Analysis of transpacific transport of black carbon during HIPPO-3: implications for black carbon aging

Z. Shen¹,* , J. Liu¹, L. W. Horowitz², D. K. Henze³, S. Fan², H. Levy II², D. L. Mauzerall⁴,⁵, J.-T. Lin⁶, and S. Tao¹

¹College of Urban and Environmental Sciences, Peking University, Beijing, China
²NOAA Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey, USA
³Department of Geophysical Fluid Dynamics, University of Colorado, Boulder, CO, USA
⁴Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA
⁵Woodrow Wilson School of Public and International Affairs, Princeton University, Princeton, NJ, USA
⁶Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China

*now at: Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ, USA
Analysis of BC transpacific transport during HIPPO-3
Z. Shen et al.

Abstract

Introduction

Conclusions

References

Tables

Figures

Back

Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Abstract

Long-range transport of black carbon (BC) is a growing concern as a result of the efficiency of BC in warming the climate and its adverse impact on human health. We study transpacific transport of BC during HIPPO-3 using a combination of inverse modeling and sensitivity analysis. We use the GEOS-Chem chemical transport model and its adjoint to constrain Asian BC emissions and estimate the source of BC over the North Pacific. We find that different sources of BC dominate the transport to the North Pacific during the southbound (29 March 2010) and northbound (13 April 2010) measurements in HIPPO-3. While biomass burning in Southeast Asia (SE) contributes about 60% of BC in March, more than 90% of BC comes from fossil fuel and biofuel combustion in East Asia (EA) during the April mission. GEOS-Chem simulations generally resolve the spatial and temporal variation of BC concentrations over the North Pacific, but are unable to reproduce the low and high tails of the observed BC distribution. We find that the optimized BC emissions derived from inverse modeling fail to improve model simulations significantly. This failure indicates that uncertainties in BC transport, rather than in emissions, account for the major biases in GEOS-Chem simulations of BC.

The aging process, transforming BC from hydrophobic into hydrophilic form, is one of the key factors controlling wet scavenging and remote concentrations of BC. Sensitivity tests on BC aging suggest that the aging time scale of anthropogenic BC from EA is several hours, faster than assumed in most global models, while the aging process of biomass burning BC from SE may occur much slower, with a time scale of a few days. To evaluate the effects of BC aging and wet deposition on transpacific transport of BC, we develop an idealized model of BC transport. We find that the mid-latitude air masses sampled during HIPPO-3 may have experienced a series of precipitation events, particularly near the EA and SE source region. Transpacific transport of BC is sensitive to BC aging when the aging rate is fast; this sensitivity peaks when the aging time scale is in the range of 1–1.5 d. Our findings indicate that BC aging close to the
source must be simulated accurately at a process level in order to simulate better the global abundance and climate forcing of BC.

1 Introduction

Black carbon (BC) strongly absorbs solar and infrared radiation, resulting in a positive radiative forcing of climate (Ramanathan and Carmichael, 2008). When internally mixed with other aerosols, BC acts as cloud condensation nuclei (CCN) and thus plays an important role in modifying cloud formation and precipitation (Zuberi et al., 2005). After deposition to snow/ice surfaces, BC causes additional climate warming by reducing surface albedo and accelerating snow/ice melting (Fiore et al., 2012). Through these various pathways, BC is estimated to have contributed significantly to global warming and to have affected both global and regional climate (Ramanathan and Carmichael, 2008). Recently, the climate forcing of BC has been estimated to be +1.1 Wm$^{-2}$, making BC the second most important anthropogenic climate forcer after carbon dioxide (CO_2) (Bond et al., 2013). Besides its warming effects, BC is also a potent pollutant that adversely impacts air quality, visibility and human health (Highwood and Kinnersley, 2006).

Intercontinental transport of BC is increasingly of concern as a result of its great effect on climate change and air quality. However, large uncertainties remain in modeling global transport of BC and previous studies show large spatial-temporal differences between simulated and observed BC concentrations. Despite large inter-model differences in simulated BC concentrations, models generally overestimate BC in the mid-upper troposphere in the tropics and mid-latitudes, but underestimate BC in the lower and middle troposphere at high latitudes compared to aircraft measurements (Fan et al., 2012; Koch et al., 2009; Schwarz et al., 2010). Model biases result from many factors of the simulations, including BC emissions and the parameterizations of BC aging, wet removal, and dry deposition processes (Liu et al., 2011).
Uncertainty in emission inventories has been shown to contribute significantly to the biases in BC modeling (Hakami et al., 2005). BC is emitted from incomplete combustion of fossil fuels and biofuels. Many factors contribute to this uncertainty in bottom-up inventories, such as BC emission factors, activity data, burned area, and combustion completeness (Bond et al., 2013). Global and regional emission inventories of BC vary over a wide range and have been refined several times (Bond et al., 2004, 2007; Lamarque et al., 2010; Textor et al., 2007; see also discussion in Bond et al., 2013).

