Organic nitrate aerosol formation via NO₃ + BVOC in the Southeastern US

B. R. Ayres¹, H. M. Allen¹,², D. C. Draper¹,³, S. S. Brown⁴, R. J. Wild⁴, J. L. Jimenez⁵,⁶, D. A. Day⁵,⁶, P. Campuzano-Jost⁵,⁶, W. Hu⁵,⁶, J. de Gouw⁵,⁶, A. Koss⁵,⁶, R. C. Cohen⁷, K. C. Duffey⁷, P. Romer⁷, K. Baumann⁸, E. Edgerton⁸, S. Takahama⁹, J. A. Thornton¹⁰, B. H. Lee¹⁰, F. D. Lopez-Hilfiker¹⁰, C. Mohr¹⁰,¹¹, A. H. Goldstein¹², K. Olson¹², and J. L. Fry¹

¹Department of Chemistry, Reed College, Portland, OR, USA
²Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
³Department of Chemistry, University of California, Irvine, CA, USA
⁴Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO, USA
⁵Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA
⁶Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA
⁷Department of Chemistry, University of California at Berkeley, CA, USA
Organic nitrate aerosol formation in the southeastern US

B. R. Ayres et al.

Received: 12 May 2015 – Accepted: 18 May 2015 – Published: 16 June 2015
Correspondence to: J. L. Fry (fry@reed.edu)
Published by Copernicus Publications on behalf of the European Geosciences Union.
Abstract

Gas- and aerosol-phase measurements of oxidants, biogenic volatile organic compounds (BVOC) and organic nitrates made during the Southern Oxidant and Aerosol Study (SOAS campaign, Summer 2013) in central Alabama show that nitrate radical (NO$_3$) reaction with monoterpenes leads to significant secondary aerosol formation. Cumulative losses of NO$_3$ to terpenes are calculated and correlated to gas and aerosol organic nitrate concentrations made during the campaign. Correlation of NO$_3$ radical consumption to organic nitrate aerosol as measured by Aerosol Mass Spectrometry (AMS) and Thermal Dissociation – Laser Induced Fluorescence (TD-LIF) suggests a range of molar yield of aerosol phase monoterpane nitrates of 23–44 %. Compounds observed via chemical ionization mass spectrometry (CIMS) are correlated to predicted nitrate loss to terpenes and show C$_{10}$H$_{17}$NO$_5$, likely a hydroperoxy nitrate, is a major nitrate oxidized terpene product being incorporated into aerosols. The comparable isoprene product C$_5$H$_9$NO$_5$ was observed to contribute less than 0.5 % of the total organic nitrate in the aerosol-phase and correlations show that it is principally a gas-phase product from nitrate oxidation of isoprene. Organic nitrates comprise between 30 and 45 % of the NO$_y$ budget during SOAS. Inorganic nitrates were also monitored and showed that during incidents of increased coarse-mode mineral dust, HNO$_3$ uptake produced nitrate aerosol mass loading comparable to that of organic nitrate produced via NO$_3$ + BVOC.

1 Introduction

Secondary Organic Aerosol (SOA), formed from the oxidation of volatile organic compounds (VOCs) by ozone (O$_3$), hydroxyl radical (OH), or nitrate radical (NO$_3$), affects visibility as well as regional and global radiative climate forcing (Bellouin et al., 2011; Feng and Penner, 2007; Goldstein et al., 2009; Myhre et al., 2013). SOA is also a source for significant risk factors for pulmonary and cardiac disorders (Nel, 2005;
Organic aerosol (OA) contributes a large fraction of the total tropospheric submicron particulate matter (PM, De Gouw, 2005; Heald et al., 2005; Zhang et al., 2007). Biogenic volatile organic compounds (BVOC) are dominant precursors in SOA formation (Goldstein and Galbally, 2007; Spracklen et al., 2011). SOA is a significant fraction of total aerosol mass in the southeastern US (predicted to be 80–90% of the organic aerosol load, Ahmadov et al., 2012; Stocker et al., 2013). Understanding the interaction of anthropogenic pollutants with BVOC is vital to improving our understanding of the human impact on SOA formation (Carlton et al., 2010; Spracklen et al., 2011) in order to improve model parameterizations of these processes as well as reduce uncertainties on the radiative forcing of climate change (Stocker et al., 2013).

Nitrogen oxides ($\text{NO}_x = \text{NO} + \text{NO}_2$), common byproducts of combustion, are linked to aerosol formation in the troposphere via daytime and nighttime oxidation mechanisms (Rollins et al., 2012). Total reactive nitrogen, NO_y, consists of NO_x, as well as NO_x reaction products, including NO_3, HNO_3, HONO, alkyl nitrates, peroxynitrates and other particulate nitrates. Alkyl nitrates produced from oxidation of VOC have been found to be related to tropospheric ozone generation (Chameides, 1978) as well as form SOA via low-volatility products (Hallquist et al., 2009). Oxidation of NO_x can also produce inorganic nitrate aerosol via heterogeneous uptake of nitric acid (HNO_3) onto mineral or sea salt aerosols (Vlasenko et al., 2006) and via co-partitioning with ammonia to form semi-volatile NH_4NO_3 (Lee et al., 2008).

