Oxygen isotope mass balance of atmospheric nitrate at Dome C, East Antarctica, during the OPALE campaign

Joel Savarino1,2, W. C. Vicars1,2*, M. Legrand1,2, S. Preunkert1,2, B. Jourdain1,2, M. M. Frey3, A. Kukui4,5, Nicolas Caillon1,2, J. Gil Roca4,5.

1Université Grenoble Alpes, Laboratoire de Glaciologie et Géophysique de l’Environnement (LGGE), 38000 Grenoble, France
2CNRS, Laboratoire de Glaciologie et Géophysique de l’Environnement (LGGE), 38000 Grenoble, France
3British Antarctic Survey, Natural Environment Research Council, Cambridge, UK
4Laboratoire Atmosphère, Milieux et Observations Spatiales (LATMOS), UMR8190, CNRS-Université de Versailles Saint Quentin, Université Pierre et Marie Curie, Paris, France
5Laboratoire de Physique et Chimie de l’Environnement et de l’Espace (LPC2E), UMR6115 CNRS-Université d’Orléans, 45071 Orléans cedex 2, France

*now at: Technical Services Program, Air Pollution Control Division, Colorado Department of Public Health and Environment, Denver, CO, USA

Correspondence to: J. Savarino (jsavarino@ujf-grenoble.fr)

Keywords: stable isotopes; non-mass dependent fractionation; atmospheric oxidants; snow photochemistry; NO$_x$, nitrate.
Abstract

Variations in the stable oxygen isotope composition of atmospheric nitrate act as novel tools for studying oxidative processes taking place in the troposphere. They provide both qualitative and quantitative constraints on the pathways determining the fate of atmospheric nitrogen oxides (NO + NO₂ = NO₃). The unique and distinctive 17O-excess (Δ^{17}O = δ^{17}O - 0.52 × δ^{18}O) of ozone, which is transferred to NO₃ via oxidation, is a particularly useful isotopic fingerprint in studies of NO₃ transformations. Constraining the propagation of 17O-excess within the NO₃ cycle is critical in polar areas where there exists the possibility of extending atmospheric investigations to the glacial/interglacial time scale using deep ice core records of nitrate. Here we present measurements of the comprehensive isotopic composition of atmospheric nitrate collected at Dome C (East Antarctic plateau) during the austral summer of 2011/2012. Nitrate isotope analysis has been here combined for the first time with key precursors involved in nitrate production (NOₓ, O₃, OH, HO₂, RO₂, etc.) and direct observations of the transferrable Δ^{17}O of surface ozone, which was measured at Dome C throughout 2012 using our recently developed analytical approach. Assuming that nitrate is mainly produced in Antarctica in summer through the OH + NO₂ pathway and using concurrent measurements of OH and NO₂, we calculated a Δ^{17}O signature for nitrate in the order of (21-22 ± 3) ‰. These values are lower than the measured values that ranged between 27 and 31 ‰. This discrepancy between expected and observed Δ^{17}O(NO₃) values suggests the existence of an unknown process that contributes significantly to the atmospheric nitrate budget over this east Antarctic region. However, systematic errors or wrong isotopic balance transfer functions are not totally excluded.
1. Introduction

The search for ice core proxies to reconstruct past change of oxidative properties of the atmosphere is motivated by the need to simulate ozone and OH changes over preindustrial-industrial and glacial-interglacial timescales (Thompson, 1992; Wang and Jacob, 1998; Murray et al., 2014). Early ice core reconstructions of oxidants based on H$_2$O$_2$ (Sigg and Neftel, 1991) and HCHO (Staffelbach et al., 1991) measurements were hampered by the occurrence of post-depositional alteration of H$_2$O$_2$ and HCHO concentrations in the upper snowpack prior to preservation in the ice (Hutterli et al., 2003). More recently, the 17O-excess (Δ^{17}O = δ^{17}O - 0.52 \times δ^{18}O) of nitrate, a unique isotopic signature inherited from ozone via bimolecular chemical reactions in the atmosphere, has shown promise as a conserved proxy for past oxidant concentrations (McCabe et al., 2005; Alexander et al., 2004). The Δ^{17}O signal of nitrate reflects the relative importance of NO$_x$ transformation mechanisms and recent studies suggest that the measurement of this isotopic signal in ice cores and ancient sediments may provide relevant information regarding the role of ozone in the overall oxidative capacity of the paleo-atmosphere (McCabe et al., 2007; Michalski et al., 2004; Michalski et al., 2003; Savarino et al., 2007; Thiemens, 2006). Parallel studies of the nitrogen isotope ratios (δ^{15}N) of nitrate in polar ice and snow suggest that this isotopic tracer may serve as a proxy for past variations in natural sources of atmospheric NO$_x$ (Hastings et al., 2009; Hastings et al., 2005; Jarvis et al., 2008). However, the chemical and physical factors governing the oxygen and nitrogen isotopic composition of atmospheric nitrate
and its nitrogen oxide precursors are not fully understood (Alexander et al., 2009; Morin et al., 2009). This is particularly true in the polar troposphere, where the UV-photolysis of trace species present in the snowpack or marine aerosols initiates complex boundary layer oxidation processes involving reactive halogen species (Bloss et al., 2010; Grannas et al., 2007; Wang et al., 2007) and results in distinctive Δ^{17}O and δ^{15}N signatures in atmospheric nitrate (Morin et al., 2012; Morin et al., 2007; Morin et al., 2008).

Here we present measurements of δ^{15}N and δ^{17}O and δ^{18}O isotopic composition of atmospheric nitrate collected at Dome C between November 2011 and January 2012. These measurements were conducted within the framework of the OPALE project (Oxidant Production over Antarctic Land and its Export, (Preunkert et al., 2012)), which has provided an opportunity to combine nitrate isotopic observations with a wealth of meteorological and chemical observations, including measurements of species involved in nitrate production (NO$_x$, O$_3$, OH, HO$_2$, RO$_2$, etc.). The primary objective of this study was to reconcile observations of Δ^{17}O for atmospheric nitrate at Dome C with quantitative predictions based on nitrate isotope mass balance and atmospheric chemistry parameters, a unique opportunity offered by the OPALE campaign.

2 Methods

2.1 Site description and scientific context

Dome C is situated 3233 m above sea level on the East Antarctic Plateau (75°06’ S, 123°23’ E), approximately 1100 km from the coastal research station Dumont d’Urville and 560 km from the Vostok station. Deep ice cores were extracted at Dome C in the
framework of the European Project for Ice Coring in Antarctica (EPICA) covering
approximately 800,000 yr (EPICA-community-members, 2004) and Vostok covering the
last 420,000 years (Petit et al., 1999). In parallel, studies aiming to understand the
meteorological, chemical, and physical factors governing the variability of trace
constituents preserved in the ice were initiated. (Jourdain et al., 2008; Preunkert et al.,
2008)

Although the Antarctic plateau is extraordinarily dry, cold, and far removed from
sources of anthropogenic emissions, first atmospheric measurements of oxidants
conducted in 1998 - 1999 during the ISCAT (Investigation of Sulfur Chemistry in the
Antarctic Troposphere) field campaign revealed a high level of photochemical activity.
For example, the average summertime OH concentration (2×10^6 cm$^{-3}$) over the South
Pole was found to be similar to that of the tropical marine boundary layer (MBL)
(Mauldin et al., 2001). Unexpectedly high levels of nitric oxide (NO) were also detected,
with concentrations one to two orders of magnitude higher than that typically observed in
other remote regions (Davis et al., 2001). Model simulations revealed that the large OH
concentrations observed at South Pole were a result of the elevated NO level, which
catalyzes a rapid cycling of HO$_2$ to OH (Chen et al., 2004; Chen et al., 2001). The high
concentrations of NO$_x$ were also inferred to drive in situ photochemical production of
ozone during the ISCAT campaign (Crawford et al., 2001). Surface ozone and NO$_x$
measurements at Dome C suggest a similar level of enhanced oxidant production during
November - January (Frey et al., 2013; Frey et al., 2015; Legrand et al., 2009).