Physical and chemical processes occurring during long-range transport of BC also play important roles in simulated concentrations of BC. Parameterizations of BC aging, dry deposition and wet deposition significantly affect model results (Liu et al., 2011). Freshly emitted BC aerosols are predominantly hydrophobic and may become hydrophilic when soluble compounds, such as ammonium sulfate, attached to the surface (Cooke et al., 2002). The aging process refers to a transformation from hydrophobic to hydrophilic aerosols, with the latter treated as CCN in the aerosol wet deposition processes. Therefore, the rate of BC aging significantly affects the atmospheric lifetime of BC, is one of the key factors controlling long-range transport of BC, and affects the global BC burden and distribution (Croft et al., 2005; Riemer et al., 2004). However, the aging of BC is highly simplified in global models, which typically assume either a fixed or a parameterized aging rate (Cooke et al., 2002; Koch, 2001; Koch and Hansen, 2005; Liu et al., 2011; Riemer et al., 2004).

Aged BC particles can act as CCN and be removed by in-cloud scavenging when BC is trapped in cloud droplets or ice crystals (Liu et al., 2011). The Bergeron process (i.e., evaporation of liquid droplets in the presence of ice crystals in mixed-phase clouds) releases BC-containing CCN back into the interstitial phase (Cozic et al., 2007) and decreases the efficiency of wet removal in mixed-phase clouds. Dry deposition also accounts for a large portion of total removal of BC, but its relative importance varies across models (Koch et al., 2009; Shindell et al., 2008). There are large differences in the dry deposition velocities used in models, resulting from different assumptions and methods of parameterization (Liu et al., 2011).
Transpacific transport of air pollution is of great significance to air quality at locations remote from the pollutant sources and is a major concern for both scientists and policy makers (Fiore et al., 2002; Jaegle et al., 1998; Liu et al., 2005). The lack of BC measurements (particularly over remote areas) for model evaluation makes it difficult to represent accurately the long-range transport and global distribution of BC aerosols. Recently, the HIAPER Pole-to-Pole Observations (HIPPO) campaign (Wofsy et al., 2011) sampled the atmosphere from the North Pole to the coastal waters of Antarctica, covering much of the remote Pacific. HIPPO provides global-scale, high-resolution and previously unobtainable data for the distributions of many atmospheric constituents including BC, which can help calibrate global emissions and evaluate the transport processes of BC, particularly over the Pacific. As HIPPO sampled a large number of BC plumes over the North Pacific, analyzing sources that contribute to the presence of BC in these plumes is critical to explore the mechanisms of pollution transport to the North Pacific region.

Inverse modeling provides a powerful approach for optimization of atmospheric model inputs, especially emissions, based on observations of atmospheric composition and knowledge of atmospheric processes (Hakami et al., 2005). Previous studies solved the inverse problem using methods suitable for adjusting a few emissions scaling factors over broad regions (Fu et al., 2012; Park et al., 2003; Wang et al., 2013). The adjoint method developed in recent studies overcomes this difficulty by enabling grid-scale refinement of emissions factors (Hakami et al., 2005). An adjoint model itself is also an efficient way to calculate source-receptor sensitivities (Henze et al., 2007). Many studies have applied the adjoint method to analyze the origin of atmospheric pollution at a particular site (Kharol et al., 2013; Kopacz et al., 2011; Zhang et al., 2009) and to improve the global emission inventories of atmospheric pollutants (Hakami et al., 2005; Henze et al., 2009; Muller and Stavracou, 2005). Since the model is considered as a strong constraint in the adjoint analysis (Hakami et al., 2005), uncertainties in physical and chemical processes during long-range transport of BC may considerably affect the results. This paves the way to use inverse modeling to study the influence of
factors other than BC emissions (e.g., BC aging, wet removal, and dry deposition) on BC simulation in models.

Here we use the adjoint of GEOS-Chem (Henze et al., 2007) to study BC emissions and transport during the HIPPO-3 campaign. We study the source of BC emissions using both sensitivity analysis and inverse modeling. As the aging process is a key factor governing remote BC concentrations (Liu et al., 2011), we conduct a number of sensitivity tests on BC aging and develop an idealized BC transport model to investigate the key factors affecting transpacific transport. These simulations reinforce the importance of a process-level simulation on BC aging and make recommendations for improving simulations of BC in global models.