NO_3 has been found to be an effective nocturnal oxidizer of BVOC (Atkinson and Arey, 2003, 1998; Calogirou et al., 1999; Winer et al., 1984). NO_3 oxidation is especially reactive towards unsaturated, non-aromatic hydrocarbons of which BVOC are major global constituents. NO_3 is less reactive towards aromatic compounds and saturated hydrocarbons, which are abundant in anthropogenic VOCs. Nitrate oxidation of some BVOC compounds, such as β-pinene, have been shown to lead to rapid production of SOA in laboratory experiments with high yields (Griffin et al., 1999; Jimenez et al., 2009; Zhang et al., 2007; Hallquist et al., 2009; Fry et al., 2011, 2009; Boyd et al., 2015). Analysis of previous field studies have characterized the loss of NO_3 to its major
daytime sinks, including reaction with NO and photolysis, as well as its loss to BVOC during both daytime and nighttime (Aldener et al., 2006; Brown et al., 2005).

Nitrogen-containing oxidation products include alkyl nitrates (RONO₂), peroxynitrates (RO₂NO₂) and nitric acid (HNO₃) (Brown and Stutz, 2012; Perring et al., 2013), all of which may partition to the aerosol-phase and contribute to SOA (via direct reaction or catalysis) (Kroll and Seinfeld, 2008). Ambient concentrations of alkyl nitrates and peroxynitrates can be quantified using laser-induced fluorescence (Day et al., 2002; Rollins et al., 2010) and mass spectrometry methods (Bahreini et al., 2008; Farmer et al., 2010; Beaver et al., 2012). Ions and acids (i.e. HNO₃) can be quantified using ion chromatography (IC, Makkonen et al., 2012; Trebs et al., 2004). The combination of these instruments, as well as others discussed below, allow for the determination of a total ambient oxidized nitrogen (NOₓ) budget, which also supports in the interpretation of the importance of nitrogen oxides in SOA formation.

The 2013 SOAS campaign was a comprehensive field intensive in central Alabama in which concentrations of oxidants, BVOC and aerosol were measured with a particular focus on understanding the effects of anthropogenic pollution on SOA formation. The site was chosen due to its high biogenic VOC emissions as well as its relative distance from anthropogenic pollution (Fig. 1). Alabama is home to a number of power plant facilities that are large point sources of NOₓ capable of being carried long distances. Alabama’s non-interstate roadways also produce large emissions of NOₓ, though a majority of the emissions come from urban areas. Although the NOₓ emissions have been steadily dropping since 1998, they are still substantial (2.70 million tons in reported for the southeastern states 1999 to 1.75 million tons in 2008, Blanchard et al., 2013). Frequent controlled biomass burning events (crop burning, Crutzen and Andreae, 1990), as well as vehicular sources (Dallmann et al., 2012) also contribute to local NOₓ emissions and PM concentrations (a full analysis of contributions can be found at the EPA National Emissions Inventory, http://www.epa.gov/ttn/chief/net/2011inventory.html).

Lee et al. (2015) describe the observation of particle-phase C₁₀ organic nitrate concentrations peaking at night during SOAS, consistent with high SOA yield from
NO$_3$ + monoterpenes. Observed C$_{10}$ organic nitrates include many highly oxidized molecules, suggesting that substantial additional oxidation beyond the first-generation hydroxynitrates occurs. In this paper, we use the initial products (C$_{10}$H$_{17}$NO$_5$), as well as total aerosol phase organic nitrates, to track NO$_3$ radical contributions to SOA formation. We analyze the role of NO$_3$ oxidation of BVOC both at night and during the day. Nitrate sinks have been determined for all measured BVOC compounds and correlations of observed alkyl nitrate products vs. these calculated loss rates are discussed.

In the present study, we investigate the production of SOA species from NO$_3$ reaction with monoterpenes. NO$_3$ loss to BVOC is calculated and compared to AMS and TD-LIF measurements of aerosol organic nitrates. We compare this to an alternate fate of NO$_x$, heterogeneous HNO$_3$ uptake to produce inorganic nitrate aerosol, which is considered in detail in a second paper (Allen et al., 2015). Both pathways from NO$_x$ to nitrate aerosol shown in Scheme 1 produce substantial aerosol at various times in the southeastern US.

2 Experimental

Measurements for the SOAS campaign took place near the Talladega National Forest, 6 miles southwest of Brent, AL (32.9029° N, 87.2497° W), from 1 June–15 July 2013. The forest covers 157 000 acres to the northwest and southeast of Centerville, AL. Figure 1 shows a map of the site location as well as nearby point sources of anthropogenic NO$_x$ and SO$_2$. The site is in a rural area representative of the transitional nature between the lower coastal plain and Appalachian highlands (Das and Aneja, 2003). Measured wind directions varied allowing for periods of urban influence from sources of anthropogenic emissions located near the sampling site, including the cities of Montgomery, Birmingham, Mobile and Tuscaloosa (Hidy et al., 2014). The closest large anthropogenic NO$_x$ emission point sources are the Alabama Power Company Gaston Plant located near Birmingham and the Green County Power Plant southwest of Tuscaloosa (EPA Air Markets Program 2013). BVOC emissions are dominated by
isoprene, α-pinene, β-pinene, and limonene (Supplement Fig. S1, Stroud et al., 2002; Goldan et al., 1995).

