Insights into characteristics, sources and evolution of submicron aerosols during harvest seasons in Yangtze River Delta (YRD) region, China

Y. J. Zhang1,2, L. L. Tang2,1, Z. Wang1, H. X. Yu3, Y. L. Sun4, D. Liu5, W. Qin2, H. L. Zhang6, and H. C. Zhou1

1Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
2Jiangsu Environmental Monitoring Center, Nanjing 210036, China
3State key laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
4State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
5Centre for Atmospheric Science, School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester M13 9PL, UK
6Handix LLC, Boulder, CO 8031, USA
Submicron aerosols during harvest seasons

Y. J. Zhang et al.
Abstract

Atmospheric submicron particulate matter (PM$_1$) is one of the most significant pollution components in China. Despite its current popularity in the studies of aerosol chemistry, the characteristics, sources and evolution of atmospheric PM$_1$ species in the East China are still poorly understood. Particular situations are the two harvest seasons, namely summer wheat harvest and autumn rice harvest. An Aerodyne Aerosol Chemical Speciation Monitor (ACSM) was deployed for online continuous monitoring of PM$_1$ components during summer and autumn harvest seasons in urban Nanjing situated in the Yangtze River Delta (YRD) region of China. Results show that organic aerosol (OA) was the most abundant PM$_1$ component, accounting for 39 % and 41 % of the total mass during the summer and autumn harvest periods, respectively. Positive matrix factorization (PMF) analysis resolved three OA components, i.e., hydrocarbon-like OA (HOA), biomass burning OA (BBOA), and oxygenated OA (OOA), which on average accounted for 19 % (30 %), 17 % (18 %), and 64 % (52 %) of the total OA mass concentrations during the summer (autumn) harvest respectively. The BBOA mass fraction increases with an increase of high PM$_1$ mass loadings (PM$_1$ > 100 µgm$^{-3}$), implying that BBOA plays a dominate role in high PM pollution during the harvest seasons. The mass concentrations of BBOA correlate well with the mass concentration of water-soluble potassium (K$^+$), indicating that the atmospheric K$^+$ is a good tracer for both wheat and rice straw burning during the harvest seasons. The OA mass decreases with the aging of BB plumes, implying that the fresh BB plumes contribute to atmospheric OA burden significantly. Combination of back-trajectory analysis with local wind indicates that the heavy pollution during the harvest seasons in the YRD region was found to be associated with transport processes and local source emissions.
1 Introduction

Particulate matter (PM) that is suspended in the atmosphere as atmospheric aerosol plays a crucial role in regional and global climate system (Ramanathan et al., 2001; Kaufman et al., 2002), air pollution (Sun et al., 2013a), ambient visibility reduction (Watson, 2002) and human health (Ge et al., 2011). Significant amounts of PM can be generated from human activities. In particular, biomass burning (BB) activities, e.g., forest fires, wildfire, and agricultural fires, can become the main sources of fine particulate matter (PM$_{2.5}$, particulates \leq 2.5 μm in aerodynamic diameter) and/or submicron particulate matter (PM$_{1}$, particulates \leq 1 μm in aerodynamic diameter) (Andreae and Merlet, 2001, Aiken et al., 2010; DeCarlo et al., 2010; Lee et al., 2010; Cubison et al., 2011; Reche et al., 2012; Bougiatioti et al., 2013). In recent years, the broad spatial extent of the atmospheric pollution frequently occurs during harvest seasons in China because of agricultural fires (Li et al., 2007; Wang et al., 2009a; Li et al., 2010; Du et al., 2011; Cheng et al., 2013; Ding et al., 2013). Moreover, China is an agricultural country which has 1.8 billion cultivated fields with a large number of agricultural crop residue (Zhang et al., 2008). The understanding of the compositions, sources and processes of atmospheric aerosol particles during harvest seasons is urgently needed to design measures to improve the quality of air in China.

Organic aerosol (OA) composes a large fraction of atmospheric aerosol particles (Zhang et al., 2007). Thus, one main research focus is the source identification of atmospheric OA (e.g. Lanz et al., 2007, 2010; DeCarlo et al., 2010; He et al., 2010; Crippa et al., 2013b; Hu et al., 2013; Sun et al., 2013a). The emission sources of atmospheric OA are usually identified by positive matrix factorization (PMF) method (Paatero and Tapper, 1994; Paatero, 1997). The current PMF method can only be employed to analyze the OA datasets (Sun et al., 2012b; Zhang et al., 2011), but cannot be easily utilized in the real-time online understanding of atmospheric OA sources. To identify the sources of atmospheric OA online, an algorithm based solely on organic mass fragments, namely m/z 57 (mostly C$_4$H$_9^+$) and m/z 44 (mostly CO$_2^+$), were devel-
oped to estimate hydrocarbon-like OA (HOA) and oxygenated OA (OOA), respectively (Zhang et al., 2005a, b; Ng et al., 2011c). Mohr et al. (2012) also identified cooking OA (COA) in ambient datasets based on the fractions of COA tracers at m/z 55 (mostly C$_4$H$_7^+$) and m/z 57 organic mass fragments. Biomass burning organic aerosol (BBOA) is one of the major atmospheric OA species during biomass burning periods (Aiken et al., 2010; Allan et al., 2010). However, limited information is available for developing online technique for the source appointments of BBOA.

The evolution of atmospheric OA such as oxidation process can significantly influence the ambient concentrations and physicochemical properties of OA (Aiken et al., 2008; Jimenez et al., 2009; Sun et al., 2011). To date various methods have been developed and introduced to predict the oxidation process of atmospheric OA. Atomic oxygen-to-carbon (O: C) ratios measured by a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) have been employed to determine the oxidation state of ambient OA (Aiken et al., 2008). Carbon oxidation state has been also used to evaluate the degree of OA oxygenation (Kroll et al., 2011). A tracer-CO (OA/ΔCO) has been found to be an effective method for understanding the photochemical oxidation process of OA in the atmosphere (Jolleys et al., 2012; Hu et al., 2013). In addition, Ng et al. (2010 and 2011b) addressed that a triangular region, f_{44} (fraction of m/z 44 in total OA) vs. f_{43} (fraction of m/z 43 in total OA), can be used to evaluate the oxidation processing of OA. Cubison et al. (2011) also found that f_{44} as a function of f_{60} (fraction of m/z 60 in total OA) can be utilized to understand the aging of BBOA and estimate the background value of f_{60}, indicating the formation and transformation of primary and secondary BBOA from the BB plumes. It is important for understanding the nature of atmospheric OA to investigate the evolution of OA by means of a proper technique.