The high levels of photochemical activity observed at South Pole and Dome C are
now understood in terms of NO$_x$ release from the snowpack (Honrath et al.,
2000; Honrath et al., 1999; Jones et al., 2001; Jones et al., 2000; Zhou et al., 2001). This process is initiated by the photolysis of nitrate, which can lead to large fluxes of NO₂, NO, and HONO from permanently sunlit snow (Anastasio and Chu, 2009; Grannas et al., 2007; Jacobi and Hilker, 2007; Legrand et al., 2014; Frey et al., 2013). Observed and modeled NOₓ production rates are largely capable of explaining the high levels of photochemical activity observed on the Antarctic plateau during spring (France et al., 2011; Liao and Tan, 2008; Wang et al., 2007) although detailed and speciation of nitrogen oxides chemistry remain largely unknown in this rich NOₓ/poor VOCs environment (Kukui et al., 2014; Frey et al., 2015; Legrand et al., 2014; Davis et al., 2008).

2.2 High-volume sampling

Bulk atmospheric samples were collected at Dome C on glass fiber filters using a high-volume air sampler (HVAS), which was installed on a platform 1 m above the ground. The HVAS was run by applying an average STP flow rate of 0.7 m³ min⁻¹ that ensures the collection of a sufficient amount of nitrate for isotopic analysis. The atmospheric NO₃⁻ collected on glass fiber filters represents the sum of atmospheric particulate NO₃⁻ (pNO₃⁻) and gaseous nitric acid (HNO₃) (Frey et al., 2009). 11 HVAS samples were obtained during the OPALE campaign (from November 2011 to January 2012). After each collection period, filters were removed from the HVAS and placed in clean 50 mL centrifuge tubes, which were sealed in plastic bags and stored at -20 °C. Upon arrival at our laboratory in Grenoble, atmospheric filter samples were extracted in 40 mL of ultra-pure water via centrifugation using Millipore Centricon™ filter units. Nitrate
concentration was then determined for each filter extract solution using a colorimetric technique (Frey et al., 2009).

2.2 Ozone collection

The nitrite-coated filter technique for ozone isotope analysis has been described in detail in (Vicars et al., 2012; Vicars and Savarino, 2014). The principle of ozone collection underlying this technique is the filter-based chemical trapping of ozone via aqueous phase reaction with nitrite (Adon et al., 2010; Geyh et al., 1997; Koutrakis et al., 1993; Krzyzanowski, 2004):

\[
\text{NO}_2^- + \text{O}_3 \rightarrow \text{NO}_3^- + \text{O}_2 \quad \text{(R1)}
\]

By coupling this routine ozone measurement technique with recent analytical developments in the \(\Delta^{17}O\) analysis of nanomole quantities of nitrate (Kaiser et al., 2007), the \(^{17}O\)-excess transferred by one of the two \(O_3\) terminal atoms through bimolecular chemical reactions, denoted \(\Delta^{17}O(\text{O}_3)_\text{term}\), as well as ozone’s bulk \(\Delta^{17}O\) value, denoted \(\Delta^{17}O(\text{O}_3)_\text{bulk} = 2/3 \ \Delta^{17}O(\text{O}_3)_\text{term}\) since all \(^{17}O\)-excess is located at the two \(O_3\) terminal atoms, (Bhattacharya et al., 2008; Janssen and Tuzson, 2006), can be inferred from the oxygen isotopic composition of the nitrate produced via R1 within the coated filter matrix.

Ambient ozone collections were performed using an active air sampler consisting of 1/4" Teflon™ (PFA) tubing connecting three main sampler components: (i) a standard low-volume vacuum pump (Welch™, Model 2522C-02) equipped with a volume counter
and needle valve (or flow meter) for flow rate regulation; (ii) a closed PFA filter holder assembly (Savillex™) containing a pre-coated 47 mm glass fiber sampling substrate (Whatman™, GF/A type); and (iii) an open-faced PFA filter holder assembly containing a 47 mm PTFE membrane filter (Zylon™, 5 µm pore size) for the removal of particulate species upstream of the coated filter. Glass fiber sampling substrates were coated prior to sample collection with 1 mL of a nitrite-based ozone sampling solution (0.1 M NaNO₂, 0.05 M K₂CO₃, 0.1 M glycerol) (Koutrakis et al., 1993), allowed to dry at 75°C for approximately 10 min, and then stored frozen in the dark in individual plastic PetriSlide™ containers (Millipore™). Samples were collected by loading pre-coated filters into the sampling filter holder, which was then connected to the prefilter (upstream) and needle valve/pump (downstream) and covered in aluminum foil to limit light exposure, a step that is necessary to limit the blank production rate during sample collection (Vicars et al., 2012). Air was then pumped through the sampling system at a target flow rate of 3.0 L min⁻¹.

Sampling was conducted during the OPALE campaign (December 2011 – January 2012) from a climate-controlled shelter, and a total of 28 samples were collected. However, due to difficulties in the application of our analytical technique to the unique environmental conditions encountered in Antarctica, the results obtained from these samples were inconclusive (i.e. unrealistic variability) due to the lack of light protection of the filter holder (Vicars et al., 2012; Vicars et al., 2013). Sampling and isotopic analysis of ozone was therefore repeated in 2012, and a complete annual record of \(\Delta^{17}O(O_3) \) was obtained (n = 60). Procedural filter blanks were also collected at regular intervals and were subjected to all of the same preparation, storage, handling, and
analytical procedures as field samples. After sample collection, filter samples and procedural blanks were returned to their containers, which were covered in aluminum foil and stored at -20°C before processing and analysis.

Filter samples were extracted in 18 mL of deionized water (18.2 MΩ, hereafter referred to as “MQ water”). In order to remove the excess (i.e., unreacted) nitrite reagent from the sample extracts, the solutions were treated with 1 mL of a 1 M sulfamic acid solution and then neutralized with a corresponding addition of high-purity sodium hydroxide (Granger and Sigman, 2009; Vicars et al., 2012). Extract solutions were then filtered via centrifugation using Millipore Centricon™ assemblies. The nitrate extracted from the coated filter samples was then subjected to isotopic analysis, as described in the following section.

2.3 Isotopic analysis

The comprehensive isotopic composition of nitrate (\(^{15}\text{N}/^{14}\text{N}, ^{17}\text{O}/^{16}\text{O}, ^{18}\text{O}/^{16}\text{O}\)) was measured on a Finnigan™ MAT253 isotope ratio mass spectrometer (IRMS), equipped with a GasBench II™ and coupled to an in-house built nitrate interface (Morin et al., 2009). Nitrate in both the nitrite-coated filter and aerosol sample extracts was prepared for isotopic analysis by conversion to \(\text{N}_2\text{O}\) via the bacterial denitrifier method (Casciotti et al., 2002; Kaiser et al., 2007; Michalski et al., 2002; Sigman et al., 2001). The detailed analytical procedure has been described elsewhere (see (Morin et al., 2009) and is here briefly presented.