Two cavity ringdown spectrometers (CRDS) were used to determine ambient mixing ratios of NO$_x$, O$_3$, NO$_y$, NO$_3$ and N$_2$O$_5$ (Wild et al., 2014; Wagner et al., 2011). CRDS is a high sensitivity optical absorption method based on the decay time constant for light from an optical cavity composed of two high reflectivity mirrors. NO$_2$ is measured using its optical absorption at 405 nm in one channel, and O$_3$, NO and total NO$_y$ are quantitatively converted to NO$_2$ and measured simultaneously by 405 nm absorption on three additional channels. NO$_3$ is measured at its characteristic strong absorption band at 662 nm. N$_2$O$_5$ is quantitatively converted to NO$_3$ by thermal dissociation and detected in a second 662 nm channel.

Thermal Dissociation Laser-Induced Fluorescence (TD-LIF) (Day et al., 2002; Farmer et al., 2010; Rollins et al., 2010) was used to measure total alkyl nitrates (ΣANs), total peroxy nitrates (ΣPNs) and aerosol phase ΣANs (Rollins et al., 2012). High-resolution time-of-flight aerosol mass spectrometry (HR-ToF-AMS, hereafter AMS, DeCarlo et al., 2006) was used to measure submicron organic and inorganic nitrate aerosol composition (Fry et al., 2013). TD-LIF and AMS were both used to analyze aerosol organic nitrate concentration. These measurements correlate well to one another, but the magnitudes differ by a factor of approximately 2 for unknown reasons, with TD-LIF being larger than AMS. A high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS, hereafter CIMS, Bertram et al., 2011; Yatavelli et al., 2012) was used to identify specific organic nitrate product ions, specifically monoterpene (Eddingsaas et al., 2012) and isoprene products (Crounse et al., 2013, 2006; Beaver et al., 2012). The CIMS employed a Filter Inlet for Gas and Aerosol (FIGAERO) to separate aerosol and gas species (Lopez-Hilfiker et al., 2014) and was equipped with a high-resolution time-of-flight mass spectrometer capable of resolving ions with different elemental formulae at common nominal m/z.

On-line cryostat-Gas Chromatography-Mass Spectrometer (GC-MS) was used to measure mixing ratios of gas-phase BVOC species (Goldan et al., 2004; Gilman et al.,
Surface area concentration was calculated from number distribution measurements of a hygroscopicity scanning mobility particle sizer (SMPS)/optical particle sizer (OPS) similar to a Dry-Ambient Aerosol Size Spectrometer (Stanier et al., 2004). Boundary layer height was measured using a CHM 15k-Nimbus and method employs photon counting of back-scattered pulse of near-IR light (1064 nm) via LIDAR principle. A Metrohm Monitor for Aerosols and Gases in Ambient Air (MARGA, Makkonen et al., 2012; Trebs et al., 2004), which is a combination wet-rotating denuder/ion chromatogram, measured inorganic ion concentrations at 1 h time resolution in both the aerosol- and gas-phases.

Site infrastructure consisted of a 65-foot tower, with the top platform set above the canopy height for sampling, and seven trailers located in a field 90 m south of the tower. The tower instruments used for this analysis consisted of the two CRDS, TD-LIF and a cryostat GC-MS. The field trailers contained the AMS, SMPS, APS, CIMS and MARGA.

3 Results

3.1 Organic NOx sink: NO3 + BVOC production of organic nitrate SOA

During the SOAS campaign, we monitored reactant and product species indicative of NO3 + BVOC, which may partition into the aerosol-phase and consequently serve as a source of first generation SOA. NO3 reaction with biogenic alkenes forms organic nitrates.

\[\text{NO}_3 + \text{BVOC} \rightarrow \text{RONO}_2 + \text{other products} \quad (R1) \]

NO3 and N2O5 (which exists in equilibrium with NO2 + NO3) in the region were consistently low during the campaign. The result of this was that NO3 was below the detection limit of the cavity ringdown instrument for the entire campaign. Calculated steady-state N2O5 was validated against observed measurements (see below) and NO3 predicted
from the steady-state approximation was used for all calculations involving NO$_3$ radical mixing ratios. Using the rate constant for NO$_2$ + O$_3$ (Table 1), we can calculate the production rate of the nitrate radical (P(NO$_3$), Eq. 1)

$$P$(NO$_3$) = $k_{O_3+NO_2}[O_3][NO_2]$$ (1)

5 The losses of NO$_3$ to reactions with individual BVOC, NO and modeled photolysis (j_{NO_3} modeled for clear sky from MCM, Saunders et al., 2003) can then be used to calculate the total loss rates, and therefore steady-state lifetime of NO$_3$ (Eq. 2). Loss of NO$_3$ through formation and heterogeneous uptake of N$_2$O$_5$ is neglected in Eq. (2) because it was negligible relative to NO$_3$ reactions with BVOC.

$$\tau(NO_3) = \frac{1}{\left(\sum_i k_{NO_3+BVOC_i}[BVOC]_i + k_{NO_3+NO}[NO] + j_{NO_3} \right)}$$ (2)

j_{NO_3} values were adjusted for cloud cover by taking measured solar radiation values (Atmospheric Research and Analysis, Inc., W m$^{-2}$) and normalizing their peak values to those of the modeled photolysis data. Peak modeled j_{NO_3} values were typically 0.175 s$^{-1}$ for clear sky at the daily solar maximum.

