Impacts of the East Asian summer monsoon on interannual variations of summertime surface-layer ozone concentrations over China

Yang Yanga,b, Hong Liaoa,*, and Jianping Lic

aState Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China.

bGraduate University of Chinese Academy of Science, Beijing, China.

cState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China.

*Corresponding author address:

Prof. Hong Liao
LAPC, Institute of Atmospheric Physics Chinese Academy of Sciences
Beijing 100029, China
E-mail: hongliao@mail.iap.ac.cn
Abstract

We apply a global three-dimensional Goddard Earth Observing System (GEOS) chemical transport model (GEOS-Chem) driven by the NASA/GEOS-4 assimilated meteorological fields to quantify the impacts of the East Asian summer monsoon (EASM) on interannual variations of June-July-August (JJA) surface-layer O₃ concentrations over China. With anthropogenic emissions fixed at year 2005 levels, model simulation for years 1986–2006 shows that the changes in meteorological parameters alone lead to interannual variations in JJA surface-layer O₃ concentrations by 2–5% over central eastern China, 1–3% in northwestern China, and 5–10% over the Tibetan Plateau as well as the border and coastal areas of South China, as the interannual variations are relative to the average O₃ concentrations over the 21-yr period. Over 1986–2006, O₃ concentration averaged over the whole China is found to correlate positively with the EASM index with a large correlation coefficient of +0.75, indicating that JJA O₃ concentrations are lower (or higher) in weaker (or stronger) EASM years. Relative to JJA surface-layer O₃ concentrations in the strongest EASM years (1990, 1994, 1997, 2002, and 2006), O₃ levels in the weakest EASM years (1988, 1989, 1996, 1998, and 2003) are lower over almost whole China with a national mean lower O₃ concentration by 2.0 ppbv (or 4%). Regionally, the largest percentage differences in O₃ concentration between the weakest and strongest EASM years are found to exceed 6% in northeastern China, southwestern China, and over the...
Tibetan Plateau. Sensitivity studies show that the difference in transboundary transport of O$_3$ is the most dominant factor that leads to lower O$_3$ concentrations in the weakest EASM years than in the strongest EASM years, which, together with the enhanced vertical convections in the weakest EASM years, explain about 80% of the differences in surface-layer O$_3$ concentrations between the weakest and strongest EASM years. We also find that the impacts the EASM strength on JJA surface-layer O$_3$ can be particularly strong (comparable in magnitude to the impacts on O$_3$ by changes in anthropogenic emissions over 1986–2006) for certain years. The largest increases in O$_3$ by anthropogenic emissions are simulated over southeastern China, whereas the largest impacts of the EASM on O$_3$ are found over central and western China.
1 Introduction

Tropospheric \(O_3 \) is an air pollutant harmful to human health and ecosystems (Shindell et al., 2012). It is also (after \(CO_2 \) and \(CH_4 \)) the third most important anthropogenic greenhouse gas (Intergovernmental Panel on Climate Change (IPCC), 2007). High \(O_3 \) concentrations have been observed in many Chinese sites, with seasonal mean concentrations of 20–60 ppbv (Tang et al., 1995; Yan et al., 1997, 2003; Cheung and Wang, 2001; Zhu et al., 2004; Gao et al., 2005; Shao et al., 2006; H. Wang et al., 2005; Chou et al., 2006; Ding and Wang, 2006; T. Wang et al., 2006a, 2009; Takami et al., 2006; Tu et al., 2007; Ding et al., 2008; Lin et al., 2008; Xu et al., 2008; Yang et al., 2008; Zhang et al., 2008; Y. Wang et al., 2011) and episodic concentrations of exceeding 100 ppbv (T. Wang et al., 2006b; Z. Wang et al., 2006; Duan et al., 2008). Concentrations of \(O_3 \) are driven by a combination of precursor emissions and the regional meteorological conditions.