An Aerodyne Aerosol Chemical Speciation Monitor (ACSM), a new instrument is designed as the state-of-the art research grade Aerodyne Aerosol Mass Spectrometer (AMS) systems to routinely characterize and monitor the mass and chemical composition of non-refractory submicron particulate matter (NR-PM$_1$), i.e., OA, nitrate (NO$_3$), sulfate (SO$_4$), ammonium (NH$_4$), and chloride (Chl) in real time (Canagaratna et al.,
Furthermore, ACSM has been found to have lower size, weight, cost, and power requirements in comparison with AMS (Ng et al., 2011a; Sun et al., 2012a). In recent years, air pollution and haze weather have become more and more important environmental and meteorological issues in Yangtze River Delta (YRD) region of China (Du et al., 2011; Ding et al., 2013). It was the purpose of this study to investigate the characteristics, sources and evolution of PM$_1$ using ACSM during harvest seasons (summer wheat harvest and autumn rice harvest) in the YRD region, China. The diurnal variations of the mass concentrations of non-refractory species (OA, NO$_3^-$, SO$_4^{2-}$, NH$_4^+$, Chl) and black carbon (BC) in the PM$_1$ were characterized during the harvest seasons. The emission sources of organic compositions (HOA, BBOA, and OOA) in the NR-PM$_1$ were traced by means of the PMF model. Based on m/z 60 mass concentration, the mass concentrations of BBOA in the NR-PM$_1$ were reconstructed online. Furthermore, the evolution process of OA during the harvest seasons was investigated by online measurements. Combination of back-trajectory analysis of air masses with local wind was used to investigate the impacts of various source regions on the PM pollution during the harvest seasons.

2 Experimental methods

2.1 Sampling site description

With a population of more than 8 million and an area of about 6597 km2, Nanjing, the host city of the second Youth Olympic Games in 2014, is a representative Chinese city in terms of the pollution characteristics of the YRD region. In this study, all kinds of data was collected in urban Nanjing (118°46′ N, 32°05′ E) from 1 to 15 June, and 15 to 30 October 2013, corresponding to two harvest seasons in a year, namely summer wheat harvest and autumn rice harvest. The sampling site was located on the roof of a six-story building approximately 18 ma.g.l. and 25 m from heavy-traffic road and restaurants in this study.
2.2 Instrumentation and data analysis

2.2.1 Measurements

The ambient NR-PM$_1$ species, i.e., OA, NO$_3$, SO$_4$, NH$_4$, Chl, were continuously measured using ACSM from 1 to 15 June, and 15 to 30 October 2013. Detailed descriptions of ACSM can be found in previous studies (Ng et al., 2011a; Sun et al., 2012a). Briefly, the ambient aerosols were drawn into the room using a 1/2 inch (outer diameter) stainless steel tube at a flow rate of $\sim 3 \text{ L min}^{-1}$, of which $\sim 84 \text{ cc min}^{-1}$ was sub-sampled into the ACSM. Moreover, ACSM was operated at a time resolution of about 15 min with a scan from m/z 10 to 150 amu at 500 msamu$^{-1}$ rate, which corresponds to the settings of Sun et al. (2012a).

An online analyzer, Monitoring of Aerosols and Gases (MARGA, model ADI 2080 Applikon Analytical B. V. Corp., the Netherlands), was deployed to measure the mass concentrations of a major water-soluble inorganic ion (potassium ion, K$^+$) in the aerosols. A PM$_{2.5}$ cyclone inlet was used to remove coarse particles. Ambient air was sampled into a liquid with a flow rate of 16.7 L min$^{-1}$. The detection limits of K$^+$ is 0.09 µgm$^{-3}$.

The MET ONE BAM-1020 and the 7-wavelength aethalometer (Magee AE31) were employed to measure PM$_1$ and ambient atmospheric BC in PM$_{2.5}$, respectively. Various gas analyzers (Thermo Scientific), i.e., Model 49i, Model 48i, and Model 42i, were collocated for monitoring O$_3$, CO, and NO$_2$, respectively. Ambient meteorological parameters including ambient temperature (T), relative humidity (RH), precipitation, wind speed (WS), wind direction (WD), and atmospheric visibility were obtained from a ground meteorology station located on the same six-story building as the sampling site.

Fire products used in this study were available from MODIS (Moderate-resolution Imaging Spectroradiometer) mounted on NASA’s Terra and Aqua satellites, NASA’s Earth Observing System (EOS) (https://earthdata.nasa.gov/data/near-real-time-data/firms). MODIS can present fire distributions in details at 1 km resolution through Fire...
Information for Resource Management System (FIRMS) on global scale (Justice et al., 2002; Kaufman et al., 2003). As shown in Figs. S1 and S2, all agricultural fire locations (red dots) in the YRD region were detected by the remote sensing retrieval of MODIS from 1 to 15 June, and 15 to 30 October 2013 (http://firms.modaps.eosdis.nasa.gov/firemap/).

2.2.2 ACSM data analysis

An ACSM Data Analysis Software package, ACSM Local (Ver. 1.5.2.0.0, released 25 April 2012) written in Wavemetrics Igor™, was used to analyze the ACSM dataset. More details of procedures have been described in the studies of Ng et al. (2011a) and Sun et al. (2012a). The relative ionization efficiencies (RIEs) values usually used in AMS ambient concentration calculations (Canagaratna et al., 2007) are the default values of NO$_3$ (1.1), SO$_4$ (1.2), and Chl (1.3) in this study. Moreover, a RIE value of NH$_4$ was determined to 7.04 based on the measurement of pure ammonium nitrate (NH$_4$NO$_3$) particles. In addition, the mass concentrations of ambient aerosol need to be corrected for particle collection efficiency (CE) (Middlebrook et al., 2011). CE = 0.5 is found to be representative with data uncertainties generally within 20% (Canagaratna et al., 2007; Middlebrook et al., 2011). The CE values observed in previous studies range from 0.43 to 1, due to (a) shape-related collection losses at the vaporizer from inefficient focusing of non-spherical particles, (b) particle losses at the vaporizer because of bouncing of solid particles before they are completely vaporized, and (c) particle losses in the aerodynamic inlet as a function of particle diameter (Allan et al., 2004; Zhang et al., 2005b; Canagaratna et al., 2007; Middlebrook et al., 2011). In this study, we selected the CE value for OA, NO$_3$, SO$_4$, NH$_4$, and Chl, respectively, according to the equation $CE = \max (0.45, 0.0833 + 0.9167 \times ANMF)$ (Middlebrook et al., 2011), in which ANMF is the mass fraction of NH$_4$NO$_3$ measured by the ACSM.

The PMF method was also applied to analyze OA datasets from ACSM. More details of procedure for PMF model can be found in previous studies (Ulbrich et al., 2009; Zhang et al., 2011; Sun et al., 2012b). Furthermore, the OA mass spectra data from
ACSM were determined by combing PMF2 executables with the PMF Evaluation Tool (PET) (Ulbrich et al., 2009). Due to large interferences of internal standard of naphthalene at m/z’s 127–129, the PMF analysis was restricted to m/z 120 (Sun et al., 2012a, 2013a). Three factors (HOA, BBOA, and OOA) were identified in this study.

2.2.3 Back-trajectory analysis

The impacts of various source regions on the PM pollution during the harvest seasons have been investigated using the HYbrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT-4) model developed by NOAA/ARL (Draxler and Rolph, 2003). Accordingly, 48 h back-trajectories at 500 m arrival height a.g.l. were calculated every 2 h starting at China Standard Time (CST) based on a Trajectory Statistics (TrajStat) software developed by Wang et al. (2009b). In this study, the 48 h back-trajectories of air masses were used for further analysis.