Using Eqs. (1) and (2), a steady-state predicted NO$_3$ mixing ratio (NO$_3$,SS) can be calculated (Eq. 3):

$$[NO_3]_{SS} = \frac{P(NO_3)}{\tau(NO_3)^{-1}}$$ (3)

NO$_3$,SS can then be used to calculate steady-state predicted N$_2$O$_5$ from the N$_2$O$_5$ equilibrium (Table 1) and measured NO$_2$ (Eq. 4)

$$[N_2O_5]_{SS} = K_{eq}[NO_2][NO_3]_{SS}$$ (4)
where $K_{eq} = 2.7 \times 10^{-27} \exp(11000/T)$ cm3 molecule$^{-1}$ s$^{-1}$ (Sander et al., 2011, see Table 1). Comparison of the predicted N$_2$O$_5$ to the measured N$_2$O$_5$ mixing ratios for the campaign demonstrates that both timing and magnitude of predicted N$_2$O$_5$ peaks match observations (Fig. S2). Since predicted steady-state N$_2$O$_5$ tracked observations when the latter were available, NO$_3$$_{SS}$ is hereafter used as the best estimate of NO$_3$ to calculate production rates of BVOC-nitrate products.

A substantial fraction (30–45 %) of the NO$_y$ budget is comprised of organic nitrates (ΣAN + ΣPN, Fig. S3). Measurements of gas phase and aerosol phase alkyl nitrates 28 June–July 15 show that a substantial fraction of the organic nitrates are in the aerosol-phase (30 % when aerosol phase AMS is compared to TD-LIF’s ΣAN vs. 80 % when using only TD-LIF for the comparison, at 5 a.m. CDT) when total ΣAN concentration builds up (Figs. 2 and 3). The average diurnal cycle shown in Fig. 3 also shows that TD-LIF measured ΣANs are almost completely in the aerosol phase at night, but only about 50 % in the aerosol phase during the day. During peaks in NO$_3$$_{SS}$, we see corresponding spikes in the ΣAN concentrations, all of which occur during nighttime periods. This is consistent with organic nitrates formed by NO$_3$ + BVOC (above) rapidly partitioning into the aerosol-phase.

BVOC measurements show large mixing ratios of isoprene throughout the entire campaign (daytime peaks above 8 ppb), followed by α- and β-pinene (peak nighttime mixing ratios of 0.5–1 ppb, Fig. S1). Using mixing ratios of VOC, which have well known reaction rates with NO$_3$, predicted NO$_3$ losses are calculated and compared to organic nitrate aerosol. Figure 4 shows the diurnally averaged NO$_3$ losses for the entire campaign period (1 June–15 July 2013). Daytime losses include photolysis and reaction with NO, however, approximately half the daytime losses are due to reaction of NO$_3$ with BVOC. Previous forest campaigns have assumed NO$_3$ + monoterpene reactions to be important only during the night and that isoprene, photolysis and NO losses were the only significant NO$_3$ sinks during the day (Geyer et al., 2001; Warneke et al., 2004), but in this study, we predict significant losses to BVOC during daylight hours.
To assess heterogeneous losses of N_2O_5 to particles, a kinetic uptake rate of N_2O_5 into deliquesced aerosols is estimated using PM surface area (S_A, $\text{nm}^2\text{cm}^{-3}$), the molecular speed of N_2O_5 (\bar{c}, m s^{-1}) and the uptake coefficient ($\gamma_{\text{N}_2\text{O}_5}$).

$$k_{\text{het}} = \frac{1}{4} \times \gamma_{\text{N}_2\text{O}_5} \times \bar{c}_{\text{N}_2\text{O}_5} \times S_A \tag{5}$$

We used a value of $\gamma = 0.02$ as the uptake coefficient (Bertram and Thornton, 2009; Crowley et al., 2011) and represents an upper limit from previous field studies (Brown et al., 2009, 2006). We predict heterogeneous N_2O_5 uptake to be very small over the campaign despite high relative humidity. The highest uptake rates were calculated at $1.6 \times 10^{-3} \text{ s}^{-1}$ in mid July, when PM$_{2.5}$ concentration was at its highest, and nevertheless represent less than 1 % of the losses of NO$_3$.

3.1.1 Calculation of NO$_3$ loss to BVOC

Using literature NO$_3$ + BVOC rate coefficients and calculated NO$_3$SS, we can calculate instantaneous NO$_3$ loss rates ($\left(\text{NO}_3\text{,loss}\right)_\text{inst}$) for the campaign (Eq. 6). BVOC mixing ratios from GC-MS and rate constants shown in Table 1 were used to calculate the time-integrated nitrate loss to reactions with BVOC (Eq. 7). Specifically, time loss of NO$_3$ radical to reaction with BVOC ($\left(\text{NO}_3\text{,loss}\right)_\text{integ}$, defined below in Eq. 7) were calculated during periods of increasing RONO$_2$ aerosol mass as monitored by AMS during SOAS. This buildup of aerosol RONO$_2$ was only observed after sunset. The boundary layer during night hours is relatively stable, such that NO$_x$ and BVOC measurements can be considered an area-wide average and this simple box model can be used to calculate (NO$_3$loss)$_\text{integ}$ (Eqs. 6 and 7). Under the assumption of a constant nighttime boundary layer height and an approximately uniform, area wide source that limits the time rate of change due to horizontal advection (i.e., a nighttime box), the time integrals of RONO$_2$ produced provide estimates of the evolution of RONO$_2$ concentrations at night. Times
of aerosol buildup were used to determine time intervals for calculation of \((\text{NO}_3,\text{loss})_{\text{integ}}\).