Denitrifying bacteria (*Pseudomonas aureofaciens*) were cultured in nitrate-amended soy broth and incubated for 5 days in stoppered glass bottles. Bacterial cultures, after
concentration by centrifugation and re-suspension, were dispensed as 2 mL aliquots into 20 mL glass vials, which were then crimped and purged with helium for 3 hours. Approximately 100 nmol of sample nitrate was then injected into the purged vials and conversion of the sample nitrate to nitrous oxide (N$_2$O) via bacterial denitrification was allowed to proceed overnight. The N$_2$O sample was then cryo-focused in a liquid nitrogen trap and introduced into a gold furnace where it was thermally decomposed at 900°C into O$_2$ and N$_2$. Following separation via gas chromatography, the O$_2$ and N$_2$ gas samples were directed into the ionization chamber of the IRMS. All analytical steps were identically performed on nitrate isotopic standards and their equimolar mixtures (International Atomic Energy Agency USGS 32, USGS 34, and USGS 35), which were prepared in an identical background matrix as the samples. Individual analyses were normalized through comparison with these three nitrate reference materials (Coplen, 2011; Werner and Brand, 2001). All isotopic enrichment values for nitrate are reported relative to VSMOW and air N$_2$ for oxygen and nitrogen, respectively. The overall accuracy of the method is estimated as the standard deviation of the residuals from the linear regression between the measured reference materials and their expected values. For the results reported here, the average uncertainty obtained for δ^{18}O, δ^{17}O, and δ^{15}N were 1.6 ‰, 0.5 ‰, and 1.0 ‰, respectively.

2.4 Complementary measurements

Concurrent chemical measurements were conducted at Dome C during the campaign include HONO (Legrand et al., 2014), HO$_x$ (= OH + HO$_2$ + RO$_2$) radicals (Kukui et al.,
2014), O$_3$ (Legrand et al., in preparation) and NO and NO$_2$ (Frey et al., 2015). Photolysis rate coefficients and meteorological parameters were also recorded.

3. Results and discussion

3.1 Isotope ratios of ozone and atmospheric nitrate

Atmospheric nitrate concentrations observed at Dome C during the campaign are presented in Fig. 1, the corresponding nitrate Δ^{17}O and δ^{15}N values in Fig. 2. Atmospheric nitrate concentrations ranged between 20 and 90 ng m$^{-3}$, with the maximum values occurring in mid December 2011, concurrent with the period of intensive of atmospheric sampling of the OPALE field campaign. These values are in good agreement with those observed during the 2007 – 2008 and 2009 – 2010 field studies conducted at Dome C by (Frey et al., 2009) and (Erbland et al., 2013), respectively.

Δ^{17}O values for atmospheric nitrate ranged between 27.3 ‰ and 32.4 ‰, δ^{15}N between -42.8 ‰ and 1.7 ‰. The observed strongly depleted δ^{15}N(NO$_3^-$) values are in good agreement with those previously reported and having unambiguously attributed to the transformation of local snowpack NO$_x$ emissions via photochemistry in the boundary layer, which led to peaks in atmospheric nitrate concentration during the period from October to December (Erbland et al., 2013). As seen in Fig. 2, variations in Δ^{17}O and δ^{15}N were negatively correlated (r value of -0.86) and again show similar amplitude and phase to those reported in previous studies (Erbland et al., 2013; Frey et al., 2009).

A time series showing the year-round record of Δ^{17}O(O$_3$)$_{bulk}$ at Dome C in 2012 is presented in Fig. 3. Δ^{17}O(O$_3$)$_{bulk}$ averaged 24.9 ± 1.9 ‰, derived from to Δ^{17}O(O$_3$)$_{erm}$
values of 37.4 ± 1.9 ‰. As shown in Fig. 4, these \(\delta^{17}O(O_3)_{\text{bulk}} \) values are consistent with those observed in Grenoble (France), as well as with measurements conducted along a latitudinal transect from 50°S to 50°N in the Atlantic Ocean (Vicars and Savarino, 2014). Although the \(\delta^{17}O(O_3)_{\text{bulk}} \) seasonal cycle reveals some interesting features, like the winter maximum, probably in response of the permanent winter darkness and stratospheric air mass intrusions, a complete description is beyond the scope of the present paper. What should be kept in mind here is the pretty stable \(\delta^{17}O(O_3)_{\text{bulk}} \) value close to 26 ‰ that can be considered as representative for the OPALE campaign held in November-January.

3.2 Nitrate isotope mass balance

The availability of a large database of trace chemical species measurements at Dome C during a portion of the OPALE field campaign (December 2011) offers a unique opportunity to compare observed \(\delta^{17}O(\text{NO}_3^-) \) values in the atmosphere to estimated ones calculated from concurrent observations. As discussed at length in recent studies (for example, by (Morin et al., 2011) and (Vicars et al., 2013)), the \(^{17}O \)-excess transfer functions associated with the various nitrate production pathways (i.e., \(\delta^{17}O(\text{NO}_3^-) \) values) can be estimated as a function of the \(\delta^{17}O \) of nitrate precursor gases (i.e., \(\text{NO}_x \), \(\text{O}_3 \), OH, etc.) using mass balance calculations that trace the origin of oxygen atoms transferred during the chemical transformation of \(\text{NO}_x \) in the atmosphere. All atmospheric nitrate production channels involve either \(\text{NO}_2 \) or a \(\text{NO}_x \) reservoir species derived from \(\text{NO}_2 \) (e.g., \(\text{N}_2\text{O}_5 \)). The first step in determining the \(\delta^{17}O \) signature of each pathway is therefore a quantitative assessment of the steady state \(\delta^{17}O \) value of \(\text{NO}_2 \), which is typically calculated as a function of the \(\delta^{17}O \) value of \(\text{O}_3 \) and the reaction
dynamics involved in the conversion of NO to NO\(_2\). As Dome C in summer is permanently under sunlight, photochemical inter-conversion of NO\(_x\) is continue:

\[
\text{NO}_2 + \text{hv} \rightarrow \text{NO} + \text{O} \quad \text{(R2)}
\]

\[
\text{NO} + \text{O}_3 \rightarrow \text{NO}_2 \quad \text{(R3)}
\]

\[
\text{NO} + \text{HO}_2/\text{RO}_2 \rightarrow \text{NO}_2 \quad \text{(R4)}
\]

At photochemical steady state (i.e. R2-R4 being faster than NO\(_2\) net sink reactions), an assumption that can be reasonably applied throughout the day at Dome C during summer, we have (Morin et al., 2011):

\[
\Delta^{17}O(\text{NO}_2) = \alpha \times (1.18 \times \Delta^{17}(\text{O}_3)_{\text{bulk}} + 6.6) \quad \text{(EQ1)}
\]

where the term in bracket represents the laboratory deduced anomaly transfer function of the NO+O\(_3\) reaction (Savarino et al., 2008), \(\Delta^{17}\text{O}(\text{O}_3)_{\text{bulk}}\) the \(^{17}\text{O}\)-excess of the bulk O\(_3\) and \(\alpha\) represents the fraction of the atmospheric NO\(_2\) reservoir that has been produced through oxidation by O\(_3\) rather than HO\(_2\)/RO\(_2\) at photochemical equilibrium (Alexander et al., 2009; Michalski et al., 2003; Morin et al., 2011; Röckmann et al., 2001):

\[
\alpha = \frac{k_{\text{NO}+\text{O}_3}[\text{NO}][\text{O}_3]}{k_{\text{NO}+\text{O}_3}[\text{NO}][\text{O}_3] + k_{\text{NO}+\text{HO}_2}[\text{NO}][\text{HO}_2]^*} \quad \text{(EQ2)}
\]