3 Results and discussion

3.1 Meteorological factors and PM$_1$ components

3.1.1 Time series of meteorological factors and PM$_1$ components

Figure 1 depicts the time series of NR-PM$_1$ species and BC in the presence of different meteorological conditions during the harvest seasons in urban Nanjing, i.e., WS, WD, RH, T, and precipitation. During the summer harvest, the average values were 70.7 ± 15.3 %, 3.7 ± 1.7 m s$^{-1}$, and 23.4 ± 4.1 °C for the ambient RH, WS, and T, respectively. In the autumn harvest, the average values were 54.3 ± 13.7 %, 2.6 ± 1.4 m s$^{-1}$, and 18.1 ± 3.6 °C for the ambient RH, WS, and T, respectively. The frequency distribution of hourly averaged wind direction and speed throughout the summer and autumn harvests were shown in Fig. S2a and b. As shown in Fig. S3, there is a strong correlation between the MET ONE PM$_1$ measured by MET ONE BAM-1020 and the sum of...
NR-PM$_1$ and BC mass concentrations ($r^2 = 0.88$), indicating that the ambient submicron aerosols consisted mainly of the NR-PM$_1$ and BC. Note that the mass concentration of BC in the PM$_1$ may be overestimated due to the fact that the mass concentration of BC was measured by the 7-wavelength aethalometer for PM$_{2.5}$ and the uncertainties in converting measured light absorption coefficients to carbon concentrations. An overestimation was previously suggested by Huang et al. (2011).

During the summer harvest, PM$_1$ (NR-PM$_1$ + BC) consisted of OA (39%), NO$_3$ (23%), NH$_4$ (16%), SO$_4$ (12%), BC (8%), and Chl (1%). During the autumn harvest, PM$_1$ was composed of OA (41%), NO$_3$ (20%), NH$_4$ (14%), SO$_4$ (11%), BC (13%), and Chl (1%). In particular, OA exhibited a significant dynamic variation in mass concentrations during the harvest seasons, likely due to the changes of source emissions (i.e. cooking, traffic and/or BB emissions). For example, the OA mass concentration sharply increased into 145.4 µg m$^{-3}$ at 21:00 local time (LT) on 10 June, while the PM$_1$ mass concentration reached 253.0 µg m$^{-3}$. Table 1 presents a comparison of the average composition of PM$_1$ between the summer harvest and autumn harvest periods. In contrast to SO$_4$ and NH$_4$, all other submicron species were higher during the autumn harvest than during the summer harvest. In addition, it was found that the highest peak values of PM$_1$ during the harvest seasons primarily depend on primary OA (POA), such as HOA, and/or BBOA at the sampling site (see Sect. 3.3).

3.1.2 Diurnal variations of meteorological factors and PM$_1$ components

Figure 2 depicts the diurnal variations of the meteorological factors, i.e., RH, T, WS, and WD, and PM$_1$ species, i.e., OA (including HOA, BBOA, and OOA), NO$_3$, SO$_4$, NH$_4$, Chl, and BC. Generally, the diurnal variations of the meteorological parameters and PM$_1$ species are similar during the summer harvest and autumn harvest. However, the ambient RH and T during summer harvest were higher than those during autumn harvest.
OA obviously exhibit three peaks occurring between 6:00–8:00 LT, 11:00–14:00 LT, and 19:00–22:00 LT, which is in agreement with the emission behaviors of pollution sources i.e., traffic, cooking and/or BB emissions (Allan et al., 2010; Huang et al., 2012; Sun et al., 2012a; Crippa et al., 2013a). More details of the diurnal variations of the OA components, i.e., HOA, BBOA, and OOA, will be presented in Sect. 3.2.

The diurnal variation of SO$_4^-$ presents three peaks during the summer and autumn harvest. A minor peak of SO$_4^-$ appeared in the morning at around 08:00 LT possibly influenced by sulfur-containing fuel. The second slight peak in the early afternoon at 13:00 LT formed by tracer gas (SO$_2$) oxidation under a higher photochemical activity, which is consistent with high temperature. Note that a third peak at night (22:00 LT) was observed which is interpreted to be due to a formation of SO$_4^-$ via an aqueous-phase oxidation reaction (Sun et al., 2013b). Overall, the SO$_4^-$ mass shows a relatively flat trend, indicating a regional pollution of sulfur components during harvest seasons in the YRD region.

NO$_3^-$ and Chl show similar diurnal cycles with two distinct peaks in the morning (07:00–08:00 LT) and in the evening (20:00–23:00 LT) for chloride, and a lower concentrations in the afternoon 11:00–17:00 LT during the harvests, in accordance with the volatile properties of ammonium nitrate and ammonium chloride dependent on ambient T and RH (Sun et al., 2011, 2012a). Chl is mainly ammonium chloride (NH_4Cl) and/or organic chlorine-containing species. During the harvest seasons, the evening high values of NO$_3^-$ and Chl might be affected by BB emissions and/or formed via gas-phase and aqueous-phase oxidations.

In addition, NO$_3^-$ shows a minor peak in the early afternoon (12:00–13:00 LT) during the autumn harvest, due to the gas-phase photochemical production of nitric acid (HNO_3) overcoming the evaporative loss at higher high T (Sun et al., 2011). However, the decrease of NO$_3^-$ during the summer harvest is quicker than the one during the autumn harvest. This is because that the photochemical production of HNO$_3$ cannot compensate for the evaporative loss at a high T condition during the summer harvest.

BC shows a classic diurnal variation with higher loadings appearing in early morn-
ing and during nighttime, which is consistent with traffic rush hours in early morning (07:00–08:00 LT) and during nighttime (20:00–21:00 LT). In addition, the reason for the peak values of BC during the nighttime may be also caused by the BB emissions during these harvest seasons.

3.2 Organic source apportionment

Based on the OA dataset from ACSM, the PMF analysis was performed for 1 to 8 factors. Three components (i.e. HOA, BBOA, and OOA) were identified, as illustrated in Figs. 3 and 4. The mean mass concentrations of HOA, BBOA, and OOA during the harvest seasons were presented in Table 1. HOA, BBOA, and OOA accounted on average for 19\% (30\%), 17\% (18\%), and 64\% (52\%) of the total OA mass concentrations during the summer (autumn) harvest, respectively. In particular, the average contribution of BBOA for the summer harvest is similar to that for the autumn harvest.