\[
(\text{NO}_3,\text{loss})_{\text{inst}} = \sum_i k_{\text{NO}_3+\text{VOC},i}[\text{VOC}]_i[\text{NO}_3]_{\text{SS}} \tag{6}
\]

\[
(\text{NO}_3,\text{loss})_{\text{integ}} = \sum_{i,t} (\text{NO}_3,\text{loss})_{\text{inst},i} \times \Delta t \tag{7}
\]

\((\text{NO}_3,\text{loss})_{\text{integ}}\) is the calculated time integral of the reaction products of NO\(_3\) with individual or combined mixing ratios of BVOC and \(\Delta t\) is the time step between each calculated value of \((\text{NO}_3,\text{loss})_{\text{inst},i}\). Data are averaged to 10 min increments, a time step sufficient to resolve the observed rate of change. Figure 5 shows an example of the resulting calculated integrated NO\(_3\) losses from Eq. (7) to both isoprene and summed monoterpenes, which are correlated with organic nitrate aerosol increases obtained from AMS measurements. Note that these peak times occur during nighttime hours when the boundary layer is shallow (Fig. S4).

Nightly total observed aerosol-phase organic nitrate buildup (Fig. 6) are plotted against the predicted loss of NO\(_3\) to monoterpenes. Linear fits and correlation coefficients aid in the interpretation of gas phase and aerosol phase organic nitrate formation. These correlations were made with \((\text{NO}_3,\text{loss})_{\text{integ}}\) to both isoprene and summed monoterpenes (\(\alpha\)-pinene, \(\beta\)-pinene, limonene and camphene).

The \(R^2\) values in the individual species correlation plots suggest that first generation monoterpene-derived organic nitrate products occur dominantly in the aerosol phase over the gas phase (Fig. 7). This may be due to rapid partitioning of these species to the aerosol phase, or to other rapid loss processes of these molecules in the gas phase. The correlation plots in Fig. 6 are in ppb units, resulting in slopes that indicate the average molar organic nitrate aerosol yield from monoterpenes. Using AMS and TD-LIF measurements of aerosol phase organic nitrates gives a molar yield of 23 and 44 % respectively (Fig. 6) using all available data from each instrument. We note that without knowledge of the average molecular weight of the aerosol organic nitrate, only molar yield estimates are possible. We calculated our results using only monoterpenes,
but the aerosols also contain sesquiterpene oxidation products and higher molecular weight BVOC products so SOA mass yields are likely to be higher. This comes about due to the condensing terpene oxidation products being more massive than the terpene precursors, and from multiple functional groups being needed to reduce the vapor pressure enough for substantial partitioning to the aerosol (Fry et al., 2013). Since nitrate product buildup occurs over multiple hours (Fig. 5), the rapid particulate organic nitrate losses (timescale of 2–4 h) found by Lee et al. (Lee et al., 2015) suggest that these molar yields are a lower limit. Furthermore, because this yield is based on total ambient monoterpane concentrations, it incorporates nitrate radical loss to α-pinene, which is known to produce very modest yields of SOA (0–10 %) from NO$_3$ reaction (Fry et al., 2014; Spittler et al., 2006). This suggests effective overall SOA yields from β-pinene, limonene and camphene are higher than 23–44 %.

3.1.2 Organic nitrate product analysis

Observations of NO$_3$SS compared to TD-LIF (Fig. 2) suggest aerosol organic nitrates are dominated by nighttime NO$_3$ + BVOC, rather than other known nitrate-producing reactions (e.g. RO$_2$ + NO), which would dominate during the daytime.

Specific first generation monoterpane organic nitrate compounds have been identified and measured in the gas and aerosol phases by CIMS (Lopez-Hilfiker et al., 2014; Lee et al., 2015). Using the (NO$_3$,loss)$_{\text{integ}}$ calculations, a similar correlation analysis is conducted to identify key aerosol-producing products. Gas- and aerosol-phase organic nitrate concentrations from the CIMS are correlated with (NO$_3$,loss)$_{\text{integ}}$ to monoterpenes (Fig. 7). The particle phase organic nitrates correlate better with the predicted monoterpane-nitrate production than gas phase ($R^2 = 0.67$ for particle phase C$_{10}$H$_{17}$NO$_5$ vs. 0.44 for gas phase). This is further evidence that uptake of monoterpane-nitrate compounds by aerosol takes place quickly after formation.

