause transport in global models. Comparison of the fraction of surface air of stratospheric origin estimated from the 7Be simulations with the DH85 constraint indicates excessive cross-tropopause transport at mid-latitudes with the GEOS1-STRAT meteorological fields and at high latitudes with the GISS II$^\prime$ fields. Interestingly, these simulations also overestimate observed 7Be deposition fluxes at middle and high latitudes, respectively. With a correction to cross-tropopause flux, the model simulates better surface 7Be concentrations and total deposition fluxes. By contrast, the fvGCM meteorological data yield the most reasonable cross-tropopause transport of 7Be according to the DH85 constraint, consistent with the fact that the GMI/fvGCM simulated 7Be deposition fluxes are closest to the observations. These results illustrate that the GMI framework is very useful for characterizing and helping reduce uncertainties in the processes such as cross-tropopause transport in the meteorological fields that are used to drive chemical transport models. Note that since wet deposition removes both the stratospheric and tropospheric components of 7Be nondiscriminatively, the model diagnosed fraction of 7Be of stratospheric origin does not significantly depend on the rate of wet removal.

The model diagnosed stratospheric fraction of 7Be in surface air is sensitive to the diagnosed location of tropopause, in particular when the model vertical resolution is relatively coarse (>1-1.5km) near the tropopause region. This suggests that stratospheric fraction of 7Be is a more useful diagnostic when the model has sufficient vertical resolution (<1-1.5km) so that the tropopause can be well defined. We used the WMO definition of thermal tropopause and include the diagnosed tropopause model layer as part of the troposphere (versus the stratosphere). As such our assessment of cross-tropopause transport of 7Be in the four meteorological data sets in the GMI CTM is consistent with previous modeling studies of stratospheric influence on tropospheric ozone.

Incorrect cross-tropopause transport of 7Be implies misrepresented downward influx of stratospheric ozone to the troposphere in a model. We demonstrated this by examining the relationship between the cross-tropopause transport of 7Be and ozone as simulated by GMI CTM driven with GEOS1-STRAT, fvGCM and GEOS4-DAS meteorological fields. We found that excessive cross-tropopause transport of 7Be corresponds to overestimated stratospheric contribution to tropospheric ozone, as constrained by ozonesonde, surface and satellite observations.
In summary, the 7Be simulation, which is computationally cheap and technically simple, in combination with the DH85 7Be observational constraint and observed 7Be deposition fluxes may be used routinely to assess cross-tropopause transport in global models. We recommend separate transport of the 7Be produced in the stratosphere (7Be-strat) to evaluate the ratio of 7Be-strat to total 7Be (i.e., beryllium-7 produced in both the stratosphere and the troposphere) in surface air against the DH85 constraint. This can serve as a first-order assessment of cross-tropopause transport in the meteorological fields. With improved estimates of 7Be production rates as well as their year-to-year variations, model multi-year 7Be simulations together with long-term observations would provide useful constraints on the interannual variability of STE. While this study uses 7Be alone, future modeling work will include using 10Be/7Be, a more sensitive indicator of STE (Rehfeld and Heimann, 1995; Koch and Rind, 1998; Jordan et al., 2003).

Acknowledgments

This work was supported by the NASA Modeling, Analysis and Prediction (MAP) program, the Atmospheric Composition Modeling and Analysis Program (ACMAP), and the Atmospheric Composition Campaign Data Analysis and Modeling (ACCDAM) program. We thank Bryan Duncan for his contribution to the GMI model development. The GMI core team at NASA GSFC is acknowledged for programming support. NASA Center for Computational Sciences (NCCS) provided supercomputing resources. The GEOS-Chem model is managed by the Atmospheric Chemistry Modeling Group at Harvard University with support from ACCMAP and MAP.
References

Heikkila, U., Beer, J., and Feichter, J.: Modeling cosmogenic radionuclides ^{10}Be and ^{7}Be during the Maunder Minimum using the ECHAM5-HAM general circulation model, Atmos. Chem. Phys., 8, 2797-2809, 2008b.