Meteorological parameters in summer in eastern China vary with the East Asian summer monsoon (EASM). The EASM prevails in May–September every year, with strong southerlies bringing clean, warm, and moist air from the oceans to eastern China and rain belts that stretch for thousands of kilometers in the west–east direction in eastern China (Tao and Chen, 1987; Wang and Ding, 2008). Previous observational and modeling studies have shown that such patterns of winds and precipitation of the EASM influence the seasonal variations
of O_3 in China (Chan et al., 1998; Li et al., 2007; He et al., 2008; Wang et al., 2011) and in the west Pacific region (Pochanart et al., 2002; Tanimoto et al., 2005; Yamaji et al., 2006). He et al. (2008) analyzed the seasonal variations of O_3 concentrations measured over 2004–2006 and found that O_3 concentrations peak in spring and autumn with a summer trough in central eastern China and the west Pacific, the areas that are influenced by clean air from the southern oceans during the summer monsoon. Studies by Wang et al. (2008), Lin et al. (2009), and Zhao et al. (2010) reported that the increasing clouds associated with the EASM rainfall suppress photochemical production of O_3 by altering solar radiation, which also contribute to the minimum O_3 concentrations in summer.

The strength of the EASM exhibits large interannual variations as a result of the interactions between the atmosphere and oceans (Webster et al., 1998). No previous studies, to our knowledge, have systematically examined the impacts of the EASM on interannual variations of summertime O_3 in China. Recently, Zhou et al. (2013) analyzed 2000–2010 ozonesonde data from Hong Kong and found a close link between lower tropospheric O_3 and the East Asian monsoon on interannual scales, but their analyses were focused on O_3 in Hong Kong in spring and autumn. We present here a study to examine the impacts of the EASM on interannual variations of summertime surface-layer O_3 concentrations over China, based on 1986–2006 simulations of O_3 concentrations using the global chemical transport model GEOS-Chem driven by the assimilated meteorological fields. This
work is a companion study to the work of Zhu et al. (2012), which investigated the impacts of the EASM on interannual to decadal variations of summertime aerosols in China.

The GEOS-Chem model and numerical experiments are described in Sect. 2. Section 3 presents simulated interannual variations of summertime O$_3$ in China. Section 4 shows simulated impacts of the EASM on interannual variations of summertime O$_3$, and Sect. 5 examines the mechanisms through which the EASM influences the interannual variations. Section 6 compares the impacts of changing monsoon strength with those of changing anthropogenic emissions on O$_3$ concentrations in China.

2 Model description and experimental design

2.1 GEOS-Chem model

We simulate tropospheric O$_3$ using the global chemical transport model GEOS-Chem (version 8.2.1, http://acmg.seas.harvard.edu/geos) driven by the assimilated meteorological fields from the Goddard Earth Observing System (GEOS) of the NASA Global Modeling and Assimilation Office (GMAO). The version of the model used here has a horizontal resolution of 2° latitude by 2.5° longitude and 30 vertical layers from the surface to 0.01 hPa. The GEOS-Chem model includes a fully coupled treatment of tropospheric O$_3$-NOx-VOC chemistry and aerosol components. Tropospheric O$_3$ is simulated with about 80 species and over 300 chemical reactions (Bey et al., 2001). Photolysis rates are computed
using the Fast-J algorithm (Wild et al., 2000). The cross-tropopause O\textsubscript{3} flux in this version of GEOS-Chem is specified with the synthetic ozone ("Synoz") method (McLinden et al., 2000) as implemented by Bey et al. (2001), which includes a passive, ozone-like tracer released into the stratosphere at a constant rate equivalent to that of the prescribed cross-tropopause ozone flux of 499 Tg O\textsubscript{3} yr-1.

2.2 Emissions

Global emissions of O\textsubscript{3} precursors, aerosol precursors, and aerosols in the GEOS-Chem model follow Park et al. (2003, 2004), but anthropogenic emissions of NO\textsubscript{x}, CO, SO\textsubscript{2}, and NH\textsubscript{3} over East Asia are overwritten by the emissions inventory of Streets et al. (2003). Global anthropogenic emissions of nonmethane hydrocarbons are from the GEIA inventory (Piccot et al., 1992). Biomass burning emissions are taken from the GFED-2 inventory (van der Werf et al., 2006). These inventories are then scaled for 2005 on the basis of economic data and energy statistics as described by van Donkelaar et al. (2008). The biogenic emissions in the GEOS-Chem model are simulated using the MEGAN module (Guenther et al., 2006; Wiedinmyer et al., 2007). Soil NO\textsubscript{x} emissions are computed using a modified version of the algorithm proposed by Yienger and Levy (1995). Lightning emissions follow Price and Rind (1992), with the NO\textsubscript{x} vertical profile proposed by Pickering et al. (1998).

The simulations of tropospheric O\textsubscript{3} by the GEOS-Chem model have been evaluated in previous studies for the United States (Fiore et al., 2005; Wu et al., 2008; H. Wang et al., 2009) and China (Y. Wang et al., 2008, 2011; Jeong and
The model was found to be able to capture the magnitude and spatial distribution of O₃ in China.