We describe our method in Sect. 2. In Sect. 3, we analyze the origin of BC over the North Pacific during the HIPPO-3 campaign. In Sect. 4, we evaluate the simulated BC distribution against the HIPPO-3 and constrain BC emissions through inverse modeling. In Sect. 5, we assess the impact of aging rate on transpacific transport of BC. Finally, we draw conclusions in Sect. 6.

2 Method

2.1 The HIPPO aircraft campaign

The HIPPO campaign consisted of five global aircraft measurement deployments completed in January and November 2009, March/April 2010, June and August/September 2011, spanning the Pacific from 85° N to 70° S, with vertical profiles every 2.2° latitude from the surface to 14 km (Wofsy et al., 2011). BC particles were measured by the NOAA single-particle soot photometer (SP2). The SP2 measures the refractory BC mass in particles by analyzing the thermal radiation emitted by a particle when being heated (Schwarz et al., 2008). We use the HIPPO-3 data (including two flights spanning the North Pacific on 29 March and 13 April 2010) and focus on a region over the central North Pacific (30–50° N, 150–160° W, 2–6 km) where large concentra-
tions of BC are observed in order to study the outflow of BC aerosols from East Asia (EA) and Southeast Asia (SE). We use these observational data to evaluate the model and constrain BC emission, mainly because the mid-latitude transport of Asian plumes is fastest in spring (Liu et al., 2005), and we focus on the region between 2 km and 6 km to weaken the influence of BC emissions from ocean surfaces, BC dry deposition, and uncertainty of BC transport and removal in the upper troposphere, as we mainly study the effect of BC aging in the following analysis.

2.2 GEOS-Chem model and its adjoint

GEOS-Chem (www.geos-chem.org) is a global 3-D chemical transport model (CTM) of atmospheric composition driven by assimilated meteorological observations from the Goddard Earth Observing System (GEOS-5) of the NASA Global Modeling Assimilation Office (GMAO) (Bey et al., 2001). Here we use the GEOS-Chem model (version 9-01-03) with a horizontal resolution of $2^\circ \times 2.5^\circ$ to simulate BC concentrations for March and April 2010, following six months of spin-up. BC simulations in GEOS-Chem have been evaluated over the United States using surface measurements from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network (Park et al., 2003) and over the Himalayas and the Tibetan Plateau using wet deposition flux measurements (Kopacz et al., 2011). The simulation of BC in GEOS-Chem has been discussed by Park et al. (2003, 2005); here we describe the key features of the BC simulation, as they pertain to this study.

We use the Bond et al. (2007) global BC emission inventory with global annual emissions totaling about 4.4 Tg from fossil fuel and biofuel combustion. We use the biomass burning emissions from the GFED3 inventory (van der Werf et al., 2010). The model treats hydrophobic and hydrophilic BC as two separate transported species (Park et al., 2005). 80 % of BC emitted from all primary sources is hydrophobic, and is transformed into hydrophilic form with a prescribed e-folding time of 1.15 days (Cooke et al., 2002). Wet deposition, including contributions from scavenging in convective updrafts, rainout from convective anvils, and rainout and washout from large-scale precipitation, is ap-
plied only to hydrophilic BC. Dry deposition is small compared to wet deposition (Park et al., 2003).

The GEOS-Chem adjoint model derives from the GEOS-Chem forward model and is discussed in detail by Henze et al. (2007). The adjoint model provides an efficient calculation of model sensitivities and is a powerful tool for inverse problems (Henze et al., 2007). The model has been applied to evaluate sources of aerosols, CO and ozone (Henze et al., 2009; Kopacz et al., 2009; Zhang et al., 2009). For example, Kopacz et al. (2011) used the adjoint model to analyze the origin of BC concentrations over the Himalayas and Tibetan Plateau.

Here we apply the GEOS-Chem adjoint model (version 34 with updates to v8-02-01) at a resolution of 2° × 2.5° to analyze the origin of BC transported to the North Pacific during HIPPO-3. Since the BC source–receptor relationship is nearly linear in the model, contributions of BC emissions to BC concentrations at specific locations can be estimated by multiplying the adjoint sensitivities by emissions (Kopacz et al., 2011). We conduct two separate one-month simulations for 1 March–1 April and 15 March–15 April 2010 to simulate the evolution of BC concentrations over the North Pacific approaching the southbound (29 March) and northbound (13 April) measurements in HIPPO-3 respectively and compute the emission contributions to BC concentrations in the observation domain at the time of the two HIPPO-3 flights. We also use the adjoint model to constrain Asian BC emissions with the HIPPO-3 data, as described below.