with \([\text{HO}_2]^* = [\text{HO}_2] + [\text{RO}_2]\).
It is important to note here that EQ1 and EQ2, although established under the NO\textsubscript{x} steady-state approximation, are independent of NO\textsubscript{2} concentration for which a bias in measurement cannot be ruled out. Indeed, as discussed by (Frey et al., 2013; Frey et al., 2015), bias in NO\textsubscript{2} measurements is suspected partly because it remains difficult to explain the observed ratio of NO\textsubscript{2}/NO which is systematically higher (up to a factor of 7) than predicted by calculations made by assuming photochemical steady state considering the NO\textsubscript{2} photolysis and reaction of NO with O\textsubscript{3}, HO\textsubscript{2}/RO\textsubscript{2} and BrO. EQ2 also assumes that [HO\textsubscript{2}]* is predominantly formed by the reaction H + O\textsubscript{2} and R + O\textsubscript{2} during the OPALE campaign (Kukui et al., 2014), resulting in the formation of [HO\textsubscript{2}]* devoid of any significant 17O-excess (Morin et al., 2011). Using OPALE measurements of NO, O\textsubscript{3}, OH and HO\textsubscript{2}/RO\textsubscript{2} (Frey et al., 2015; Kukui et al., 2014), along with temperature dependent reaction kinetics data obtained from (Atkinson et al., 2004), we have calculated the diurnally mass averaged trend in α for the month of December 2011 at Dome C. Measurements of Δ^{17}O(O\textsubscript{3})\textsubscript{bulk} at Dome C during the OPALE campaign averaged 25 ± 2 \textperthousand, corresponding to Δ^{17}O(O\textsubscript{3})\textsubscript{term} values of 37 ± 2 \textperthousand (Fig. 4). Samples collected in December indicate Δ^{17}O(O\textsubscript{3})\textsubscript{bulk} values close to 26 \textperthousand (Δ^{17}O(O\textsubscript{3})\textsubscript{term} = 3/2 Δ^{17}O(O\textsubscript{3})\textsubscript{bulk} = 39 – 40 \textperthousand, Fig. 3), and we have therefore adopted a Δ^{17}O(O\textsubscript{3})\textsubscript{term} value of 40 \textperthousand in the subsequent mass balance calculations, in good agreement with the predicted value from a 1-D atmospheric model (Zahn et al., 2006). The diurnally mass average of Δ^{17}O(NO\textsubscript{2}) calculated using a Δ^{17}O(O\textsubscript{3})\textsubscript{bulk} value of 26 \textperthousand and EQ2 is shown in Fig. 5. No trend is observed during the OPALE campaign and on average the predicted value is Δ^{17}O(NO\textsubscript{2}) = 31 ± 2 \textperthousand throughout December, corresponding to average α value of 0.83.
In other words, at steady state, the concentrations of O₃ and HO₂* measured during OPALE predicts that around 83 % of NO₂ is formed via reaction R3 (see also Table 1). In the absence of the α dilution effect introduced by the HO₂* reaction, $\Delta^{17}O(NO₂)$ would equal 37 ‰, a value 8 ‰ lower than an estimation obtained from modeling only NO₂-O₃ chemistry at standard temperature and pressure (Michalski et al., 2014). This difference is essentially explained by the use of different $\Delta^{17}O(O₃)_{\text{bulk}}$ (32 ‰ Michalski’s simulation, 26 ‰ for our observations), which possibly corresponds to different conditions of the two studies.

By accounting for the origin of the oxygen atom transferred during the conversion of NO₂ to nitrate, the $\Delta^{17}O$ signature of the nitrate produced through different reaction mechanisms can be calculated. For summer conditions at Dome C, it is reasonable to assume that the dominant atmospheric nitrate formation pathway is the gas-phase association of NO₂ and the OH radical (Alexander et al., 2009):

$$\text{NO}_2 + \text{OH} + \text{M} \rightarrow \text{HNO}_3 + \text{M} \quad \text{(R5)}$$

leading to the following ^{17}O-excess mass balance (Michalski et al., 2003; Morin et al., 2011):

$$\Delta^{17}O(NO_3^-) = \frac{2}{3} \Delta^{17}O(NO_2) + \frac{1}{3} \Delta^{17}O(OH) \quad \text{(EQ3)}$$

In order to predict the $\Delta^{17}O$ value of the nitrate produced through R5 by mass balance, the isotopic composition of tropospheric OH must be known. The OH radical
participates in a rapid isotopic exchange with atmospheric water vapor, which represents a very large oxygen reservoir relative to OH, with a Δ^{17}O that is negligible compared to ozone or nitrate (Luz and Barkan, 2010). This exchange tends to erase the 17O-excess of OH under humidity and temperature conditions typical of the mid-latitudes (Dubey et al., 1997); therefore, the Δ^{17}O of OH is normally assumed to be zero in modeling studies applied to these regions. As discussed by (Morin et al., 2007), this assumption of Δ^{17}O(OH) = 0 is not valid under the low humidity conditions encountered in the polar atmosphere. The degree of isotopic equilibration between OH and H$_2$O can be determined as a function of the relative rates of the isotope exchange reaction and the main OH sink reactions:

$$\beta = \frac{L}{L + k_{H_2O\rightarrow OH} [H_2O]}$$

(EQ4)

where L represents the total chemical loss rate of OH. β is the factor relating the initial Δ^{17}O transferred to OH upon its formation, denoted Δ^{17}O(OH)$_{prod}$, to its steady state Δ^{17}O value (Morin et al., 2007):

$$\Delta^{17}O(OH) = \beta \times \Delta^{17}O(OH)_{prod}.$$

(EQ5)

In plain words, EQ4 - 5 predict that when the isotopic exchange reaction dominates over OH chemical losses (i.e., $\beta \ll 1$), the steady state Δ^{17}O value of OH will be equal to that of water (i.e., Δ^{17}O \approx 0 ‰). Conversely, when water vapor concentrations are low and the
rate of chemical loss is large relative to the rate of the isotopic exchange, then Δ^{17}O(OH) = Δ^{17}O(OH)$_{\text{prod.}}$. (Kukui et al., 2014), using a Master Chemical Mechanism box model, constrained by the OPALE meteorological conditions and concurrent chemical observations, give the rate of the OH chemical sources and sinks. NO$_2$ as measured by (Frey et al., 2015) represents at most only ca. 10 % (equivalent of ca. 1 %) of the total sink of OH, which is predominantly dominated by reactions with CO, CH$_4$, aldehydes and to a lesser extent by reactions with O$_3$, H$_2$, and NO. Thus, the possible overestimation of NO$_2$ concentration has only a minor effect on β calculation and is well embedded within the total uncertainty of such calculation. To assess the value of Δ^{17}O(OH), we have computed β for the conditions found during the OPALE campaign using the same 0-D box model that is used to evaluate the budget of OH and RO$_2$ during the OPALE campaign (see (Kukui et al., 2014) and Table 1) and used the exchange kinetic rates given in (Dubey et al., 1997). The absolute water vapor concentration is deduced from relative humidity and temperature measurements using (Bolton, 1980) (i.e. $P_{\text{water}} = 6.112 \times e^{(17.678(T-273))}$, with P_{water} in hPa and T in K). The results of this calculation (Fig. 6), indicate that β varies between 0.70 ± 0.10 (1 σ) and 0.30 ± 0.10 from midnight to noon for conditions prevailing during the OPALE campaign, suggesting that on daily average basis approximately 43 % of the Δ^{17}O value originally present in OH is preserved from exchange with H$_2$O, consistent with estimates for an Arctic site described by (Morin et al., 2007).