2.3 Experiments

In this study concentrations of O₃ in China for years 1986–2006 are simulated using the GEOS-4 meteorological fields. To identify the key processes that influence O₃ concentrations in different monsoon years, we perform the following simulations:

1. **O3_TOT**: The standard simulation of O₃ concentrations for years 1986–2006. Global anthropogenic and biomass burning emissions of NOₓ, CO, nonmethane hydrocarbons, aerosols and aerosol precursors are fixed at year 2005 levels. Meteorological fields are allowed to vary over 1986–2006. The cross-tropopause O₃ flux is set to 499 Tg yr⁻¹ using the “Synoz” scheme.

2. **O3_TB**: The sensitivity simulation of O₃ concentrations for years 1986–2006 to quantify the role of transboundary transport of O₃ in different monsoon years. The model setups are the same as those in O3_TOT except that all natural and anthropogenic emissions in China are turned off.

3. **O3_ST**: The sensitivity simulation of O₃ concentrations for years 1986–2006 to quantify the impact of cross-tropopause O₃ flux on surface-layer O₃ concentrations. The model setups are the same as those in O3_TOT except that natural and anthropogenic emissions are turned off globally.

4. **O3_EMIS**: The sensitivity simulations to compare the impacts of changing
anthropogenic emissions with those of changing monsoon strength. Two
sensitivity simulations are conducted with 1986 and 2006 anthropogenic
emissions, respectively. The emissions in year 1986 are simulated using the
default scaling factors in the model (van Donkelaar et al., 2008). Year 2006
meteorological parameters are used to drive both simulations. The
cross-tropopause O_3 flux is set to 499 Tg yr$^{-1}$ using the “Synoz” scheme.

2.4 **East Asian summer monsoon index**

The interannual variations in strength of the EASM are commonly represented by
the EASM index (EASMI). The EASMI introduced by Li and Zeng (2002) is used in
this study. The formulation for calculating EASMI based on the GEOS-4
meteorological parameters was given in Zhu et al. (2012). Positive values of
EASMI indicate strong monsoon years whereas negative values indicate weak
monsoon years. Physically, a strong summer monsoon in China is characterized
by strong southerlies extending from southern China to northern China, a deficit of
rainfall in the middle and lower reaches of the Yangtze River, and large rainfall in
northern China. On the contrary, in a weak summer monsoon year, China
experiences weak southerlies, large rainfall in southern China, and a deficit of
rainfall in northern China. The movement of the rain belts is associated with the
strength of the southerlies.

3 **Simulated interannual variations of summertime O_3 in China**
Figure 1a shows the simulated spatial distribution of June-July-August (JJA) surface-layer O$_3$ concentrations averaged over 1986–2006 from the O$_3$ TOT simulation. Over eastern China, simulated O$_3$ concentrations are 50–65 ppbv in northern China and 25–50 ppbv in southern China. Such pattern of higher O$_3$ concentrations in northern China than in southern China results from that the strong southerlies bring clean air from the oceans to southern China during the summer monsoon season (Chan et al., 1998; Yamaji et al., 2006; Li et al., 2007; He et al., 2008; Wang et al., 2011). In western China, simulated O$_3$ exhibits maximum concentrations of 65 ppbv. Our simulated surface-layer concentrations of O$_3$ are high in both western and eastern China, which agree with the modeling studies of Wang et al. (2011), Jeong and Park (2013), and Lou et al. (2014). The high O$_3$ concentrations in western China are associated with the downward transport of O$_3$ from the stratosphere to troposphere (Wild and Akimoto, 2001; T. Wang et al. 2006a; Ding and Wang, 2006), and the high O$_3$ concentrations in eastern China result from anthropogenic emissions (Wang et al., 2011).

The interannual variations in simulated JJA O$_3$ concentrations can be quantified by mean absolute deviation (MAD) and absolute percent departure from the mean (APDM) defined as $\text{MAD} = \frac{1}{n} \sum_{i=1}^{n} \left| P_i - \frac{1}{n} \sum_{i=1}^{n} P_i \right|$ and $\text{APDM} = 100\% \times \text{MAD} / \left(\frac{1}{n} \sum_{i=1}^{n} P_i \right)$, where P_i is the simulated JJA mean O$_3$ concentration of year i, and n is the number of years examined ($n=21$ for years 1986–2006). Therefore MAD represents the absolute interannual variation and APDM
represents the interannual variation relative to the average of O$_3$ concentration over the n years. The MAD values of JJA surface-layer O$_3$ concentrations (Fig. 1b) are 1.0–4.0 ppbv in China, with the largest values exceeding 2 ppbv found over northeastern China, coastal areas of South China, and the Tibetan Plateau.