2.3 Inverse modeling

Considering a general chemical transport model (CTM), for which the forward model can be written as \(y = F(x) + \varepsilon \), where \(x \) is emissions, \(y \) is observed concentrations, \(F \) represents the model and \(\varepsilon \) is the error term. Through inverse modeling, we can obtain the best estimate of \(x \) given observations corresponding to the model estimates. Bayesian inverse modeling solves the problem of obtaining the maximum a posteriori (MAP) solution for \(x \) based on Bayes’ theorem and assumption of Gaussian errors by
minimizing the cost function \(J(x) \) (Rodgers, 2000):

\[
J(x) = (F(x) - y)^T S_\varepsilon^{-1} (F(x) - y) + (x - x_a)^T S_a^{-1} (x - x_a)
\]

where \(x_a \) is a priori estimate of \(x \) with error \(\varepsilon_a \), \(S_\varepsilon \) and \(S_a \) are the observational and a priori error covariance matrices.

The cost function is minimized using gradient:

\[
\nabla_x J(x) = 2S_a^{-1} (x - x_a) + 2 \nabla_x F^T S_\varepsilon^{-1} (F(x) - y) = 0
\]

The adjoint approach provides an efficient means of calculating this gradient when the dimension of \(x \) is large. To apply the adjoint method to calculate \(\nabla_x J(x) \) over a time period \([t_0, t_n]\), we compute adjoint forcing \(S_\varepsilon^{-1} (F(x) - y) \) at time \(t_n \) and run backward until \(t_0 \), applying additional adjoint forcing throughout the adjoint integration (Henze et al., 2009; Kopacz et al., 2009). Starting from the initial guess of \(x_a \), the minimum of \(J(x) \) is then sought through an iterative gradient-based quasi Newton optimization algorithm (Byrd et al., 1995; Zhu et al., 1994).

The determination of the error covariance matrices \(S_a \) and \(S_\varepsilon \) is key to the inverse problem. In this study, the error in fossil fuel and biofuel emissions is estimated to be 100% and the error of biomass burning is estimated to be 200% (Bond et al., 2004, 2007). \(S_a \) is assumed to be diagonal, which means error correlation between different locations and different sources of emissions is neglected. \(S_\varepsilon \) is a sum of the covariance matrices of the instrument error, the representation error, and the forward model error (Heald et al., 2004). The representation error is taken to be 30% of the observation if the model over-estimated BC concentrations and 30% of the model results if the model under-estimated BC concentrations (Henze et al., 2009). As the resolution of our simulation is coarse and the SP2 measurement has relatively high accuracy (Gao et al., 2007; Laborde et al., 2012), the instrument error and the forward model error could be small compared to the representation error and are neglected in our study following the work of Henze et al. (2009). \(S_\varepsilon \) is also assumed to be diagonal.
2.4 Idealized transpacific BC transport model

We develop an idealized model to study the key factors governing transpacific transport of BC. We assume that freshly emitted BC aerosols are hydrophobic and parameterize the aging process using a fixed e-folding time. In addition, we assume BC is removed solely by several independent precipitation events and the effect of dry deposition is ignored. Thus, the whole transport process can be simplified as

\[
C = E e^{-\frac{T_N}{\tau}} + \sum_{n=1}^{N-1} E e^{-\frac{T_n}{\tau}} \left(1 - e^{-\frac{T_{n+1}-T_n}{\tau}}\right) (1 - R_{n+1}) \cdots (1 - R_N) \\
+ E \left(1 - e^{-\frac{T_1}{\tau}}\right) (1 - R_1) \cdots (1 - R_N)
\]

(3)

where \(C\) is the amount of BC transported to a certain domain; \(E\) is BC emission; \(N\) is the number of precipitation events, \(T_n\) is the time interval between BC emissions and the \(n\)th precipitation, \(\tau\) is the e-folding time of BC aging, and \(R_n\) is the fraction of BC removed by the \(n\)th precipitation. In this study we assume that the BC sampled by HIPPO-3 may experience a number of precipitation events after it is released from Eastern Asia.