Less than 0.5 % of total particle-phase organic nitrates observed with the CIMS (Lee et al., 2015) were isoprene oxidation products, suggesting that most of the isoprene nitrate products remain in the gas phase. The correlation of gas-phase isoprene ni-
The C₅H₉NO₄ isoprene product shows poor correlation with (NO₃,loss)_{integ} for isoprene \((R^2 = 0.02)\), suggesting this is not a NO₃ radical product. However, C₅H₉NO₅ shows a good correlation with (NO₃,loss)_{integ} for isoprene \((R^2 = 0.70)\) suggesting that this compound is a NO₃ oxidized product.

3.2 Comparison to inorganic NOₓ sink: NO₃⁻ aerosol production from heterogeneous uptake of HNO₃

Partitioning of semivolatile ammonium nitrate into aerosol represented a small fraction of aerosol contribution throughout the campaign based on AMS data. A more important route of NOₓ conversion to nitrate aerosol occurred via HNO₃ heterogeneous reaction on the surface of dust or sea salt particles (Scheme 1). This process, which was observed to be especially important during periods of high mineral or sea salt submicron aerosol concentrations, is described in detail in a companion paper (Allen et al., 2015). Briefly, we observe that while concentrations of organic and inorganic nitrate aerosol are generally comparable (Figs. S2 and 3), the inorganic nitrate is more episodic in nature. Periods of highest NO₃⁻ concentration as measured by the MARGA were observed during two multi-day coarse-mode dust events, from 9 to 15 June and 23 to 30 June, while organic nitrates have a more regular diurnal pattern indicative of production from locally-available reactants, with most of the organic nitrate present in the condensed phase (data for gas- and aerosol-phase organic nitrate diurnally averaged for period of 1 to 15 July).

In order to estimate the fluxes of NOₓ loss to aerosol via the two pathways shown in Scheme 1, we calculate the reactive losses of NO₂ to organic nitrate (limiting rate is taken to be \(\sum_i k_i [NO_3][BVOC_i]\), with the included terpenes \(\alpha\)-pinene, \(\beta\)-pinene, limonene and camphene) and to inorganic nitrate via heterogeneous HNO₃ uptake (Allen et al., 2015). A substantial fraction of the surface area is in the transition regime, so HNO₃ uptake is reduced due to diffusion limitations. To account for this, a Fuchs–
Sutugin correction is applied (Seinfeld and Pandis, 2006):

\[
\text{Rate} = \sum \frac{R_p}{R_p} S_a D_g \left(\frac{0.75 \alpha (1 + Kn)}{Kn^2 + Kn + 0.283 Kn \alpha + 0.75 \alpha} \right) [\text{HNO}_3] \tag{R2}
\]

with \(S_a \) is surface area, \(R_p \) is the radius, \(D_g \) is the diffusivity of \(\text{HNO}_3 \) in air (0.118 cm\(^2\) s\(^{-1}\)) and \(\alpha \) is estimated at 0.1 for an upper limit.

Since we have seen that the organic nitrates are present predominantly in the condensed phase, we take this comparison to be the relative rate of production of organic nitrate aerosol vs. inorganic nitrate aerosol (Fig. 9), and we see that over the summer campaign, the rates are comparable in magnitude, but peak at different times. This analysis suggests that substantial nitrate aerosol (peak values of 1 \(\mu g m^{-3} hr^{-1} \), with average rates 0.1 \(\mu g m^{-3} hr^{-1} \) for both inorganic and organic nitrate rates) is produced in the southeastern US by both inorganic and organic routes (depicted in Scheme 1), converting local NO\(_x\) pollution to particulate matter. We note that this calculation accounts only for the production rates of these two types of nitrate aerosol and does not account for subsequent chemistry that may deplete one faster than the other; hence, relative mass concentrations are not necessarily expected to correlate directly to these relative production rates.

3.3 Implications of NO\(_3\) oxidation on SOA formation in the southeastern US

The NO\(_3\) + BVOC reaction in the troposphere has become increasingly noted as a source of SOA in recent years (Beaver et al., 2012; Fry et al., 2013; Rollins et al., 2012). In 2010, Pye et al. showed current models which include NO\(_3\) radical oxidation increase predicted SOA yields from terpenes by 100 % and total aerosol concentrations by 30 % (Pye et al., 2010). The results of our study help to underscore the importance of NO\(_3\) in SOA formation. As discussed above, measured aerosol organonitrate concentrations show that NO\(_3\) oxidation produces substantial SOA (23–44 % molar yield).
This pathway is especially important before sunrise when competing oxidants (O$_3$ and OH) are at a minimum.