The value of Δ^{17}O(OH)$_{\text{prod.}}$ is more difficult to assess because of the interplay between HO and HO$_2$, and the different sources involved in OH formation. In the rich NO$_x$ atmosphere at Dome C in summer, the O(^{1}D) + H$_2$O reaction forming OH is a minor
reaction pathway. When multiple pathways are involved in the production of OH, $\Delta^{17}O(\text{OH})_{\text{prod.}}$ can be estimated by a simple isotope mass balance equation where $\Delta^{17}O(\text{OH})_{\text{prod.}} = \sum_i P_i \times \Delta^{17}O_i$ with P_i the relative production rate of the i^{th} reaction pathway with respect to the total production rate and $\Delta^{17}O_i$ its associated ^{17}O-excess (Morin et al., 2011). Observations at Dome C during the OPALE campaign indicate that the photolysis of HONO and the $\text{HO}_2 + \text{NO}$ reaction may represent the most significant sources of OH at Dome C during the period of seasonal snowpack emissions (Kukui et al., 2014). However, the measurement of HONO (around pmol mol$^{-1}$) during OPALE, probably biased by HO_2NO_2 interference (Legrand et al., 2014) is incompatible with the $\text{HO}_x (= \text{OH} + \text{HO}_2/\text{RO}_2)$ radical budget. Best agreement is achieved when HONO at Dome C is assumed to originate from snow emissions with the emission strength evaluated by (Legrand et al., 2014). Using a 1-D model, (Kukui et al., 2014) show that the concentrations of HONO corresponding to about 20–30 % of measured HONO are consistent with those calculated from the budget analysis of OH radicals with the concentrations of NO$_2$ either calculated from NO measurements assuming PSS or observed by (Frey et al., 2015). Therefore, the production of OH by HONO photolysis is adjusted consequently and the 0-D box model (Kukui et al., 2014) is used to calculate all other production rates of OH. Note that even lowering HONO to 20-30 % of the measured values, this species remains the major primary source of radicals at Dome C. Applying the isotope ^{17}O-excess transfer (Morin et al., 2011) and the $\text{OH}_{\text{prod.}}$ isotope mass balance, $\Delta^{17}O(\text{OH})_{\text{prod.}}$ on average equals 5 ± 2 ‰ (1 σ). Because the major process leading to the emission of HONO from the snowpack is the photolysis of nitrate, which possesses a $\Delta^{17}O$ value of approximately 32 ‰, both in the snow “skin layer” (Erbland et
al., 2013) and in the top 10 cm of snow (Frey et al., 2009), we have assumed that $\Delta^{17}O(HONO)_{\text{atm}} = \Delta^{17}O(\text{NO}_3^-)_{\text{snow}}$ as both oxygen atoms of HONO can be tracked back to the nitrate. An example of the isotope mass balance calculation is given in Table 1. Fig. 7 shows the diurnally-integrated average of the $\Delta^{17}O(OH)$. $\Delta^{17}O(OH)$ varies in a narrow range, between 1 and 3 ‰. An estimation of the $\Delta^{17}O$ signature for the NO$^2 + OH$ channel, $\Delta^{17}O(\text{NO}_3^-)_{R2}$, that accounts for the ^{17}O-excess carried by the OH radical results in values ranging between 20 and 23 ‰. Averaging over the same time period as the nitrate atmospheric sampling, diurnally-integrated average $\Delta^{17}O(\text{NO}_3^-)$ values of 21 - 22 ‰ ± 3 ‰ can be estimated for December (Table 2). These values are 6 - 8 ‰ lower than the observed atmospheric values for $\Delta^{17}O(\text{NO}_3^-)$ (27-30 ‰ during OPALE, Figure 2 and Table 2). The source of discrepancy between observed and modeled $\Delta^{17}O(\text{NO}_3^-)$ during OPALE is presently unknown but we note that such underestimation of the modeled $\Delta^{17}O(\text{NO}_3^-)$ versus the observed $\Delta^{17}O(\text{NO}_3^-)$ was also pointed out in 3D modeling of the nitrate $^{17}O_{\text{excess}}$ (Alexander et al., 2009). A critical evaluation may offer nevertheless some clues.

4. Discussion

4.1 Alternative sources of NO$_2$

A possible explanation for the underestimation of $\Delta^{17}O(\text{NO}_3^-)$ involves halogen chemistry in the troposphere over the Antarctic plateau (Bloss et al., 2010; Morin et al., 2008). Reactive halogen oxides (XO = BrO, ClO, IO, etc.) are produced through the reaction of halogen radicals (X) with ozone, a pathway that plays an important role in the
catalytic process responsible for ozone depletion events (ODEs) observed in the Arctic boundary layer since the 1980s (Fan and Jacob, 1992; Simpson et al., 2007):

\[X + O_3 \rightarrow XO + O_2 \] (R6)

In terms of the chemical budget of NO\(_x\), the impact of XO can occur via two chemical mechanisms (see Sect. 4.2 for the second mechanism involving the formation of halogen nitrate, XONO\(_2\)). First, XO can oxidize NO to NO\(_2\), a pathway that competes with the NO + O\(_3\) and NO + HO\(_2\)/RO\(_2\) reactions in terms of NO oxidation:

\[XO + NO \rightarrow X + NO_2 \] (R7)

For conditions typical of the Antarctic boundary layer, 1 pmol mol\(^{-1}\) of XO has roughly the same chemical activity as 4 nmol mol\(^{-1}\) of ozone in terms of NO oxidation (Atkinson et al., 2007). Therefore, when halogen oxides are present at relevant levels, the R7 reaction can result in concentrations of NO\(_2\) that are higher than that predicted from the balance between NO\(_2\) destruction via photolysis and production through the reaction of NO with O\(_3\) or HO\(_2\)/RO\(_2\) (i.e., the extended Leighton mechanism):

\[
\frac{[NO_2]}{[NO]} = \frac{k_{NO+O_3}[O_3] + k_{NO+HO_2}[HO_2] + k_{NO+RO_2}[RO_2]+k_{NO+XO}[XO]}{\dot{j}_{NO_2}} \]

(EQ6)
The involvement of XO in the NO₃ cycle at Dome C would have important implications for the Δ^{17}O of atmospheric nitrate. The production of halogen oxide radicals proceeds through a direct transfer of a terminal oxygen atom from ozone to the XO product (Zhang et al., 1997). Therefore, it is expected that the Δ^{17}O of XO is equal to Δ^{17}O(O₃)_{term.}, which means that the reaction of NO with XO is roughly equivalent to the NO + O₃ reaction in terms of Δ^{17}O transfer to NO₂ (note that the NO + XO transfer is greater than NO + O₃ as in the later case, part of the central O₃ atom participates in the reaction). The participation of XO species in the oxidation of NO thus leads to a greater Δ^{17}O transfer to NO₂ by effectively increasing the value of α. However, on the Antarctic plateau, BrO did not exceed 2-3 pmol mol⁻¹ at most during OPALE campaign (Frey et al., 2015). Including BrO chemistry would only increase α by 2 % (due to the specific form of $\alpha = 1/(1+x)$) of which is too low to significantly influence Δ^{17}O(NO₂) and ultimately Δ^{17}O(NO₃⁻). In the absence of measurements of other halogens we cannot completely rule out a role of the halogen chemistry there. However, even with $\alpha = 1$, its maximum but unrealistic value due to the high concentration of HO₂, Δ^{17}O(NO₃⁻) would reach the range of 23-25 ‰, in better agreement with the observations but still significantly lower. Similarly, in the event of a non isotopic steady state of NO₂ (Michalski et al., 2014), it is very unlikely that Δ^{17}O(NO₂) could reach values greater than its primary snow nitrate source (i.e. Δ^{17}O(NO₂) > Δ^{17}O(NO₃⁻)_{snow} = 30-35 ‰ in summer at Dome C, (Erbland et al., 2013; Frey et al., 2009)), still leaving the predicted Δ^{17}O(NO₃⁻) underestimated with respect to atmospheric observations.