Many models treat BC aging as an exponential decay process with a fixed e-folding time in the range of 1–2 d (Chung and Seinfeld, 2002; Cooke et al., 2002; Liu et al., 2009; Park et al., 2003). However large uncertainties remain and a number of studies have indicated a faster aging rate (Croft et al., 2005; Riemer et al., 2004, 2010). In this study, we conduct sensitivity runs on BC aging with a series of e-folding times (0.5 h, 1 h, 2 h, 4 h, 6 h, 8 h, 10 h, 20 h, 1.15 d, 1.67 d, 2.5 d, 5 d, 10 d, 20 d, 30 d, and 60 d) and implement these sensitivity results into Eq. (3) to investigate the key removal factors along the transpacific transport during HIPPO-3.
3 Origin of BC over the North Pacific

Previous studies have shown that due to rapid industrialization, Asian anthropogenic emissions may influence air quality and climate over the North Pacific and downwind regions (Holzer et al., 2005; Lin et al., 2008, M. Y. Lin et al., 2012; Wuebbles et al., 2007; Zhang et al., 2007). To understand the degree to which BC measured in HIPPO-3 originates from Asia, we conduct an adjoint sensitivity simulation. Figure 1 shows the source attribution of BC over the central North Pacific (2–6 km above the surface) in March and April. Specifically, the maps show the amount of BC arriving at the HIPPO-3 observation domain (mentioned in Sect. 2.1) from each grid box in the Asian source domain (0–60° N, 30–150° E).

As shown in Fig. 1, more than 90% of BC arriving at the observational domain originates from Asia in both the March and April missions of HIPPO-3. However, the contributions from various BC sources between the two missions are quite different. During the southbound measurements in 29 March, the adjoint sensitivity shows that biomass burning emissions in Indo-China Peninsula, especially in southern China, Burma, and northern Thailand have a major contribution (67%) to BC over the central North Pacific, largely because biomass burning in SE peaks in March (Duncan et al., 2003). Fossil fuel and biofuel combustion in China and India is also an important source of BC transported across the Pacific. While for the northbound measurements in 13 April, fossil fuel combustion in China becomes the most important source of BC that reached the North Pacific (70%) since transport of Asian tracers across the Pacific becomes fastest (Liu et al., 2005). In contrast, the contribution of biomass burning in SE to BC over the central North Pacific is much smaller (9%).

4 Uncertainties in BC simulations: emission vs. transport?

Model evaluation against observations in regions remote from sources is important for assessing long-range transport of air pollutants. Previous studies have evaluated
the model performance on BC with the NASA ARCTAS aircraft measurements (Wang et al., 2011) as well as the observed wet deposition data in the Himalayas and the Tibetan Plateau (Kopacz et al., 2011). Here, we evaluate the simulated BC with the HIPPO-3 data. In Fig. 2, the left and middle columns show the comparison between the observed and model simulated BC concentrations over the central North Pacific during HIPPO-3. Observations are averaged according to the model grids and model results are averaged over a 6 h period containing the HIPPO measurements. As shown in Fig. 2, large latitudinal and vertical gradients in BC concentrations appear during HIPPO-3, especially in March (ranging from \(\sim 500 \text{ ng m}^{-3} \) over the lower subtropics to \(\sim 10 \text{ ng m}^{-3} \) over the higher latitude and altitude regions). When comparing the two flights in March and April, there is also an apparent change in the spatial pattern of the BC measurements. Much less BC is present during the April flights, particularly over the subtropical regions.

The model generally captures the spatial pattern of BC concentrations over the central North Pacific in March, but is unable to reproduce the low end and the high end of BC observations. In particular, the large observed pollution plumes (BC > 100 ng m\(^{-3}\)) are not well captured by the model. Model simulated BC concentrations are highest at 30–35\(^{\circ}\)N, which is similar to observations. However, observations indicate much larger BC concentrations than simulated at lower altitudes and smaller BC concentrations at higher altitudes near 30\(^{\circ}\)N. The excessive vertical extent of BC in the model may result from the difficulty of resolving sharp chemical gradients in intercontinental pollution plumes in Eulerian CTMs, due to numerical plume dissipation (Rastigejev et al., 2010). The model generally over-predicts BC concentrations at high altitudes in both March and April, which may be owing to insufficient model wet removal in the upper troposphere over the tropical Pacific (Fan et al., 2012). There is larger disagreement between model simulations and observations in April, as the model cannot resolve the spatial variation of observed BC concentrations. There is an over-estimate in model simulations at lower altitudes and an under-estimate at higher altitudes near 50\(^{\circ}\)N. Another major bias is that model over-estimates BC at 40–45\(^{\circ}\)N.
To identify the factors causing the model biases, we first constrain BC emissions with the HIPPO-3 data, assuming that errors in BC emissions contribute most to the simulation biases. Figures 3 and 4 show the prior and posterior (optimized) BC emissions and the ratio of posterior to prior BC emissions (scaling factors) during March and April 2010, respectively. While the prior and the optimized Asian BC emissions have similar spatial patterns in both March and April, there are large differences between the optimized emission scaling factors in the two months. In March, the optimized BC emissions from fossil fuel (and biofuel) combustion in South and East China as well as Korea and Japan yield a ~15% increase relative to the a priori estimate. There is also a small decrease in anthropogenic BC emissions in the regions adjacent to the Himalayas and southern Tibetan Plateau, as well as a large decrease (increase) in BC emissions from biomass burning across Burma (north Laos). In April, the overall result is a reduction in BC emissions from all sources. The largest reduction occurs in anthropogenic BC emissions in North China, which decrease by 50%. The decrease in BC emissions from biomass burning is much smaller.