3.2.1 Hydrocarbon-like OA (HOA)

The prominent hydrocarbon ion series of \(C_nH_{2n+1}^+\) and \(C_nH_{2n-1}^+\) (e.g. 27, 29, 41, 43, 55, 57, \ldots) obtained from mass spectrum were characterized as the components of HOA (Zhang et al., 2005a, 2011; Aiken et al., 2008; Mohr et al., 2009; Allan et al., 2010). \(m/z\) 57 (\(C_3H_5O^+\) and/or \(C_4H_9^+\)) and \(m/z\) 55 (\(C_3H_3O^+\) and/or \(C_4H_7^+\)) are commonly considered as tracers for the primary organic emissions of combustion sources in urban areas, including COA and HOA (Zhang et al., 2005a; Ng et al., 2010; Sun et al., 2012a, 2013a; Hu et al., 2013). It is found that there is no significant difference in the mass spectrum between the summer harvest and the autumn harvest (Fig. 3a). Compared with traffic-like OA (Liu et al., 2011; Crippa et al., 2013a), the mass spectrum obtained in the present study shows a higher \(m/z\) 55/57 ratio. Previous studies indicated that high \(m/z\) 55/57 together with a unique diurnal variation can be as a diagnostics for the presence of COA (Mohr et al., 2009; Allan et al., 2010; Sun et al., 2012a). The mass spectrum of HOA in this study is characterized by more abundant
ions, i.e., \(m/z \) 41 (mainly \(\text{C}_3\text{H}_5^+ \)), \(m/z \) 55 (mainly \(\text{C}_4\text{H}_7^+ \)) and \(m/z \) 57 (Fig. 3a), which is similar to the characteristics of COA mass spectrum measured by He et al. (2010). As shown in Fig. 2, the diurnal variation of HOA shows three pronounced peaks corresponding to morning (a slight peak), noon (a weak peak) and evening traffic/cooking activities (a strong peak). In the meanwhile, the HOA mass loadings show weak correlations with the mass concentrations of CO \((r^2 = 0.11 \text{ and } 0.35, \text{Fig. } 4e) \), indicating that COA may significantly contribute to the HOA species. Differences in \(r^2 \) values between the two harvest seasons could be caused by different pollution types (Zhang et al., 2005a). Hence, HOA in this study refers to the sum of traffic-related HOA and COA. Sun et al. (2010) and Sun et al. (2012a) also found that HOA species in urban ambient were influenced by both traffic and cooking-like activities.

3.2.2 Biomass burning OA (BBOA)

As shown in Fig. 3b, the mass spectrum of BBOA extracted in this study shows a prominent peak of \(m/z \) 60 which is a well-known tracer ion for biomass burning emissions (Alfarra et al., 2007; Aiken et al., 2009; Cubison et al., 2011; Huang et al., 2011; Liu et al., 2011). Levoglucosan was shown to contribute to \(m/z \) 60 and was found in large amounts in urban, suburban, and rural background atmosphere during biomass burning periods (Maenhaut et al., 2012). Using soluble \(\text{K}^+ \) as a tracer for BB has also been reported by previous analyses of biomass burning campaign data (Gilardoni et al., 2009; Aiken et al., 2010; Li et al., 2010; Du et al., 2011; Crippa et al., 2013a). Figure 4a shows the time series of BBOA mass concentration along with \(\text{K}^+ \) measured by MARGA. The BBOA mass concentration is strongly consistent with the \(\text{K}^+ \) mass concentration \((r^2 = 0.96) \) during summer harvest (Fig. 4d), suggesting that BBOA and \(\text{K}^+ \) were as expected from the same source. \(\text{K}^+ \) can thus be used as a tracer for biomass burning particles as well. In particular, \(\text{K}^+ \) can be a species for identifying the wheat straw burning emissions. As shown in Fig. 4d, the BBOA is also well correlated with \(\text{K}^+ \) in summer \((r^2 = 0.64) \), which further verifies that the BBOA is a significant source in both periods. Sullivan et al. (2008) also found that the concentration of levoglucosan
correlates with K^+ for the burning of rice straw. Therefore, results above suggest that the atmospheric K^+ also can be used as a species for identifying the wheat and rice straw burning emissions during the harvests. In addition, the diurnal variation of BBOA shows a pronounced peak at the nighttime, which is consistent with the effects of the BB activities (Fig. 2). This means that BBOA contributes to POA during the nighttime mainly. The BBOA identified in this study is an expected result due to extensive fire counts around the sampling site during this campaign, as shown in Fig. S1a and b. This finding is also consistent with the habit of the farmers in the YRD region to burn off wheat or rice straw during harvest seasons each year. Furthermore, the mass concentration of Chl correlates well with the BBOA loadings ($r^2 = 0.87$ and 0.56), but Chl and HOA shows no correlations ($r^2 = 0.07$ and 0.001) during the harvest seasons (Fig. S4). This confirms that Chl was mainly from the BB emissions.

3.2.3 Oxygenated OA (OOA)

OOA, as a surrogate of secondary organic aerosol (SOA), is one of the most important secondary sources of atmospheric submicron aerosols in China (Xiao et al., 2011; Huang et al., 2012; Sun et al., 2012a). The mass spectrum of both OOA components in Fig. 4c were characterized by the prominent $C_xH_yO_z^+$ fragments, mainly CO_2^+ (m/z 44) which has been denoted previously found in many AMS studies (Zhang et al., 2005a; Jimenez et al., 2009; Sun et al., 2010). As shown in Fig. 4f, the OOA mass concentration correlates well with the sum of NO$_3$ and SO$_4$ ($r^2 = 0.57$ and 0.59) during the summer and autumn harvests, respectively. In addition, the diurnal pattern of OOA is characterized two peaks at around 14:00–15:00 LT, suggesting that OOA might be formed by photo-oxidation of precursors in the afternoon. Note that OOA also exhibits high loadings during the nighttime. This may be caused by the aging of BB plumes (Jolleys et al., 2012). In addition, it was also observed that RH are generally high ($\sim 70\%$) during the nighttime, implying that aqueous-phase oxidations may contribute to the generation of OOA significantly (Heringa et al., 2011; Li et al., 2013). Similar to OOA, BBOA was also enhanced during the nighttime (Fig. 2).
3.3 Effects of chemical components on PM pollution

As shown in Fig. 5a and b, the total PM$_1$ species and atmospheric visibility show strongly dynamic variations during no/negligible biomass (wheat and/or rice straw) burning (non-BB) and biomass burning (BB) periods in urban Nanjing, respectively. The average mass concentration of total PM$_1$ was 49 (58.9) µg m$^{-3}$ during summer (autumn) BB periods, which is around two times more than that during summer (autumn) non-BB periods with the average mass concentration of 23.4 (28.6) µg m$^{-3}$. The contribution of OA to the total PM$_1$ species is 34 % (37 %) during the summer (autumn) non-BB periods, but the contribution reaches to 41 % (48 %) during the summer (autumn) BB periods. This means that a further investigation on OA components needs to be considered in PM pollution during the harvest seasons. As a matter of fact, the average mass concentrations of all OA components (i.e. HOA, BBOA, and OOA) increase during the BB periods. In addition, the average atmospheric visibility is 10.6 (8.1) km during summer and autumn non-BB period. However, the atmospheric visibility shows obvious reduction during summer and autumn BB period with the mean value of 11.9 and 6.5 km. These findings indicate that the BB pollution is a possible reason for the haze formation in urban Nanjing, at least to some extent. Wang et al. (2009a) also found that wheat straw burning mainly contributed to atmospheric aerosol during haze days in urban Nanjing.