We calculate a rough estimate of the contribution of NO$_x$ to PM via this NO$_3$ + BVOC mechanism based on 2011 NEI data for the states included in the 2004 Southern Appalachian Mountain Initiative study (SAMI, Odman et al., 2004): Kentucky, Virginia, West Virginia, North Carolina, South Carolina, Tennessee, Alabama and Georgia (http://www.epa.gov/ttn/chief/net/2011inventory.html). This comparator study was chosen because it is the region that includes the SOAS field site. In this 8-state region, the NEI reported 2.3 Tgyr$^{-1}$ (2.5 x 106 tons yr$^{-1}$) of nitrogen oxides in 2011 from Criteria based emissions of pollutants. The EPA also reported 0.8 Tgyr$^{-1}$ (9 x 105 tons yr$^{-1}$) of PM$_{2.5}$. We estimate the fraction of NO$_x$ converted to PM using several assumptions. NO$_2$ is estimated to contribute 50% of the NO$_y$ budget (Fig. S2), so we multiply the NO$_x$ emission by 0.5 to account for half of the instantaneous NO$_x$ residing in the atmosphere as other NO$_y$ species at any given time. An average lifetime of 16 h for O$_3$ + NO$_2$ reaction was calculated ($1/k[O_3]$) and, with an average nighttime length of 9 h, we estimate about 55% of NO$_2$ is converted to NO$_3$ overnight. Using the average molar organic nitrate aerosol yield of 30% determined in this study and an estimated molecular weight of 250 g mol$^{-1}$ for oxidized product (terpene hydroxynitrate with two additional oxygen functional groups, Draper et al., 2015), we convert from molar yield to mass yield of organic nitrate aerosol. Finally, using the summed NEI NO$_x$ emissions data for the SAMI states, we calculate a source estimate of 0.6 Tgyr$^{-1}$ of NO$_3$-oxidized aerosol. Adding this to the NEI primary PM$_{2.5}$ emissions estimate of 0.8 Tgyr$^{-1}$ gives a total 1.4 Tgyr$^{-1}$, showing that NO$_3$ initiated SOA formation would contribute a substantial additional source of PM$_{2.5}$ regionally, nearly doubling primary emissions. Model calculations by Odman et al. (2004) for the SAMI states estimated 1 Tgyr$^{-1}$ of total PM$_{2.5}$ in 2010, including primary and secondary sources. Their modeled PM$_{2.5}$ emissions are lower than our rough estimate here, despite the fact that actual 2010 NO$_x$ emissions were 2.3 Tgyr$^{-1}$ rather than the 3 Tgyr$^{-1}$ projected at that time. Hence, despite successful reduction of regional NO$_x$ emissions (Blanchard et al., 2013), this work...
suggests that secondary PM$_{2.5}$ production from NO$_3$ oxidation of regionally abundant BVOCs remains a substantial anthropogenic source of pollution in the southeastern US.

4 Conclusions

The contribution of NO$_3$ + BVOC to SOA formation is found to be substantial in the terpene-rich southeastern US. An estimated 23–44 % of nitrate radical lost to reaction with monoterpenes becomes aerosol-phase organic nitrate. A predicted nitrate loss to terpenes is calculated from the steady-state nitrate and terpene mixing ratios and then time integrated during evenings and nights as RONO$_2$ aerosol builds up. Nitrate losses are correlated to CIMS, TD-LIF and AMS measurements of gas- and aerosol-phase organic nitrate and show good agreement between (NO$_3$$_{\text{loss}}$)$_{\text{integ}}$ to monoterpane and total aerosol organic nitrate maxima. The main structure found in the aerosol phase, as measured by CIMS, is C$_{10}$H$_{17}$NO$_5$, which correlates well with cumulative (NO$_3$$_{\text{loss}}$)$_{\text{integ}}$. This NO$_3$ + BVOC source of nitrate aerosol is comparable in magnitude to inorganic nitrate aerosol formation, and is observed to be a substantial contribution to regional PM$_{2.5}$.

The Supplement related to this article is available online at doi:10.5194/acpd-15-16235-2015-supplement.

Acknowledgements. We would like to acknowledge Anne Marie Carlton, Jim Moore and all of the colleagues that helped to set up this study. B. R. Ayres, H. M. Allen, D. C. Draper and J. L. Fry gratefully acknowledge funding from the National Center for Environmental Research (NCER) STAR Program, EPA #RD-83539901 and NOAA NA13OAR4310063. D. A. Day and J. L. Jimenez thank NSF AGS-1243354 and NOAA NA13OAR4310063; R. C. Cohen thanks NSF AGS-1120076 and AGS-1352972.
References

Bellouin, N., Rae, J., Jones, A., Johnson, C., Haywood, J., and Boucher, O.: Aerosol forcing in the Climate Model Intercomparison Project (CMIP5) simulations by HadGEM2-ES and

16256
Organic nitrate aerosol formation in the southeastern US

B. R. Ayres et al.

Organic nitrate aerosol formation in the southeastern US

B. R. Ayres et al.

Introduction

Conclusions

References
Organic nitrate aerosol formation in the southeastern US
B. R. Ayres et al.

Spittler, M., Barnes, I., Bejan, I., Brockmann, K., Benter, T., and Wirtz, K.: Reactions of NO3 radicals with limonene and α-pinene: product and SOA formation, Atmos. Environ., 40, S116–S127, 2006. 16247