4.2 Alternative oxidation pathways of NO₂
Considering R5 as the main source of HNO₃, an alternative approach is to consider that OH bears a higher Δ¹⁷O than the estimate calculated previously. Assuming a β of one, which seems again unrealistic, will increase Δ¹⁷O(NO₃⁻) by 1‰ at most (Table 2), still insufficient to explained atmospheric observations as NO + HO₂ remain a major source of OH, independently of the assumed β.

Alternatively, if measured HONO concentrations are considered instead of those assumed to constrain by the HOₓ budget (i.e. 4 times lower than measured), average Δ¹⁷O(NO₃⁻) values of 23 - 24‰ are calculated (Table 2), again systematically lower than the observed range of 27 - 30‰. However, given the significant uncertainty surrounding the isotopic composition of HONO and its relative contribution to total OH production at Dome C, it is not possible to make a firm conclusion in this regard.

Therefore, neither the common sources of NO₂ nor the daytime formation of HNO₃ seems to be able to explain the high Δ¹⁷O(NO₃⁻) values of atmospheric nitrate observed at Dome C in summer. When this observation is taken together with the high NO₂/NO ratio observed by Frey et al. during two summer seasons at Dome C (Frey et al., 2013; Frey et al., 2015), clearly our current understanding of the NOₓ chemistry on the Antarctic plateau seems to be incomplete.

There are several other processes that possibly account for the disagreement between the measurements and mass balance calculations. Indeed, in addition to its impact on NOₓ cycling through the R7 pathway, an increasing body of evidence points towards reactive halogen chemistry as a major NOₓ sink and source of nitrate via the production and subsequent hydrolysis of XNO₃ species (Sander et al., 1999; Savarino et al., 2013; Vogt et al., 1996):
\[\text{XO} + \text{NO}_2 + \text{M} \rightarrow \text{XNO}_3 + \text{M} \]
(R8)

\[\text{XNO}_3 + \text{H}_2\text{O}_{(\text{liquid})} \rightarrow \text{HNO}_3_{(\text{aq})} + \text{HOX} \]
(R9)

A critical analysis of the CHABLIS data led (Bauguitte et al., 2012) to conclude that the R8-R9 pathway exerted predominant control over the chemical loss rate of NO\textsubscript{x} during the campaign, despite the significant uncertainties involved in the parameterization of the uptake processes (Finlayson-Pitts, 2009). This implies that XNO\textsubscript{3} uptake may also represent a significant source of nitrate at Dome C should halogen oxide radicals (XO) be present at the required concentration. Experimental (Gane et al., 2001) and theoretical (McNamara and Hillier, 2001) studies suggest that the oxygen atom initially associated with XO combines with the N atom of NO\textsubscript{2} to form nitrate, thus transferring the isotopic signature of both XO and NO\textsubscript{2}. The specific \(\Delta^{17}\text{O} \) value induced by XNO\textsubscript{3} hydrolysis can thus be expressed as follows (Morin et al., 2007):

\[\Delta^{17}\text{O}(\text{NO}_3^-)_{R6} = \frac{2}{3} \Delta^{17}\text{O}(\text{NO}_2) + \frac{1}{3} \Delta^{17}\text{O}(\text{O}_3^-)_{\text{term}} \]
(EQ7)

efficiently bypassing the OH \(^{17}\text{O}\)-excess budget. Through consideration of the increased \(\Delta^{17}\text{O} \) transfer associated with R8, the observations of \(\Delta^{17}\text{O}(\text{NO}_3^-) \) during December can be reconciled with the values calculated by mass-balance if approximately 10 - 20 % of total nitrate production is assumed to occur via XNO\textsubscript{3} hydrolysis. However, no sufficient halogen concentration has been observed on the Antarctic plateau to sustain such
chemical pathway but we note that chlorine chemistry has never been probed on the Antarctic plateau.

There is increasing body of evidence that heterogeneous hydrolysis of NO₂ can be a possible source of HONO and HNO₃ in acidic conditions (Finlayson-Pitts, 2009), with the potential to explain the difference between the calculated and measured atmospheric Δ^{17}O(NO₃⁻) values. This mechanism would represent a source of nitrate with a Δ^{17}O value roughly equivalent to the nitrate originally present in the surface snow (i.e., 30 - 35 ‰), a signature significantly higher than that induced by R5. If this production mechanism is active at the air-snow interface at Dome C and results in the slow emission of nitrate to the atmosphere via physical release after its formation, it would act to increase the Δ^{17}O value of nitrate in the boundary layer relative to the local Δ^{17}O(NO₃⁻)R₅ oxidation signature. However, considering the propensity of nitric acid to stick on snow (Crowley et al., 2010), the snowpack to act as a sink rather than a source of nitric acid (Dibb, 2004; Erbland et al., 2013) and the fast NOₓ recycling that should take place within the snowpack, it is very unlikely that Δ^{17}O(NO₃⁻) could be explained by a direct nitric acid emissions from snow, which has been ultimately shown to be limited (Slusher et al., 2010; Erbland et al., 2013; Berhanu et al., 2014).

A critical analysis of Δ^{17}O(NO₃⁻) shows in fact that such high values correspond mainly to the nighttime chemistry of NOₓ (Michalski et al., 2003; Morin et al., 2008). Nighttime chemistry involves species like N₂O₅ and NO₃ in the process of forming HNO₃ and again efficiently by-pass the OH pathway. It is conceivable that below the photic zone, within the snowpack, N₂O₅ and NO₃ could be produced when O₃ and NO₂ are transported at depth but there is no reason to think that such dark NOₓ chemistry could in
a way or in another survive the photic zone transition and thus influences the overlying atmosphere.

Stratospheric nitrate deposited to the surface snow during winter, which has been observed to possess Δ^{17}O(NO$_3^-$) values in the range of 35 - 41 %o (Erbland et al., 2013) and possibly more, may act to buffer the Δ^{17}O of the atmospheric nitrate reservoir via evaporation late into the spring and summer. However, this seems again unlikely given the rapidity of NO$_x$ cycling and oxidative loss at Dome C during this time (Frey et al., 2013; Legrand et al., 2009).

Alternatively, we can question the accuracy of the Δ^{17}O of ozone measured in the atmosphere and specifically the ones observed at Dome C (Figure 3). In a 3D global modeling exercise of Δ^{17}O(NO$_3^-$), (Alexander et al., 2009) could reconcile modeling and observation only by assuming a bulk composition of ozone at Δ^{17}O = 35 %o instead of the 25 %o generally assumed for the tropospheric ozone. While application of such high values will also solve our discrepancy, all observations and measurements published so far by different technique and teams are consistently closer to 25 %o than 35 %o (Vicars and Savarino, 2014; Johnston and Thiemens, 1997; Krankowsky et al., 1995). Giving the low variability of the measurements observed at Dome C (Figure 3) and other places (Vicars and Savarino, 2014), if atmospheric measurements are underestimated, it should be by a systematic error common to technique as different as liquid helium condensation or coated filters. In absence of such demonstration, we think that either a missing chemistry or wrong 17O$_{excess}$ transfer is the cause of the discrepancy and not the ozone Δ^{17}O observed in the troposphere. Equally, it is also possible that OH could display a strange Δ^{17}O considering that the reaction CO + OH produces a positive Δ^{17}O in the
remaining CO (Röckmann et al., 1998; Feilberg et al., 2005). On the other hand, Table 2 shows that the variability of $\Delta^{17}O$ (but not the absolute values) is correctly caught by the model when α is constrained by the observations and $\Delta^{17}O(OH)$ by the observed HONO concentrations. This observation would favor the view that the chemistry and associated $\Delta^{17}O$ transfer are well understood and that a systematic error is probably at the origin of the discrepancy of the absolute values. However, this conclusion will be in contradiction with NO$_x$.HO$_x$ chemistry observations showing that in fact such chemistry is not very well understood (Frey et al., 2015; Legrand et al., 2014; Slusher et al., 2010).