All the mass concentrations and fractions of the PM$_1$ components, i.e., SO$_4^-$, NO$_3^-$, NH$_4^+$, Chl, BC, HOA, BBOA, and OOA, are a function of the PM$_1$ mass concentration during the harvest seasons, respectively (Fig. 6). The secondary species mass concentrations, i.e., SO$_4^-$, NO$_3^-$, NH$_4^+$, and OOA, show monotonic and almost linear increase with the increase of the PM$_1$ mass concentrations, which is in agreement with results during the pollution periods in Beijing, China (Sun et al., 2013a). In particular, the mass concentrations of BBOA and Chl, present almost exponential increase with the increasing of PM$_1$ loadings during the whole campaign. In addition, the mass concentrations of BC and HOA show no clear relationships with PM$_1$ the loadings, but for
PM$_1 < 90 \, \mu\text{g m}^{-3}$ the mass concentrations of BC and HOA display a monotonic and almost linear relationship. The HOA mass concentration (including both traffic and cooking) has stable values at 70$\mu\text{g m}^{-3} < \text{PM}_1 < 100 \, \mu\text{g m}^{-3}$, and then decreases to relatively lower values. The secondary inorganic species, except NO$_3$, contributions to PM$_1$ loadings show almost linear decrease with PM$_1$ from $\sim 25\%$ to 5\% with the increase of PM$_1$ loadings. NO$_3$ shows two minor peaks at 60$\mu\text{g m}^{-3} < \text{PM}_1 < 70 \, \mu\text{g m}^{-3}$ and 90$\mu\text{g m}^{-3} < \text{PM}_1 < 100 \, \mu\text{g m}^{-3}$. HOA shows a peak at 70$\mu\text{g m}^{-3} < \text{PM}_1 < 80 \, \mu\text{g m}^{-3}$. Generally, the BBOA and Chl mass fractions show similar trend to the BBOA and Chl mass concentration as a function of the PM$_1$ mass loadings, respectively. In particular, BBOA is a main contributor to the increasing of PM$_1$ loadings as the PM$_1$ loadings are larger than 100$\mu\text{g m}^{-3}$. On the other hand, Chl shows a relatively small contribution to PM$_1$ across all the mass loadings. BC and OOA show relatively stable contributions to the PM mass loadings. Hence, more prominent peaks values of organics in this study were mainly attributed to POA (including traffic-related HOA, COA, and BBOA) emissions. In addition, the results suggest that BBOA plays a key role in causing the highest PM pollution during the harvest seasons, whereas the role of secondary species is less significant. Additionally, for the PM$_1$ loadings of 70–80$\mu\text{g m}^{-3}$ and 90–100$\mu\text{g m}^{-3}$, NO$_3$ has an important impact on PM during the harvest seasons in the YRD region.

As shown in Fig. 7a, POA dominates the OA mass fraction when the PM$_1$ loadings are high during the harvest seasons. For example, when the mass fraction of OA is $> 70\%$, the POA mass concentration reaches $\sim 100 \, \mu\text{g m}^{-3}$, while SOA is generally below $\sim 10 \, \mu\text{g m}^{-3}$. This is because that BBOA accounted for a larger fraction of OA when the PM$_1$ loadings were $> 100 \, \mu\text{g m}^{-3}$. Though the POA loadings exceed SOA loadings at higher PM$_1$ loadings during the entire study, the mass concentration of SOA is always on average higher than that of POA throughout the whole day (Fig. 7b). In particular, the mass fraction of OA is $> 60\%$ at 13:00–17:00 LT, which may be due to the high formation of photochemical products during the daytime. In general, the average mass concentrations of POA and SOA during the summer and autumn harvest seasons are 5.1 (9.3)$\mu\text{g m}^{-3}$ and 9.27 (10.1)$\mu\text{g m}^{-3}$, accounting for 36\% (64\%) and
48% (52%) during the summer (autumn) harvest, respectively. As shown in Table 1, the POA loadings during the autumn harvest are around 2 times higher than that during the summer harvest in urban Nanjing. This was probably caused by the amount of the fire sites around the urban Nanjing in the YRD region (Fig. S1a and b).

The effects of total primary and secondary species on the PM pollution during the harvest seasons were also investigated. Generally, the secondary PM (SPM = SO\textsubscript{4} + NO\textsubscript{3} + NH\textsubscript{4} + OOA) is higher than the primary PM (PPM = HOA + BBOA + BC), as shown in Fig. 7c and d. Although the BBOA mass fraction in OA is higher, BBOA/OA was indicated > 45%, the SPM mass concentration is higher than the PPM mass concentration, suggesting that the secondary aerosol with high loadings were formed during the BB campaigns (Fig. 7c). As shown in Fig. 7d, the diurnal cycles of the PPM and SPM mass fractions show that SPM accounted for larger fraction in PM\textsubscript{1} during the whole day. The contribution of SPM to PM\textsubscript{1} varies from 50% to 72%, and the highest contribution occurs at 15:00–16:00 LT. The average contribution of SPM and PPM for the entire study was 59% and 41%, respectively. Thus, aforementioned results imply that SPM also plays an important role in the PM pollution during the harvest seasons even if the POA loadings overwhelm the loadings of SOA in OA.

3.4 Estimation of BBOA directly from a tracer (m/z 60)

The BBOA mass loadings during the harvest seasons were estimated using a simple method. As described in previous studies, the parameter \(f_{60} \), fraction of \(m/z \) 60 in total OA, is considered as a marker of BBOA (Alfarra et al., 2007; DeCarlo et al., 2008; Cubison et al., 2011). To estimate the real value of the BBOA loadings, the background level of \(f_{60} \) (0.26 ± 0.1 %) during non-BB periods was determined (Fig. 8a). Cubison et al. (2011) also obtained a similar background level of \(f_{60} \) (0.3 ± 0.06 %) for an urban city in Mexico. Therefore, the levoglucosan-like species in ambient BB plumes was estimated by \(\Delta m/z \) 60 (\(\Delta m/z \) 60 = \(m/z \) 60 – background value of \(f_{60} \times \) OA). As shown in Fig. 9, the strong correlations (\(r^2 = 0.98 \), Slope = 36.7 and \(r^2 = 0.96 \), Slope = 41.4) between the BBOA mass concentration and \(\Delta m/z \) 60 were observed during the sum-
mer and autumn harvest. Aiken et al. (2009) also found that BBOA mass concentration strongly correlates with $\Delta m/z$ 60 mass loadings ($r^2 = 0.91$, Slope = 34) during the biomass burning/woodsmoke periods in Mexico City. Furthermore, Lee et al. (2010) obtained a strong relationship between BBOA mass concentration and m/z 60 mass loadings ($r^2 = 0.92$, Slope = 34.5) through a wildland fuels fire experiment in the lab. Thus, we reconstructed the time series of BBOA mass concentration to compare the relationship between the extracted BBOA mass concentration by PMF modeling (PMF BBOA) and the estimated BBOA mass concentration. As shown in Fig. 10a and b, excellent agreement is observed between the identified and reconstructed BBOA concentrations during the summer harvest (Slope = 0.94 and $r^2 = 0.98$) and the autumn harvest (Slope = 1.06 and $r^2 = 0.96$). Therefore, the BBOA component during the BB campaigns in urban Nanjing of the YRD region can be estimated with the equations of $BBOA = 36.7 \times (m/z 60 - 0.26 \% \times OA)$ and $BBOA = 41.4 \times (m/z 60 - 0.26 \% \times OA)$ for the summer and autumn harvest, respectively.