In this study we do not attempt to provide an accurate top-down estimate of Asian BC emissions due to substantial uncertainties remaining in our inversion. First of all, the prior error covariance S_a and the observational error covariance S_ε are not adequately characterized. S_a and S_ε are treated as diagonal, and we use a uniform error for each BC source, whereas BC emissions in some regions may have greater uncertainties (Bond et al., 2004). We assume the representation error dominates the observational error and neglect the model error and the instrument error which also has some effect on the inversion. In fact, the forward model error may be important in the inverse modeling when model simulation is highly uncertain (J.-T. Lin et al., 2012; Lin and McElroy, 2010; Wang et al., 2013). The resolution at which we are able to constrain the emissions is also dependent upon the observation domain and the study domain we choose. In addition, the model resolution significantly affects the optimized emissions (Wang et al., 2013).
As a result of these uncertainties, our target is instead to explore to the extent to which the simulated BC biases are tied to the uncertainties in emissions. Although the parameters used in the inverse modeling may affect the result, perturbation tests on the parameters used in inverse modeling (e.g. assuming observational error to be 40% and increasing the prior error by a factor of 10) do not yield much different optimized emissions. Since we constrain Asian BC emissions with HIPPO data over the North Pacific, BC transport plays an important role in the inversion and contributes to the uncertainty of our results.

Model simulated BC concentrations using the posterior emissions are shown in the right column in Fig. 2. The model biases relative to HIPPO data decrease to some extent, but no significant improvement in model simulations is found. The optimized BC emissions cannot alter the spatial distribution of model results, which is inconsistent with observations, especially in April. Despite having a variety of uncertainties, the inverse modeling result for BC based on HIPPO-3 aircraft observations has some implications. Since optimizing the BC emissions fails to reduce the simulation biases significantly, we conclude that uncertainties in BC transport pose an important role to limit the capability of inverse modeling in optimization of BC emissions.

5 BC aging and wet deposition during transpacific transport

Wet deposition is the key process determining the efficiency of transpacific transport of BC (Fan et al., 2012), which is governed by the rate of BC aging and the frequency of precipitation (Liu et al., 2011). In this section, we evaluate the extent to which transpacific transport of BC is tied to the aging process, and employ an idealized BC transport model (Sect. 2.4) to explain this sensitivity.
5.1 Sensitivity of the North Pacific BC to BC aging

Figure 5 compares the observed BC vertical profiles over the North Pacific with those simulated using different e-folding aging times. Although the model biases may partially result from the coarse model resolution as well as simplified treatment of emissions (e.g., biomass burnings), the aging process has a significant effect on simulated BC concentrations. A slower aging process results in higher BC concentrations, but using a different e-folding time cannot change the vertical pattern of BC distribution. In most cases when the mid-latitude BC over the North Pacific is dominated by anthropogenic sources (e.g., 40–50° N, 2–6 km, in March, see Fig. 6b), model simulations could be improved when assuming a faster aging process (smaller than 10 h). Conversely, when most BC comes from biomass burning in SE (e.g., 30–40° N, 2–4.6 km, see Fig. 6a), a larger e-folding time (larger than 2.5 d) may lead to improved agreement between model predicted and observed BC concentrations.

Figure 7 shows the initial values of the cost function (J_0) in inverse modeling with different e-folding aging times. J_0 can be used to evaluate the model since the penalty error caused by the difference between the prior and posterior emissions is 0 for the first iteration, and a smaller J_0 means better agreement between model simulations and observations. In March, an e-folding time of about 1 d minimizes the biases between model predicted and observed BC concentrations, while in April, the model performance is better with a much smaller e-folding time (smaller than 10 h), and the model biases do not change much when using an aging rate less than 10 h. As mentioned in Sect. 3, BC over the North Pacific in March mainly originates from biomass burning in SE, while anthropogenic BC in EA has a major contribution in April. These results suggest that the aging process of anthropogenic BC may be faster than of biomass burning BC, possibly because species such as SO$_2$, which are co-emitted with BC from fossil fuel and biofuel combustion in EA, accelerate the aging process of BC. Conversely, a lack of sulfur in biomass burning emissions may slow down the aging process, reducing the rate of conversion of BC particles to CCN.
5.2 Precipitation pattern during HIPPO-3