Table 1. NO$_3$ kinetic rate constants and equilibrium constants used to determine losses.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>A</th>
<th>E/R</th>
<th>B</th>
<th>k(298 K)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>O$_3$ + NO$_2$ → O$_2$ + NO$_3$</td>
<td>1.2×10^{-13}</td>
<td></td>
<td>2450</td>
<td></td>
<td>Sander et al. (2011)</td>
</tr>
<tr>
<td>NO$_3$ + NO$_2$ ⇌ N$_2$O$_5$</td>
<td>2.7×10^{-27}</td>
<td></td>
<td>11000</td>
<td></td>
<td>Sander et al. (2011)</td>
</tr>
<tr>
<td>NO + NO$_3$ → 2NO$_2$</td>
<td>1.5×10^{-11}</td>
<td>-170</td>
<td></td>
<td></td>
<td>Sander et al. (2011)</td>
</tr>
<tr>
<td>Isoprene + NO$_3$ → Products</td>
<td>3.03×10^{-12}</td>
<td></td>
<td>446</td>
<td></td>
<td>Calvert et al. (2000)</td>
</tr>
<tr>
<td>α-pinene + NO$_3$ → Products</td>
<td>1.19×10^{-12}</td>
<td></td>
<td>-490</td>
<td></td>
<td>Calvert et al. (2000)</td>
</tr>
<tr>
<td>β-pinene + NO$_3$ → Products</td>
<td>2.51×10^{-12}</td>
<td></td>
<td></td>
<td></td>
<td>Calvert et al. (2000)</td>
</tr>
<tr>
<td>Camphene + NO$_3$ → Products</td>
<td>6.6×10^{-13}</td>
<td></td>
<td></td>
<td></td>
<td>Calvert et al. (2000)</td>
</tr>
<tr>
<td>Myrcene + NO$_3$ → Products</td>
<td>1.1×10^{-11}</td>
<td></td>
<td></td>
<td></td>
<td>Calvert et al. (2000)</td>
</tr>
<tr>
<td>Limonene + NO$_3$ → Products</td>
<td>1.22×10^{-11}</td>
<td></td>
<td></td>
<td></td>
<td>Calvert et al. (2000)</td>
</tr>
</tbody>
</table>

a Reaction rate constants are reported as: $k(T) = Ae^{-(E_a/R)T}$, in units of (cm3 molecule$^{-1}$ s$^{-1}$).

b Equilibrium constants are reported as: $K_{eq} = Ae^{B/T}$, in units of (cm3 molecule$^{-1}$).
Figure 1. Map of Alabama with SO\textsubscript{2} and NO\textsubscript{x} emissions point sources shown, as well as major roadways (black). Centreville is located in Central Alabama about 55 miles SSW of Birmingham, AL. Major highways, city limits and major contributors to emissions are referenced for Alabama. The size of the emission markers depicts the relative concentrations of the pollutants according to the 2013 EPA Air Markets Program. For reference, the Alabama Power Company Gaston Plant emits 19.52 kg h-1 SO\textsubscript{2} and 6.43 kg h-1 NO\textsubscript{x}.
Figure 2. Nitrate radical concentration estimated by the steady-state approximation (red trace) shows several instances where peaks in the small NO$_3$ concentration correspond to times of ΣAN (gaseous+aerosol) buildup (blue trace). The black overlay is the aerosol phase measurement of ΣANs and qualitatively shows that, when data is available, a large portion of the organic nitrates appear to be in the aerosol-phase.
Figure 3. Diurnally averaged organic and inorganic nitrates show organic nitrates peaking in the early morning and inorganic nitrates peaking midday.
Figure 4. Average diurnal profile of NO$_3$/N$_2$O$_5$ losses 1 June–15 July 2013. NO and photolysis peak during the daytime, however losses to alkenes are significant during both night and day. Terpene losses are calculated from GC-MS data, NO and N$_2$O$_5$ data are from CRD, and photolysis losses are calculated as described in Sect. 3.1.
Figure 5. Sample calculation of $(\text{NO}_3\text{,loss})_{\text{integ}}$ overlaid against aerosol RONO$_2$ measured by AMS (red). The monoterpane maxima correlate well with the AMS maxima (black dots) The time period shown is arbitrarily chosen.
Figure 6. Scatter plots of aerosol RONO$_2$ (AMS and TD-LIF) compared to ($\text{NO}_3\text{,loss}_{\text{cum}}$. The magnitudes of the two particle phase organic nitrate measurements differ by a factor of ≈ 2 for unknown reasons, however the slope can be used as a relative molar yield of NO$_3$ loss to monoterpenes. Time period for AMS comparison is 9 June–15 July 2013 and for TD-LIF is 27 June–15 July 2013.
Figure 7. Scatter plots of organic nitrates measured by CIMS against time-integrated monoterpene losses to NO₃ radical. (a, c) show gas phase C₁₀H₁₅NO₅ and C₁₀H₁₇NO₅, respectively. (b, d) show particle phase C₁₀H₁₅NO₅ and C₁₀H₁₇NO₅ respectively. (d) gives the best fit with an R^2 value of 0.67 suggesting C₁₀H₁₇NO₅ is the best representative NO₃ + monoterpene product that partitions to the aerosol-phase.
Figure 8. Gas phase CIMS data correlated to predicted isoprene + NO₃ reaction. (a) C₅H₉NO₄ is poorly correlated to isoprene + NO₃ suggesting that this product comes from another reaction (ex. RO₂+NO). (b), C₅H₉NO₅ is well correlated to predicted Isoprene + NO₃ suggesting this is a major gas-phase product.
Figure 9. Over the campaign, similar magnitudes of the rate of formation of organic and inorganic nitrate aerosol (according to the pathways shown in Scheme 1) are observed, though peaks occur at different times.
Scheme 1. Generalized reaction fate for NO$_2$ in the troposphere. Oxidation of NO$_2$ from atmospheric oxidants leads to two possible paths.