As shown in Fig. 1c, the APDM values are in the range of 2–5% over central eastern China where summer monsoon prevails, 1–3% in northwestern China, and 5–10% over the Tibetan Plateau as well as the border and coastal areas of South China. These interannual variations in O$_3$ are significant as compared to the impacts of reductions in emissions of O$_3$ precursors. Han et al. (2005) showed by modeling studies that, in eastern China, reductions in NO$_x$ or total VOCs (anthropogenic plus biogenic VOCs) by 50% lead to changes in JJA O$_3$ concentrations by 10–20%.

The GEOS-Chem simulations of present-day surface-layer O$_3$ concentrations in China have been evaluated in Wang et al. (2011) and Lou et al. (2014). Wang et al. (2011) demonstrated that the model captured well the magnitude and seasonal variation of surface-layer concentrations and column burdens of O$_3$ in China. Lou et al. (2014) reported that the simulated O$_3$ in China agreed fairly well with measurements collected from the literature with an average high bias of 9%.

Because of the lack of long-term O$_3$ measurements in China, we evaluate the simulated interannual variations of JJA surface-layer O$_3$ concentrations at two sites (Fig. 2): Hok Tsui in Hong Kong (22°13’ N, 114°15’ E) and Ryori in Japan.
(39°03'N, 144°82'E). The measurements at Hok Tsui are taken from T. Wang et al. (2009), and those at Ryori site are from the WMO World Data Center for Greenhouse Gases (WDCGG, http://ds.data.jma.go.jp/gmd/wdcgg/). At Hok Tsui, simulated O$_3$ concentrations are higher than the observations in JJA. This discrepancy may due to the model’s overestimate of O$_3$ in marine boundary layers in summer (Liu et al., 2006). Interannually, the model captures well the peaks and troughs of the observed JJA O$_3$ concentrations, with a high correlation coefficient of +0.87. The model underestimates JJA O$_3$ concentrations at Ryori, probably due to the uncertainties with local emissions, but captures mostly the years with maximum or minimum O$_3$ levels with a correlation coefficient of +0.47. The simulated APDM values at Hok Tsui and Ryori are both 7%, smaller than the observed interannual variations of 22% and 8% at these two sites, respectively, which can be attributed to the fixed anthropogenic emissions of O$_3$ precursors in our O3_TOT simulation.

4 Impacts of the EASM on interannual variations of summertime O$_3$ in China

Simulated JJA surface-layer O$_3$ concentration averaged over the whole China (defined by the national borders of China) is shown in Fig. 3a for years 1986–2006 based on the O3_TOT simulation. Summertime O$_3$ concentrations show large interannual variations, with high (or low) O$_3$ concentrations in strong (or weak)
monsoon years. Concentrations of O$_3$ are found to correlate positively with the EASMI; the correlation coefficient is +0.75 and is statistically significant at the 95th percentile. The spatial distribution of the correlation coefficients between the EASMI and O$_3$ concentrations from the O_3 _TOT_ simulation is presented in Fig. 3b. Positive correlations are found in almost the whole China, and large positive correlation coefficients that exceed +0.5 are found over the region between 90°E and 110°E. Since anthropogenic emissions of O$_3$ precursors are kept unchanged in the simulation for 1986–2006, these strong positive correlations demonstrate that the EASM strength has large impacts on JJA O$_3$ concentrations over China.

In order to quantify the impacts of the EASM on O$_3$ concentrations over China, we show in Figs. 4a and 4b, respectively, the absolute and percentage differences between O$_3$ concentrations averaged over five weakest EASM years (1988, 1989, 1996, 1998, and 2003) and those averaged over five strongest EASM years (1990, 1994, 1997, 2002, and 2006). These weakest (or strongest) monsoon years are selected within 1986–2006 based on the five largest negative (or positive) values of the normalized EASMI as shown in Fig. 3a. Relative to the concentrations in the strongest monsoon years, O$_3$ levels in the weakest monsoon years are lower over almost the whole China, with the largest reductions of exceeding 3 ppbv (or 6%) in northeastern and southwestern China and over or near the Tibetan Plateau. Concentrations of O$_3$ in the weakest monsoon years are simulated to be higher than those in the strongest monsoon years by 3–5 ppbv (or 6–15%) over the East
China Sea. The pattern of the differences in O₃ concentrations agrees with the spatial distribution of the correlation coefficients (Fig. 3b). Averaged over China, O₃ level in the weakest monsoon years is lower than that in the strongest monsoon years by 2.0 ppbv (or 4%). Note that the monsoon region covers almost the whole China except for the northwestern China (Gao, 1962; An et al., 2000).