Along the path of transpacific transport, air masses originating in EA may experience one or more major precipitation events. As shown in Eq. (3), the ratio of the time interval between emissions and precipitation to the e-folding aging time determines the efficiency of wet deposition of BC during transpacific transport. Given a fixed aging rate in the model, the overall BC removal efficiency is thereby determined by the timing and removal efficiency of precipitations. In this section, we use a series of model runs with different e-folding aging times to determine the sensitivity of transpacific transport of BC during HIPPO-3 to the rate of BC aging. We also employ an idealized BC transport model to explore the timing and removal efficiency of major wet removal events during HIPPO-3.

Figure 8a shows total emission contributions from all Asian BC sources to BC over the North Pacific for each sensitivity test on BC aging. More BC is transported to the North Pacific when the aging process is slower, while the rate of increase in the BC contributions is not linear (Fig. 8b). In both March and April missions of HIPPO-3, the effect of BC aging on transpacific transport is greater when the e-folding time is small, with the aging process having the largest effect at value of τ in the range of 1–1.5 d. As τ is assumed to be 1–2 d in most models, it is critical to treat BC aging accurately, particularly over the source region, when conducting analysis of long-range transport at mid-latitudes.

The timing of precipitation experienced by the Asian outflow is another factor affecting the transpacific transport. In order to further analyze the characteristics of wet removal of BC during HIPPO-3, we use Eq. (3) to fit the amount of BC transported to the North Pacific in the sensitivity runs as a function of the BC aging timescale. We assume five major precipitations during the transpacific transport (i.e., N = 5). Figure 9 shows the fitting results in March and April missions, where y is the total BC emission contributions and x is the inverse of the e-folding time (1/τ). Our idealized BC transport model has satisfied fitting precision in both missions. We derive the timing of each
precipitation \((T_n)\) and the associated fractional BC removal \((R_n)\) in Eq. (3) based on the parameters (i.e., \(t_n, A_n, y_0\)) resolved in the fitting equation (see Fig. 9):

\[
t_n = \frac{1}{T_n}, \quad n = 1,2,\ldots,N
\]
\[
A_n = E R_n (1 - R_N) \cdots (1 - R_{n+1}), \quad n = 1,2,\ldots,N - 1
\]
\[
A_N = E R_N
\]
\[
y_0 = E (1 - R_N) \cdots (1 - R_1)
\] (4)

Table 1 shows the estimated average timing of precipitation events \((T_{1-N})\) and the corresponding BC removal efficiency \((R_{1-N})\). Three out of the five precipitation events are estimated to occur shortly after BC aerosols are emitted (0–3 d) with high wet removal efficiency, reflecting rapid scavenging near BC source regions. Thus, transpacific transport of BC during the HIPPO-3 period is highly sensitive to BC aging when the aging rate is fast. This indicates the importance of the aging rate of BC close to the source region, implying a need to simulate the aging at a process level in order to better constrain the global abundance and climate forcing of BC.

6 Conclusions

The adjoint of the GEOS-Chem model is applied to analyze the source of BC reaching the atmospheric column above the North Pacific during HIPPO-3. Although most BC over the North Pacific during spring originates in Asia, the sources of BC in March and April missions are quite different. Biomass burning in SE, which peaks in March, is a major source of BC transported to the North Pacific during March. In April, fast transpacific transport of air pollution brings anthropogenic BC emitted from fossil fuel and biofuel combustion in EA to the North Pacific.

Simulations using GEOS-Chem model generally resolve the spatial and temporal variation of BC concentrations over the North Pacific, but are unable to reproduce the
low end and high end of BC observations. The model tends to over- or under-estimate BC concentrations at various locations within the HIPPO-3 observational domain over the North Pacific, with no consistent bias. The discrepancy is caused by many factors, including the uncertainty in BC emissions and the model's inability to accurately represent BC transport processes. The optimization of BC emissions using HIPPO data generally yields an increase in Asian anthropogenic BC emissions and relocation of SE biomass burning BC (i.e., decrease across Burma and increase over north Laos) in March measurements, and it results in a decrease in BC emissions from all sources in April measurements, with the extent of change varying by location. Since the large uncertainties in BC transport processes limit the capability of inverse modeling in optimization of BC emissions, we provide only an approximate estimate of Asian BC emissions. Similar analysis using a finer model resolution may improve the results and could be the subject of future studies.