3.5 Oxidation process of OA

Figure 11 depicts the overall mass concentration and fraction of OOA and the OA/ΔCO ratio as a function of O_x ($O_x = O_3 + NO_2$), respectively, to investigate further the probable importance of photochemical activity for organic oxidation. The CO background is determined as 49 μgm$^{-3}$ based on an average of the lowest 5% CO during two plumes (Takegawa et al., 2006). As shown in Fig. 11a, the variation of average mass concentration of OOA shows a relatively stable with the increasing of O_x concentration, which is mainly due to larger OOA loadings during the nighttime (Fig. 2). The average fraction of OOA shows a linear relationship with the O_x concentration, as the O_x concentration increases from $\sim 90 \mu$gm$^{-3}$ to $> 200 \mu$gm$^{-3}$ (Fig. 11b). Whereas the OOA mass fraction decreased as the O_x concentration increased between 0 and 90 μgm$^{-3}$. A lower OOA fraction is associated with a large POA concentration during the nighttime, which also agrees well with the results shown in Fig. 2. In addition, the OA/ΔCO ratios can be used to further analysis the formation and evolution processes of SOA, which has
been employed in many previous studies (de Gouw et al., 2005; Jimenez et al., 2009; DeCarlo et al., 2010; Jolleys et al., 2012; Hu et al., 2013). As shown in Fig. 11c, the OA/ΔCO is a function of O\textsubscript{x}, implying that photochemical activity might play an important role in the OOA formation. In particular, OA/ΔCO shows a small peak at 30 µg m-3 < O\textsubscript{x} < 80 µg m-3, which indicates that OOA formation occurs likely via the condensation of the less volatile products of these aging reaction on the particles during nighttime under the conditions of low T and high RH (Jimenez et al., 2009; Ng et al., 2010, 2011b). These findings suggest that gas-phase oxidation during the daytime is likely to be the main driving force for the OA oxidation under stronger photochemical activity condition, while particle-phase and/or condensation processes may have been responsible for the high degree of oxygenation of OA during the nighttime under the high RH.

Figure 12a depicts the evolution process of OA with the f\textsubscript{44} vs. f\textsubscript{43} space during the summer and autumn harvests. As increasing the mass loadings of O\textsubscript{x} the ambient OA components cluster within a well-defined triangular region of the plot, implying that the degree of OA aging might be affected by atmospheric photochemical activity. Note that the ambient OA initially is on the left side of the triangle, but on the O\textsubscript{x} increasing moved slight up and to the right, clusters into the triangle, suggesting that the fresh BB emissions have a rather low relative contribution to f\textsubscript{43}, but the m/z 43 loadings increase with the increasing of f\textsubscript{44}. This is consistent with the results of photo-oxidation smog chamber experiments carried out by Heringa et al. (2011). In the study by Heringa et al. (2011), the non-oxidized fragment C\textsubscript{3}H\textsubscript{7}+ has a considerable contribution at m/z 43 for the fresh OA with an increasing contribution of the oxygenated ion C\textsubscript{2}H\textsubscript{3}O+ during aging of BB emissions.

The formation and transformation of primary and secondary BBOA during the BB campaigns can be described by f\textsubscript{44} vs. f\textsubscript{60} plot (Cubison et al., 2011). As shown in Fig. 8a, the fraction of BBOA decreases with increasing the oxidation degree of OA. During the photochemical activity campaign, the lower is the BBOA/ΔCO ratio the higher is the oxidation degree of OA (Fig. 8b). These findings suggest a potential mecha-
anism by which fresh BB plumes undergoes the substantial photochemical oxidation and is transformed into aged BB plumes. Therefore, atmospheric photochemical activity might play an important role in the aging process of open BB plumes during the summer and autumn harvests. In addition, Fig. 12b depicts the evolution process of the BB plume with f_{44} vs. f_{60} spaces during the harvest seasons. As decreasing the mass of the total PM$_1$, the OA components cluster within a higher oxidation region of the plot, i.e., higher f_{44} and lower f_{60} region, suggesting that the contribution of the fresh BB plume to the PM pollution gradually decreases with the aging of evolving ambient open BB plumes. Furthermore, the OA loadings also decrease gradually with the aging of open BB plumes. Thus, it is reasonable to believe that the fresh BB plumes significantly contribute to the ambient OA burden during the harvest seasons.

3.6 Impacts of various source regions on the PM pollution

Figure 13 presents the calculated air mass 48 h BTs at 500 m arrival height a.g.l. at intervals of two hours (i.e. 00:00, 02:00, 04:00, ..., 22:00 LT) starting at CST in Nanjing (118°46′ N, 32°05′ E). The corresponding BTs can be broadly classified into four groups based on the directions during the summer and autumn harvests, respectively, i.e., southwest (Group 1), east (Group 2), northwest (Group 3), and northeast (Group 4) for the summer harvest; northwest (Group 1), east (Group 2), south (Group 3), and northeast (Group 4) for the autumn harvest season. The mean concentrations of PM$_1$ in this study are indicated in Fig. 13a and b, followed by group 1 (SW, 46.5 µg m$^{-3}$), group 2 (E, 52.8 µg m$^{-3}$), group 3 (NW, 52.8 µg m$^{-3}$), and group 4 (NE, 66.1 µg m$^{-3}$) during the summer harvest; group 1 (SW, 55.7 µg m$^{-3}$), group 2 (E, 56.4 µg m$^{-3}$), group 4 (NE, 85.8 µg m$^{-3}$), and group 3 (NE, 106.8 µg m$^{-3}$) during the autumn harvest. The relatively high contribution of BBOA emerged in group 3 during the summer and autumn harvests due to the air masses from many fire locations, which is consistent with the fire location distributions around this sampling site (Fig. S1a and b). Figure S5 presents the relationship between the distribution of the mass concentrations of PM$_1$ species and wind direction/speed during the harvest seasons. In general, both BBOA...
and Chl showed higher concentrations with greater wind speeds during the summer harvest, suggesting a vital role of the BB campaign around urban Nanjing in the BB pollution. However, higher BBOA and Chl concentrations were mostly associated with wind speeds of $\sim 2 \text{ ms}^{-1}$ during the autumn harvest, denoting the dominant role of local burning events around Nanjing.

A larger fraction of HOA and BC observed for group 2 and group 4 during the harvest seasons implies a significant contribution of primary emissions in and around the north vicinity of Nanjing to the PM pollution during the harvest seasons. HOA with high concentrations during the two harvests were associated with weak wind speeds (Fig. S5), indicating that HOA mainly came from local emissions. Overall, BC always show higher concentrations under lower and higher wind speeds (Fig. S5), denoting that the BC concentrations were associated with the local emissions and around BB campaign around urban Nanjing.