While it is presently difficult to determine the precise nature of the process(es) leading to the relatively large ^{17}O-excess values observed for atmospheric nitrate at Dome C, the correlation observed between the $\delta^{15}N$ and $\Delta^{17}O$ values of atmospheric nitrate (see Sect. 3.1) provides at least one direct line of evidence that the high $\Delta^{17}O$(NO$_3^-$) values observed during spring and early summer could be associated with snowpack emissions of NO$_x$. Considering only samples collected at Dome C between October and December, both those reported here and those collected in 2009 and described by Erbland et al. (2013), a strong anticorrelation ($r = -0.90$) is observed between the $\delta^{15}N$ and $\Delta^{17}O$ values of atmospheric nitrate (Fig. 8). In other words, the atmospheric nitrate sampled in early spring, which is heavily depleted in ^{15}N due its formation from snowpack NO$_x$ emissions, possessed consistently higher $\Delta^{17}O$ values than the nitrate sampled directly after this period of maximum snow photochemistry. This finding suggests that the mechanism producing enhanced $\Delta^{17}O$(NO$_3^-$) values observed during this time is tightly coupled in time and space with the intensity of NO$_x$ emissions from the snowpack, an observation very similar to that of (Morin et al., 2012), who detected a similar relationship between
\(\delta^{15}N \) and \(\Delta^{17}O \) for atmospheric nitrate in the springtime boundary layer over Barrow, Alaska (71°N). The authors of this study attributed the observed correlation to the coupling of snowpack NO\(_x\) emissions and reactive halogen chemistry, suggesting that these two processes were interrelated and mutually strengthening. In the case of the OPALE 2011 - 2012 data, the correlation between \(\delta^{15}N \) and \(\Delta^{17}O \) could arise from any of the potential pathways previously discussed. For example, as proposed by (Morin et al., 2012), the R8 and R9 pathways may be enhanced under periods of intense snowpack emissions. Alternatively, a correlation could result from an increased contribution to total OH production from the photolysis of HONO, which is co-emitted with NO\(_x\) via nitrate photochemistry (Grannas et al., 2007) and may induce a larger \(^{17}O\)-excess in OH as compared to the conventional O\(^{(1D)}\) + H\(_2\)O pathway. Furthermore, the hydrolysis of NO\(_2\) in snow, should it contribute significantly to nitrate production at Dome C, is likely amplified during periods when concentrations NO\(_2\) are high in the snowpack interstitial air due to nitrate/nitrite photochemistry. Therefore, while the processes responsible for driving the formation of atmospheric nitrate at Dome C during summer cannot be unambiguously identified, the isotopic results presented here clearly indicate that snowpack emissions result in enhanced \(\Delta^{17}O \) transfer to nitrate. Our understanding of NO\(_x\) chemistry above the snow surface at Dome C is therefore incomplete.

5. Conclusions

Constraining the propagation of ozone’s \(^{17}O\)-excess signature within the NO\(_x\) cycle is critical in polar areas where the opportunity is offered to extend atmospheric
investigations based on Δ^{17}O measurements to the glacial/interglacial time scale using deep ice core records of nitrate. However, the factors governing the present-day isotopic composition of atmospheric nitrate over the Antarctic plateau remain poorly understood, primarily due to the complex nature of the boundary layer photochemistry initiated during spring by NO$_x$ emissions from the snowpack.

An isotopic mass balance performed for atmospheric nitrate during December 2011, informed by in-situ oxidant concentration measurements conducted within the framework of the OPALE field study, suggests the existence of an unexpected process by-passing the commonly accepted daytime chemistry of NO$_2$ (i.e. NO$_2$+OH) that contributes significantly to the atmospheric nitrate budget over Dome C. The strong negative correlation observed between the δ^{15}N and Δ^{17}O values of nitrate between October and December suggests that this unknown process is enhanced during periods of intense emissions from the snowpack. Potential explanations for this observation include: (i) an increased Δ^{17}O transfer from OH due to its formation from the photolysis of HONO released from the snowpack; (ii) heterogeneous hydrolysis of NO$_2$ due to the high concentrations of NO$_2$ in the snowpack interstitial air; and (iii) the co-emission of reactive halogen species that act as an intermediate in the transfer of Δ^{17}O from ozone to nitrate. Further research is needed to solve the many inconsistencies (e.g. high NO$_2$/NO ratio, high concentration of NO$_2$, unresolved HONO atmospheric concentration, interference such as HO$_2$NO$_2$, isotope mass balance) observed during the OPALE experiments. Systematic error and/or bad isotopic transfer functions for Δ^{17}O are not completely excluded for explaining the discrepancy between observed and modeled data and we encourage laboratory experiments to reduce these uncertainties. However, given
the fact that unexplained NO$_x$ chemistry has been revealed by other means, we are in favor of a missing chemistry to explain the mismatch observed.

615 **Acknowledgements**

The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under the grant agreement number 237890. We would like to thank INSU for its financial support for lab experiments through its LEFE program. The Agence nationale de la recherche (ANR) is gratefully acknowledged for its financial support through the OPALE project (contract NT09-451281). The Institute Polaire Paul-Emile Victor (IPEV) supported the research and polar logistics through the program SUNITEDC No. 1011. This work has been partially supported by a grant from Labex OSUG@2020 (Investissements d’avenir – ANR10 LABX56. We would also like to thank all the field team members present during the OPALE campaign. Meteorological data were obtained from “IPEV/PNRA: Routine Meteorological Observation at Station Concordia”. B. Alexander and the anonymous reviewer are acknowledged for their critical comments and suggestions to improve the manuscript.
References

Finlayson-Pitts, B. J.: Reactions at surfaces in the atmosphere: integration of experiments and theory as necessary (but not necessarily sufficient) for predicting the physical chemistry of aerosols, Physical Chemistry Chemical Physics, 11, 7760-7779, 10.1039/b906540g, 2009.

Morin, S., Savarino, J., Bekki, S., Gong, S., and Bottenheim, J. W.: Signature of Arctic surface ozone depletion events in the isotope anomaly (Δ^{17}O) of atmospheric nitrate, Atmospheric Chemistry and Physics, 7, 1451-1469, 10.5194/acp-7-1451-2007, 2007.

Murray, L. T., Mickley, L. J., Kaplan, J. O., Sofen, E. D., Pfeiffer, M., and Alexander, B.: Factors controlling variability in the oxidative capacity of the troposphere since the Last Glacial Maximum, Atmospheric Chemistry and Physics, 14, 3589-3622, 10.5194/acp-14-3589-2014, 2014.

fractionation in atmospheric CO as a result of the reaction CO + OH, Science, 281, 544-546, 1998.