Table 1. Acronyms of the model and driving meteorological data sets

<table>
<thead>
<tr>
<th>Model / Data Set</th>
<th>Acronym</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMI CTM</td>
<td>Global Modeling Initiative Chemical Transport Model</td>
</tr>
<tr>
<td>GEOS1-STRAT DAS</td>
<td>Goddard Earth Observing System Data Assimilation System – version 1 in support of the Stratospheric Tracers of Atmospheric Transport mission</td>
</tr>
<tr>
<td>GISS II’ GCM</td>
<td>Goddard Institute for Space Studies General Circulation Model – version II’</td>
</tr>
<tr>
<td>fvGCM</td>
<td>Global Modeling and Assimilation Office (GMAO) finite-volume GCM</td>
</tr>
<tr>
<td>GEOS4-DAS</td>
<td>GEOS Data Assimilation System – version 4</td>
</tr>
</tbody>
</table>
Table 2. Characteristics of meteorological data sets used to drive the GMI CTM

<table>
<thead>
<tr>
<th>Data Set</th>
<th>Number of levels</th>
<th>Top Pressure (hPa)</th>
<th>Vertical Coordinate</th>
<th>Interface Pressure (hPa)<sup>a</sup></th>
<th>Near-Tropopause Resolution (km)</th>
<th>Bottom layer depth (hPa, m)</th>
<th>Update Period (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOS1-STRAT</td>
<td>46</td>
<td>0.1</td>
<td>σ</td>
<td>N/A</td>
<td>~1.0</td>
<td>~12.13hPa, ~100m</td>
<td>6</td>
</tr>
<tr>
<td>GISS II’</td>
<td>23</td>
<td>0.002</td>
<td>σ-P</td>
<td>150</td>
<td>~1.8-2.5</td>
<td>~24.46hPa, ~200m</td>
<td>3</td>
</tr>
<tr>
<td>fvGCM</td>
<td>42 (55<sup>b</sup>)</td>
<td>0.9 (0.01<sup>b</sup>)</td>
<td>σ-P</td>
<td>200</td>
<td>~1.0</td>
<td>~14.89hPa, ~130m</td>
<td>3</td>
</tr>
<tr>
<td>GEOS4</td>
<td>42 (55<sup>b</sup>)</td>
<td>0.9 (0.01<sup>b</sup>)</td>
<td>σ-P</td>
<td>200</td>
<td>~1.0</td>
<td>~14.89hPa, ~130m</td>
<td>3</td>
</tr>
</tbody>
</table>

^aThe hybrid vertical coordinate consists of sigma (σ) levels below the interface pressure and constant pressure (P) levels above.

^bThe total number of vertical levels and top level pressure in the original meteorological data set.
Table 3. Annual average global budget of 7Be in the model troposphere. The GMI model was driven by the GEOS1-STRAT, GISS II’, fvGCM, and GEOS4-DAS meteorological data sets, respectively.

<table>
<thead>
<tr>
<th></th>
<th>GEOS1-STRAT</th>
<th>GISS</th>
<th>fvGCM</th>
<th>GEOS4-DAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burden, g</td>
<td>4.95 (3.86) b</td>
<td>4.00 (3.64) b</td>
<td>4.31</td>
<td>4.05</td>
</tr>
<tr>
<td>Residence time, daysa</td>
<td>31 (29)</td>
<td>31 (30)</td>
<td>35</td>
<td>31</td>
</tr>
<tr>
<td>Sources, g d$^{-1}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STE</td>
<td>0.08 (0.04)</td>
<td>0.05 (0.04)</td>
<td>0.04</td>
<td>0.05</td>
</tr>
<tr>
<td>troposphere</td>
<td>0.14 (0.14)</td>
<td>0.13 (0.13)</td>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td>Sinks, g d$^{-1}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dry deposition</td>
<td>0.01 (0.01)</td>
<td>0.01 (0.01)</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>wet deposition</td>
<td>0.15 (0.12)</td>
<td>0.12 (0.11)</td>
<td>0.11</td>
<td>0.12</td>
</tr>
<tr>
<td>radioactive decay</td>
<td>0.06 (0.05)</td>
<td>0.05 (0.05)</td>
<td>0.06</td>
<td>0.05</td>
</tr>
</tbody>
</table>

aAgainst deposition only. The tropopause was determined in the model using a criterion of 2$^\circ$C km$^{-1}$ lapse rate as defined by World Meteorological Organization. The diagnosed tropopause model layer was included as part of the troposphere.