As shown in Fig. 13, the largest fraction of OOA can be found in a kind of type (the longest trajectory), such as group 2 (in the summer harvest) and group 1 (in the autumn harvest), which is also consistent with the relatively long plume transport. In addition, the relatively large fraction of NO$_3$ suggested a significant impact of local NO$_x$ emissions on the PM pollution, which is also consistent with predicted plume transport from urban areas in Nanjing during the harvest seasons by the BTs. As expected, the relatively large fractions of SO$_4$ observed during the summer and autumn harvests are likely due to many source emissions of SO$_2$ from both the northwest and northeast air masses. As shown in Fig. S5, SPM (i.e. OOA, NO$_3$, and SO$_4$) almost maintained at higher levels during higher and lower wind speeds, indicating that the secondary pollutions were regional pollutants during the harvest seasons in the YRD region.

4 Conclusions

The characteristics, sources and evolution of atmospheric PM$_1$ species in urban Nanjing, the YRD region of China were investigated during the two harvest seasons,
namely the summer wheat harvest (1 to 15 June 2013) and autumn rice harvest (15 to 30 October 2013). In the summer harvest, the PM$_1$ loadings ranged from 3.6 to 253.0 µg m$^{-3}$ with the mean value of 38.16 µg m$^{-3}$, and was composed of OA (39 %), NO$_3$ (23 %), NH$_4$ (16 %), SO$_4$ (12 %), BC (8 %), and Chl (1 %); In the autumn harvest, the PM$_1$ loading ranged from 7.3 to 163.6 µg m$^{-3}$ with mean value of 46.4 µg m$^{-3}$, and was composed of OA (41 %), NO$_3$ (20 %), NH$_4$ (14 %), SO$_4$ (11 %), BC (13 %), and Chl (1 %). OA constituted to be the largest fraction of PM$_1$, implying that OA plays a dominant role in the formation of high PM$_1$ loadings during the harvest seasons. PMF analysis resolved three OA components, i.e., HOA, BBOA, and OOA, which on average accounted for 19 % (30 %), 17 % (18 %), and 64 % (52 %) of the total OA mass concentrations during the summer (autumn) harvest, respectively. Particularly, BBOA is a main contributor to the increases of PM$_1$ loadings as the PM$_1$ loadings are larger than 100 µg m$^{-3}$. Moreover, the BBOA mass concentration correlates well with K$^+$, with the r^2 of 0.93 and 0.62, implying that the atmospheric K$^+$ loadings is a good tracer of wheat and rice straw burning during the harvests in urban Nanjing. The mass concentration of Chl correlates well with the BBOA loadings ($r^2 = 0.87$ and 0.56), implying that Chl was mainly from the BB emissions. In addition, high OOA loadings were observed during the nighttime.

The background level of f_{60} (0.26 ± 0.1 %) was determined using the f_{44} vs. f_{60} space during the non-BB periods (in July). Thus, we suggest a simpler method for on-line investigating the BBOA loadings based on the equations of BBOA = 36.7 × (m/z 60–0.26 % × OA) and = 41.4 × (m/z 60–0.26 % × OA) for the summer and autumn harvest, respectively, which correlated tightly with the BBOA loadings by the PMF method (Slope = 0.94 and $r^2 = 0.98$ and Slope = 1.06 and $r^2 = 0.96$). In addition, the f_{44} vs. f_{60} space indicates that fresh BB plumes might be transformed into aged BB plumes by a high photochemical activity. Overall, the OA mass concentration, OA fraction, and OA/ΔCO ratio increase with the increasing of the O$_x$ loadings, respectively, during daytime, suggesting that the gas-phase oxidation might play an important role in the afternoon. Furthermore, the OA mass decreases with the aging of BB plumes, imply-
ing that the fresh BB plumes play a key contribution to ambient OA burden during the harvest seasons.

Combination of BTs analysis with local wind indicates that the air masses around Jiangsu province represented the most severe PM pollution, with high PM$_1$ mass loadings of 66.1 µg m$^{-3}$ and 106.8 µg m$^{-3}$ during the summer and autumn harvests, respectively. In addition, a large contribution of BBOA to the total PM$_1$ was mainly during the northeasterly and northwesterly air masses origins during the summer harvest. The northeasterly and southerly air masses displayed large PM$_1$ loadings with a high BBOA mass fraction during the autumn harvest. Therefore, transport processes and local emissions play an important role in the heavy pollution during the harvest seasons in Nanjing.

Supplementary material related to this article is available online at http://www.atmos-chem-phys-discuss.net/14/9109/2014/acpd-14-9109-2014-supplement.pdf.

Acknowledgements. This work was funded by the Natural Science Key Research of Jiangsu Province High Education (Grant No. 11KJA170002), the Foundation Research Project of Jiangsu Province (Grant No. BK2012884), and the Project Funded by the Jiangsu Province Science & Technology Support Program (Grant No. BE2012771). We are very grateful for the help of Douglas R. Worsnop and John T. Jayne (Aerodyne Research Inc.) concerning the ACSM measurements. We also would like to thank P. Chen (Handix LLC) and W. Li (South Coast Air Quality Management District) for providing constructive comments and help in improving the contents.

References

Bougiatioti, A., Stavroulas, I., Kostenidou, E., Zarmpas, P., Theodosi, C., Kouvarakis, G.,
of biomass burning aerosol in the Eastern Mediterranean during summertime, Atmos.
Canagaratna, M., Jayne, J., Jimenez, J. L., Allan, J. A., Alfarrà, R., Zhang, Q., Onasch, T.,
Drewnick, F., Coe, H., Middlebrook, A., Delia, A., Williams, L., Trimborn, A., Northway, M.,
Kolb, C., Davidovits, P., and Worsnop, D.: Chemical and microphysical characterization of
Chebbi, A. and Carlier, P.: Carboxylic acids in the troposphere, occurrence, sources, and sinks:
Cheng, Y., Engling, G., He, K.-B., Duan, F.-K., Ma, Y.-L., Du, Z.-Y., Liu, J.-M., Zheng, M., and
Weber, R. J.: Biomass burning contribution to Beijing aerosol, Atmos. Chem. Phys., 13,
Crippa, M., DeCarlo, P. F., Slowik, J. G., Mohr, C., Heringa, M. F., Chirico, R., Poulain, L.,
Freutel, F., Sciare, J., Cozic, J., Di Marco, C. F., Elsasser, M., Nicolas, J. B., Marchand, N.,
Abidi, E., Wiedensohler, A., Drewnick, F., Schneider, J., Borrmann, S., Nemitz, E., Zimmer-
composition and source apportionment of the organic fraction in the metropolitan area of
Crippa, M., Canonaco, F., Lanz, V. A., Åijälä, M., Allan, J. D., Carbone, S., Capes, G.,
Dall’Osto, M., Day, D. A., DeCarlo, P. F., Di Marco, C. F., Ehn, M., Eriksson, A., Freney, E.,
Hildebrandt Ruiz, L., Hillamo, R., Jimenez, J.-L., Junninen, H., Kiendler-Scharr, A., Korte-
lainen, A.-M., Kulmala, M., Mensah, A. A., Mohr, C., Nemitz, E., O’Dowd, C., Ovadnevaite, J.,
Pandis, S. N., Petäjä, T., Poulain, L., Saarikoski, S., Sellegri, K., Swietlicki, E., Tiitta, P.,
Worsnop, D. R., Baltensperger, U., and Prévôt, A. S. H.: Organic aerosol components de-
derived from 25 AMS datasets across Europe using a newly developed ME-2 based source
apportionment strategy, Atmos. Chem. Phys. Discuss., 13, 23325–23371, doi:10.5194/acpd-
13-23325-2013, 2013b.
Jimenez, J. L.: Effects of aging on organic aerosol from open biomass burning smoke in

Table 1. Mean mass concentration of PM$_1$ (NR-PM$_1$ + BC) (µg m$^{-3}$) and standard deviation (S.D.) during the harvest seasons.