Vicars, W. C., Bhattacharya, S. K., Erbland, J., and Savarino, J.: Measurement of the 17O-excess (Δ^{17}O) of tropospheric ozone using a nitrite-coated filter, Rapid

Table 1: Example of mass balance calculation of Δ^{17}O for Dec.19th, 2011 3:45 pm conditions

Conditions for Dec.19th, 2011 3:45 pm OH = 3.96×10^6 molecules cm$^{-3}$

<table>
<thead>
<tr>
<th>Net sources of OH</th>
<th>Δ^{17}O in %o</th>
<th>aMedian rate in 10^5 molecules cm$^{-3}$ s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1 HONO+hv \rightarrow OH+NO</td>
<td>32</td>
<td>5.1b</td>
</tr>
<tr>
<td>P2 H$_2$O$_2$+hv \rightarrow 2 OH</td>
<td>2</td>
<td>1.7</td>
</tr>
<tr>
<td>P3 O$_3$+hv+H$_2$O \rightarrow 2 OH</td>
<td>20</td>
<td>0.6</td>
</tr>
<tr>
<td>P4 CH$_3$OOH+hv \rightarrow HO$_2$+OH</td>
<td>0</td>
<td>0.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recycling RO$_2$ \rightarrow OH</th>
</tr>
</thead>
<tbody>
<tr>
<td>P5 NO+HO$_2$ \rightarrow NO$_2$+OH</td>
</tr>
<tr>
<td>P6 HO$_2$+O$_3$ \rightarrow OH+2O$_2$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Net sink of OH</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1 CO+OH \rightarrow HO$_2$+CO$_2$</td>
</tr>
<tr>
<td>L2 CH$_4$+OH \rightarrow CH$_3$O$_2$+H$_2$O</td>
</tr>
<tr>
<td>L2 HCHO+OH \rightarrow HO$_2$+CO</td>
</tr>
<tr>
<td>L4 CH$_3$CHO+OH \rightarrow CH$_3$CO$_3$</td>
</tr>
<tr>
<td>L5 O$_3$+OH \rightarrow HO$_2$+O$_2$</td>
</tr>
<tr>
<td>L6 H$_2$+OH+O$_2$ \rightarrow HO$_2$+H$_2$O</td>
</tr>
<tr>
<td>L7 CH$_3$OOH+OH \rightarrow CH$_3$O$_2$+H$_2$O</td>
</tr>
<tr>
<td>L8 H$_2$O$_2$+OH \rightarrow HO$_2$+H$_2$O</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Net OH losses</th>
</tr>
</thead>
<tbody>
<tr>
<td>L9 NO$_2$+OH \rightarrow HNO$_3$</td>
</tr>
<tr>
<td>L10 NO+OH \rightarrow HONO</td>
</tr>
<tr>
<td>L11 OH+RO$_2$ \rightarrow products</td>
</tr>
<tr>
<td>L12 OH+RO$_2$NO$_2$ \rightarrow products</td>
</tr>
<tr>
<td>L13 OH+HONO \rightarrow NO$_2$+H$_2$O</td>
</tr>
<tr>
<td>L14 OH+HNO$_3$ \rightarrow H$_2$O+NO$_3$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Isotope exchange</th>
</tr>
</thead>
<tbody>
<tr>
<td>E$_1$ HQ+H$_2$O \leftrightarrow HO+H$_2$Q</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NO$_2$ main source</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1 NO+O$_3$ \rightarrow NO$_2$+O$_2$</td>
</tr>
</tbody>
</table>

17O-excess NO$_2$

\[a = (N1/N1+P5) \]
\[\Delta^{17}$O(NO$_2$) = 29 \]

17O-excess OH

\[\Delta^{17}$O(OH)$_{prod} = \left(\sum P_i \times \Delta^{17}O_i \right) / \sum P_i \]
\[\beta = \sum L_i / \left(\sum L_i + E_1 \right) \]
\[\Delta^{17}$O(OH) = 2.5 \]

*a: Production rates obtained from a 0-D box model (see Kukui et al., 2014 for details)
b: HONO production rate divided by a factor 4 to balance the HOx radical budget (see (Kukui et al., 2014; Legrand et al., 2014) for justification)

c: HONO is assumed to be formed by the photodissociation of nitrate in snow. $\Delta^{17}{O(NO_3^-)_{snow}}$ is therefore assigned to HONO. The rest of the $^{17}{O}$-excess transfer (i.e. P2 to P6 and N1) follows the rules established in (Morin et al., 2011) and $\Delta^{17}{O(O_3)_{bulk}} = 26 \%$.
<table>
<thead>
<tr>
<th>Sampling Period</th>
<th>Measured</th>
<th>Calculated</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>α constrained by α = 1</td>
<td>α constrained by α = 1</td>
<td>α constrained by α = 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>observations</td>
<td>observations</td>
<td>observations</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Δ17O(OH)a based on HO$_x$ budget</td>
<td>Δ17O(OH)a based on HO$_x$ budget</td>
<td>Δ17O(OH)a based on HO$_x$ budget</td>
<td></td>
</tr>
<tr>
<td>10 Dec - 16 Dec</td>
<td>29.6</td>
<td>21.9</td>
<td>25.6</td>
<td>22.6</td>
<td>27.0</td>
</tr>
<tr>
<td>16 Dec - 23 Dec</td>
<td>29.0</td>
<td>21.0</td>
<td>25.6</td>
<td>21.7</td>
<td>26.3</td>
</tr>
<tr>
<td>23 Dec - 30 Dec</td>
<td>27.8</td>
<td>21.6</td>
<td>25.4</td>
<td>22.0</td>
<td>25.7</td>
</tr>
<tr>
<td>30 Dec - 02 Jan</td>
<td>27.3</td>
<td>21.5</td>
<td>25.3</td>
<td>22.4</td>
<td>24.9</td>
</tr>
</tbody>
</table>

a: HONO production rate divided by a factor 4 to balance the HO$_x$ radical budget (see (Kukui et al., 2014; Legrand et al., 2014) for justification)
Figure 1. Atmospheric nitrate concentrations observed between November 2011 and January 2012. The samples collected during the intensive measurement period (December 2011 – January 2012) are indicated with open circles.
Figure 2. $\Delta^{17}\text{O}$ (primary y-axis) and $\delta^{15}\text{N}$ (secondary y-axis) of atmospheric nitrate collected between November 2011 and January 2012. The samples collected during the intensive measurement period (December 2011 – January 2012) are indicated with open symbols.
Figure 3. $\Delta^{17}\text{O}(\text{O}_3)_{\text{bulk}}$ values for the 60 ambient air samplings done at Dome C throughout 2012. Vertical error bars refer to the total uncertainty estimated for the technique ($\pm 1.7 \%$).
Figure 4. Comparison of Δ^{17}O(O₃)\text{bulk} values obtained at Dome C with those previously reported by Vicars and Savarino (2014) at other sites. The box plot indicates the interquartile range (box) and the median (line), maximum, and minimum values. The mean value is denoted by a circle.
Figure 5. Quantitative assessment of the daily averaged trend in the Δ^{17}O of NO$_2$ at Dome C during December 2011 – January 2012 derived from concurrent measurements of ozone, NO, and HO$_2$/RO$_2$.
Figure 6. December 2011 time-series for β, the fraction of the 17O-excess originally associated with the OH radical that is preserved against isotopic exchange with water.
Figure 7. Same as Figure 5 but for $\delta^{17}\text{O}$ of OH.
Figure 8. Relationship observed between the δ^{15}N and Δ^{17}O values of atmospheric nitrate present at Dome C between October and December during both the 2009 and 2011 summer campaigns. Error bars indicate the typical analytical uncertainties associated with the measurements.

Δ^{17}O (‰) vs. δ^{15}N (‰) for October - December 2009 (Erbland et al., 2013) and October - December 2011 (This study). The correlation coefficient $r = -0.90$.

Oct - Dec 2009 (Erbland et al., 2013)
Oct - Dec 2011 (This study)