bThe numbers in the brackets indicate the values when 7Be cross-tropopause fluxes were adjusted for GMI/GEOS1-STRAT and GMI/GISS. See text for details.
Figure 1. Annual mean total precipitation (mm day$^{-1}$) at the surface in the GEOS1-STRAT, GISS II', fvGCM, and GEOS4-DAS meteorological data sets and in the observational data set from the Global Precipitation Climatology Project (GPCP, 1979-2009). Also shown is the annual zonal mean precipitation (bottom right panel).
Figure 2. Annual zonal mean convective mass fluxes (kg m$^{-2}$ s$^{-1}$) in the GEOS1-STRAT, GISS II' GCM, fvGCM, and GEOS4-DAS meteorological data sets.
Figure 3. Annual zonal mean mixing ratios (mBq/SCM) of 7Be as a function of latitude and pressure (altitude), as simulated by the standard GMI CTM. The white lines indicate the annual average thermal tropopause height. Contour levels are 2, 5, 10, 20, 50, 100, 200, 500 mBq/SCM.
Figure 4. Observed and simulated latitudinal distributions of 7Be in the (a) 12-16km and (b) 16-20km regions. Observed data from the EML RANDAB database are averaged into 10° bins, following Considine et al. (2005). Error bars represent ±2 times the standard error of the averages. Model results are sampled at observation locations and month. Also shown as dashed lines are model zonal mean 7Be concentrations to show the global representativeness of the averages constructed from sampling the simulations at the observation locations.
Figure 5. (a). Observed and simulated latitudinal distributions of 7Be concentrations (mBq/SCM) near the surface. 7Be cross-tropopause fluxes were not adjusted for the GMI/GEOS1-STRAT and GMI/GISS simulations (see Section 3). Observed data from the EML Surface Air Sampling Program (SASP) database are averaged into 10º bins. Those sites with elevation higher than 500m are not included. Error bars represent ±2 times the standard error of the averages. Model results are sampled at observation locations and month. (b). GMI simulated annual zonal mean concentrations of 7Be (mBq/SCM) near the surface. (c). Observed (black) and GMI simulated (color) annual mean total deposition fluxes (Bq/m²/yr) of 7Be (at 25 sites) as a function of latitude. The data from individual sites are averaged over 4º latitude bins. The model is sampled at observation locations. (d). GMI simulated annual zonal mean total deposition fluxes (Bq/m²/yr) of 7Be.
Figure 6. (a). Stratospheric fraction (%) of annual zonal mean atmospheric 7Be concentrations in the model simulations as a function of latitude and pressure. The white lines indicate thermal tropopause height. Contour levels are 5, 10, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90%. (b). Stratospheric fraction of annual zonal mean surface 7Be concentrations (solid lines) and that of annual zonal mean 7Be total deposition fluxes (dashed lines) in the model simulations as a function of latitude.
Figure 7. Same as Figure 6, except that ^7Be cross-tropopause fluxes have been adjusted for GMI/GEOS1-STRAT and GMI/GISS.
Figure 8. Same as Figure 5, except that 7Be cross-tropopause fluxes have been adjusted for GMI/GEOS1-STRAT and GMI/GISS.
Figure 9. Same as Figure 6(a,b), except for the differences in the stratospheric fraction (%) of zonal mean atmospheric 7Be concentrations between the standard simulation and a simulation where wet scavenging is turned off. Contour levels are -8, -6, -4, -2, 0, 2, 4, 6, 8%.
Figure 10. Same as Figure 6 (a,b), except for the differences in the stratospheric fraction (%) of zonal mean atmospheric 7Be concentrations between the standard simulation and a simulation where convective transport and scavenging are turned off. Contour levels are -4, -3, -2, -1, 0, 1, 2, 3, 4%.
Figure 11. Comparisons of GMI simulated tropospheric ozone profiles (color lines) with ozonesonde observations (black line) for a range of latitudes. Values are annual averages. Solid color lines indicate the GMI simulations. Also shown as dotted lines are tropospheric ozone profiles as simulated by the GMI tropospheric model driven by the GEOS1-STRAT meteorological field. The horizontal grey line indicates the approximate location of tropopause (i.e., the pressure level corresponding to 100 ppbv ozone concentrations in the ozonesonde observations).
Figure 12. GMI simulated annual zonal mean tropospheric ozone column (TOC in Dobson Units) compared with observed tropospheric ozone residuals from TOMS/SBUV (1979-2005 average) and OMI/MLS (October 2004 - July 2008 average). Also shown is the annual zonal mean TOC simulated by the tropospheric version of the GMI model.
Figure 13. (a). Latitudinal variations of annual zonal mean 7Be overestimate (Δ^7Be) and tropospheric ozone column overestimate (ΔTOC) as simulated by GMI/GEOS1-STRAT. Error bars represent ±2 times the standard error of the averages. (b). the correlation between the global distributions of Δ^7Be and ΔTOC. The lines of best fit are calculated using the reduced-major-axis (RMA) method (Hirsch and Gilroy, 1984). See text for details.