<table>
<thead>
<tr>
<th>Species</th>
<th>Summer harvest Mean</th>
<th>Summer harvest S.D.</th>
<th>Autumn harvest Mean</th>
<th>Autumn harvest S.D.</th>
<th>Entire harvest seasons Mean</th>
<th>Entire harvest seasons S.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO$_3$</td>
<td>9.0</td>
<td>7.1</td>
<td>9.2</td>
<td>6.2</td>
<td>9.1</td>
<td>7.0</td>
</tr>
<tr>
<td>SO$_4$</td>
<td>5.0</td>
<td>2.4</td>
<td>4.7</td>
<td>2.5</td>
<td>4.8</td>
<td>2.4</td>
</tr>
<tr>
<td>NH$_4$</td>
<td>7.0</td>
<td>3.5</td>
<td>6.4</td>
<td>3.5</td>
<td>6.5</td>
<td>3.5</td>
</tr>
<tr>
<td>Chl</td>
<td>0.4</td>
<td>0.9</td>
<td>0.7</td>
<td>0.8</td>
<td>0.6</td>
<td>0.9</td>
</tr>
<tr>
<td>OA</td>
<td>15.4</td>
<td>12.8</td>
<td>22.3</td>
<td>17.5</td>
<td>18.8</td>
<td>15.7</td>
</tr>
<tr>
<td>BC</td>
<td>3.2</td>
<td>2.2</td>
<td>6.0</td>
<td>3.8</td>
<td>4.6</td>
<td>3.4</td>
</tr>
<tr>
<td>PM$_1$</td>
<td>38.5</td>
<td>24.3</td>
<td>46.4</td>
<td>27.0</td>
<td>42.3</td>
<td>26.0</td>
</tr>
<tr>
<td>HOA</td>
<td>2.7</td>
<td>2.4</td>
<td>5.7</td>
<td>8.4</td>
<td>4.2</td>
<td>6.3</td>
</tr>
<tr>
<td>BBOA</td>
<td>2.4</td>
<td>3.7</td>
<td>3.5</td>
<td>5.9</td>
<td>3.0</td>
<td>4.0</td>
</tr>
<tr>
<td>OOA</td>
<td>9.1</td>
<td>6.7</td>
<td>10.1</td>
<td>5.5</td>
<td>9.6</td>
<td>6.2</td>
</tr>
</tbody>
</table>
Fig. 1. Time series of (a) wind speed (WS) and wind direction (WD), (b) relative humidity (RH), temperature (T) and precipitation, (c) submicron aerosol species, i.e., organic aerosol (OA), ammonium (NH₄), nitrate (NO₃), sulfate (SO₄), chloride (Chl) and black carbon (BC), and (d) mass fraction during the harvest seasons.
Fig. 2. Diurnal variation patterns of meteorological factors (i.e., RH, T, WS, and WD), PM$_1$ species (OA, NO$_3$, SO$_4$, Chl, and BC), and OA components (HOA, BBOA, and OOA) during the harvest seasons. The gray shaded areas indicate the 75th and 25th percentile.
Fig. 3. Mass spectra profiles of (a) BBOA, (b) HOA, and (c) OOA.
Submicron aerosols during harvest seasons

Y. J. Zhang et al.

Fig. 4. Time series of (a–c) organic components and relevant tracer species, correlation plots of (d) BBOA vs. K\(^+\), (e) HOA vs. CO, and (f) OOA vs. the sum of NO\(_3\) and SO\(_4\), during the summer and autumn harvests. The no/negligible biomass burning (Non-BB) periods are marked as gray shaded areas.
Fig. 5. Variations in the composition of PM$_1$ species, OA sources, and atmospheric visibility during no/negligible biomass burning (Non-BB) and biomass burning (BB) periods in (a) summer and (b) harvest seasons, respectively. Non-BB periods marked in Fig. 4 with gray shaded areas.
Fig. 6. Variations of (a) mass concentrations of PM$_1$ species and OA components, i.e., SO$_4$, NO$_3$, NH$_4$, Chl, BC, HOA, BBOA, and OOA; and (b) mass fractions of PM$_1$ species and OA components as a function of PM$_1$ (NR-PM$_1$ + BC) mass concentration. The upper and lower boundaries of lines are the 75th and 25th percentiles; and the cross symbols represent the means.
Fig. 7. Relationships between the mass concentrations of (a) SOA (SOA = OOA) and POA (POA = HOA + BBOA); (b) SPM (SPM = SOA + NO$_3$ + SO$_4$ + NH$_4$) and PPM (PPM = POA + BC); the diurnal plots of mass fraction of (c) POA vs. SOA and (d) PPM vs. SPM. The data colored by the mass fraction of OA in the PM$_1$ mass loadings. The data are sized by the PM$_1$ mass loadings.
Fig. 8. Summary plots showing f_{44} vs. f_{60} for the harvest seasons: (a) colored by the summer and autumn harvests, respectively. Sized proportional to the ratios of BBOA/OA. Note that red dots present the background levels of f_{60}; (b) colored by the ratios of BBOA/ΔCO and sized proportional to O_x ($O_x = O_3 + NO_2$) mass loadings.
Fig. 9. Correlation plot of BBOA vs. $\Delta m/z$ 60 ($\Delta m/z$ 60 = m/z 60 – 0.26 % x OA). Note that red dots present the levels of f_{60} in ambient air without BB influence from 1 to 8 July 2013 in this sampling site. The presented background values of f_{60} (around 0.26 ± 0.1 %) are shown in Fig. 8a.
Fig. 10. Time series of BBOA identified by PMF (PMF BBOA) and estimated BBOA during the summer (BBOA = 36.7 × Δm/z 60) and autumn (BBOA = 41.4 × Δm/z 60) harvest seasons respectively, as well as correlation plot of estimated BBOA vs. PMF BBOA.
Fig. 11. Variations of (a) mass concentration, (b) fraction of OA components, and (c) ratio of OA to ∆CO, as a function of \(O_x \) \((O_x = O_3 + NO_2)\) mass loadings.
Fig. 12. Summary plots showing (a) triangle plot (f_{44} vs. f_{43}); and (b) f_{44} as a function of f_{60} (f_{44} vs. f_{60}) for the ambient ACSM datasets during the summer and autumn harvest seasons. The data points are colored by (a) the ratio of BBOA/CO; and (b) the total PM$_1$ and mass concentration, as well as sized by the OA mass concentration.
Fig. 13. Calculated 48 h back-trajectories for (a) the summer harvest and (b) the autumn harvest.