Greetings to the authors of the manuscript "On the importance of cascading moisture recycling in South America" submitted to Atmospheric Chemistry and Physics. The reviewer begins by thanking the authors for having presented a relevant and interesting study on South American moisture recycling in a clear, effective manner.

Having thoroughly analysed the paper, the reviewer hereby shares the following thoughts:

1. On the Relevance of the Paper:
 Rather than a study of marginal interest, appealing to a particular subset of readers interested in moisture dynamics over a particular region, we are in the presence of a study with much broader relevance, not least given the applicability of the methodologies to other scientific problems in Atmospheric Chemistry and Physics. Having said that, the topical problem of moisture recycling in South America is itself a fascinating problem, with far-reaching implications to the wider atmospheric circulation.

2. On the Methodology:
 The methodology is sound, its implementation well explained and its use well justified. This is the opinion of the reviewer, which might not necessarily be shared by readers less familiar with the concepts. Bearing in mind the nature of the underlying system, the dynamics of which is driven by a multiplicity of spatiotemporally interconnected processes, it is appropriate to resort to complex network analysis methodologies. The authors aptly take grid cells as network nodes and the moisture transport (magnitude, direction) as network branches or interactions between nodes. By including self-interactions, the authors are then able to account for local re-evaporation and in turn the cascading moisture recycling, aptly defined as having at least one such re-evaporation cycle in the process.

 For this purpose, an Eulerian approach to moisture transport is preferred, as is actually done in the paper. While a Lagrangian approach to tracking the water particle as it is advected by atmospheric circulation might be favoured in other contexts, here the authors have an important point in taking into account the local, Eulerian approach. This is make clear as the procedure enables the role of local re-evaporation to be brought out, with all its implications.

 Ultimately, nothing is lost for not opting for a Lagrangian approach, as its benefits in tracking down the particles travelling in the atmosphere are obtained by taking into account the water balance dynamics in each cell.
Adding the advective component to the local analysis corresponds to the Lagrangian approach, with the advantage that in the chosen approach the role of the local processes (e.g. re-evaporation) is distinguishable from that of the advective transport.

The basic assumptions (section 2.2), while relatively strong, are reasonable and justified, with the reader being clearly informed of their limitations.

The methodological formulation is clearly presented in the appendices, with greatly appreciated mathematical detail, while aptly allowing for a streamlined train of thought in the main body of the paper.

A reader well familiar with complex networks will find the paper extremely easy to follow. Those less familiar will likely find solace on the careful explanations and cleverly depicted schematics on complex networks aptly prepared by the authors.

3. On the Results:

While the role of the cascading moisture recycling addressed in the paper is not overwhelmingly impressive, it is undoubtedly relevant and cannot be neglected, as well pointed out by the authors.

The discussion of intermediate moisture recycling nodes, acting as distributors rather than simply sources or sinks, brings added value to a more comprehensive assessment of moisture transport along the way.

By analysing the interacting nodes of the system network, the study also brings out interesting land-atmosphere feedbacks that shed more light onto moisture dynamics in the atmosphere, and in turn precipitation regimes with all the implications that they ensue.

The impacts of land use change on moisture recycling mechanisms are also very relevant and bring further awareness to the far-reaching effects of deforestation taking place in significant parts of the rainforest.

4. Minor mathematical typesetting remarks:

The formulation is consistent, well presented and easy to follow. Therefore, only minor typesetting remarks can be raised:

P. 17507, lines 12, 14-18: the parenthesis around the fractions should enclose the entire fraction. For instance, if typesetting in LaTeX, this can be done by \left(\right) instead of just (). A more appropriate use of the parenthesis is actually done further down on page 17508, line 8.

5. Minor grammar remarks:

The text is well and clearly written in proper English. The reviewer would thus leave only a couple of minor remarks:

a) The use of "which" in transitive statements: Page 17487, line 2: "which can be" should either be preceded by a comma (, which can be), otherwise "which" would be replaced by "that". Page 17487, line 20: "which are important": same issue: either precede by comma or replace which by "that". Page 17487, line 22: "which is evaporated": same issue. Page 17488, line 18: "location which receive": same issue. Page 17489, line 4: "locations which distribute": as above. (among other instances)

b) Missing preposition "as": Page 17490: "moisture that has final destination the La Plata basin": should read "moisture that has [as] final destination the La Plata basin".

Having mainly focused on the scientific content and formulation in this review, additional minor issues may have slipped under the radar.
5. Final Verdict:

After thorough analysis and consideration, it is the opinion of this reviewer that the submitted paper has very good quality and relevance, conveyed in a clear, effective manner. Therefore, it is definitely worth publication in Atmospheric Chemistry and Physics.

Interactive comment on Atmos. Chem. Phys. Discuss., 14, 17479, 2014.