Chemical aging of BC aerosols is found to be one of the most important processes controlling transpacific transport of BC. As inferred from the source analysis and the sensitivity simulations, BC from biomass burning may experience a slower aging process than anthropogenic BC from fossil fuel and biofuel sources when monthly biomass burning emissions are applied. In addition, using an idealized BC transport model, we find that the mid-latitude air masses sampled during HIPPO-3 may have experienced a series of precipitation events, particularly near the East Asian source region. Consequently, BC transport is highly sensitive to the aging rate when the aging process is fast. The effect of BC aging peaks when the e-folding time is about 1–1.5 d, which is within the range assumed in many models. As other processes in BC transport also have large uncertainties, future studies should evaluate the effect of these processes, especially wet deposition near the source region, on the long-range transport of BC.

Acknowledgements. We thank Rushan Gao for helpful discussion on HIPPO measurements. This work was supported by funding from the National Natural Science Foundation of China under awards 41222011 and 41130754, the Research Project of Chinese Ministry of Education No. 113001A, as well as the “863” Hi-Tech R&D Program of China under Grant No.
2012AA063303. D. K. H. acknowledges support from EPA STAR grant 83503701, and this work does not reflect official EPA views or policies. J.-T. Lin is partly supported by the National Natural Science Foundation of China, grant 41175127.

References

Table 1. Parameters derived from the fit of BC contributions in the sensitivity runs in March and April emissions based on Eq. (3).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>T_1 (d)</th>
<th>T_2 (d)</th>
<th>T_3 (d)</th>
<th>T_4 (d)</th>
<th>T_5 (d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mar</td>
<td>0.09</td>
<td>0.52</td>
<td>2.0</td>
<td>5.5</td>
<td>17.5</td>
</tr>
<tr>
<td>Apr</td>
<td>0.13</td>
<td>0.79</td>
<td>2.5</td>
<td>7.0</td>
<td>19.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>R_1</th>
<th>R_2</th>
<th>R_3</th>
<th>R_4</th>
<th>R_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mar</td>
<td>7.0 %</td>
<td>22.0 %</td>
<td>45.3 %</td>
<td>36.2 %</td>
<td>17.3 %</td>
</tr>
<tr>
<td>Apr</td>
<td>3.6 %</td>
<td>17.4 %</td>
<td>42.3 %</td>
<td>32.7 %</td>
<td>18.0 %</td>
</tr>
</tbody>
</table>
Fig. 1. Adjoint model sensitivities of BC concentrations in the HIPPO-3 observational domain over the North Pacific (30–50° N, 150–160° W, 2–6 km) in March and April missions with respect to BC emissions from fossil fuel combustion (left), biofuel combustion (middle), and biomass burning (right). The percentages listed on each plot indicate the relative total contribution of specific BC sources in each month.
Fig. 2. BC vertical profiles in observational domain (150–160° W) on 29 March 2010 (top) and 13 April 2010 (bottom). HIPPO aircraft observations (left) and GEOS-Chem model estimates (sampled along aircraft track) using the prior (center) and the optimized (right) BC emissions are shown.
Fig. 3. BC emissions from different sources during 1 March–1 April 2010. The top row shows the prior inventory, the middle row shows the posterior inventory, and the bottom row shows the scaling factors.
Fig. 4. Same as Fig. 3, but for BC emissions from different sources during 15 March–15 April 2010.
Fig. 5. BC vertical profiles over the North Pacific on 29 March 2010 and 13 April 2010 from sensitivity simulations of GEOS-Chem with varying e-folding aging times (τ). HIPPO measurements are shown with dashed black lines. Colored lines indicate model predicted BC vertical profiles with indicated e-folding aging times.
Fig. 6. Origin of BC as in Fig. 1, but for (a) 30–40° N, 2–4.6 km (b) 40–50° N, 2–6 km over the North Pacific in March 2010.
Fig. 7. Distribution of the cost functions for the first iteration from sensitivity tests on the aging process.
Fig. 8. Effect of BC aging on transpacific transport of BC. (a) Total emission contributions to BC over the North Pacific observational domain as a function of BC aging rate. (b) Sensitivity of transpacific transport of BC to the rate of aging (derivation of emissions contributions with respect to \(\tau \)).
Fig. 9. Result of fitting transpacific transport of BC with different e-folding aging times to idealized transport model (Eq. 3) in (a) March 2010 and (b) April 2010. Points indicate results from full CTM simulations. Lines show fit from Eq. (3).