Our simulated monsoon-induced changes in O₃ in China (Fig. 4) are mostly within the monsoon region. The changes in O₃ over the Siberia are large, which can be explained by the anomalous northerlies over the north border of China between the five weakest and strongest EASM years (weakest–strongest) (Fig. 5) that transport O₃ to China.

Figures 4c and 4d are pressure-longitude plots of the differences in O₃ averaged over the latitude range of 20°–46°N. From the surface to 250 hPa altitude, O₃ levels in the weakest monsoon years are lower by up to 5 ppbv (or 8%) over 80°–115°E and are higher by 1–3 ppbv (or 3–6%) over 120°–135°E relative to the concentrations in the strongest monsoon years. Concentrations of O₃ at 130–250 hPa altitudes exhibit increases in the weakest monsoon years, with maximum increases of 4–7 ppbv (3–6%) over 80°E and 130°E, as a result of the anomalous horizontal convergence at these layers.

5 Mechanisms of the impacts of the EASM on summertime O₃

5.1 Impacts of the EASM on transboundary transport of O₃
Considering that O$_3$ concentrations in almost whole China are lower in the weakest monsoon years than in the strongest monsoon years and that tropospheric O$_3$ has a relatively long lifetime of 3–4 weeks (Seinfeld and Pandis, 2006), we examine firstly the impacts of the EASM on transboundary transport of O$_3$. Figure 5 shows JJA horizontal winds at 850 hPa and 500 hPa averaged over 1986–2006 as well as the composite differences in JJA horizontal winds between the five weakest and five strongest EASM years at these two layers. The typical features in winds during the EASM can be seen in Figs. 5a and 5b. The southerlies prevail in southeastern China in the lower and middle troposphere in JJA. Figs. 5c and 5d also present the differences in winds between the weakest and strongest EASM years (weakest minus strongest). In JJA, anomalous southerlies are found in southern China and anomalous westerlies are found in southeastern China, as the winds in the five weakest monsoon years are compared with those in the five strongest monsoon years. Such differences in winds between weak and strong EASM years were also reported in Li and Zeng (2002) and Huang (2004).

The differences in winds in different monsoon years lead to differences in transboundary transport of O$_3$. We show in Fig. 6 the differences in simulated horizontal mass fluxes of O$_3$ at the four lateral boundaries of the selected box of (85°–120°E, 20°–46°N, the surface to 250 hPa) and in Table 1 the summary of the composite analysis on fluxes of O$_3$ in and out of this box, based on simulation
O3_TOT. This box is selected to capture the features of transboundary O₃ transport that influence O₃ concentrations in China. The location of the box is shown in Fig. 5d. Relative to the strongest monsoon years, the weakest monsoon years have less inflow by 0.1 Tg season⁻¹ at the west boundary, larger inflow fluxes of O₃ by 4.2 Tg season⁻¹ at the south boundary and by 5.5 Tg season⁻¹ at the north boundary, and larger outflow by 12.9 Tg season⁻¹ at the east boundary (Table 1 and Fig. 6), as mass fluxes are summed over JJA. The net effect is a larger transboundary outflow of O₃ by 3.3 Tg season⁻¹ in the weakest monsoon years than in the strongest monsoon years. The anomalous westerlies in southeastern China are especially important, which bring polluted air with high O₃ concentrations to the coastal areas and the East China Sea (Fig. 6d), leading to reductions in O₃ concentration in China.

The role of changes in transboundary transport of O₃ can be further quantified by the simulation O3_TB with natural and anthropogenic emissions of O₃ precursors in China turned off. The spatial distribution of O₃ from simulation O3_TB (referred to as TBO₃ hereafter) is presented in Fig. 7a. TBO₃ concentrations show a distinct spatial gradient over China, decreasing from about 55 ppbv in northwestern China to about 10 ppbv in southeastern China. The JJA TBO₃ concentration averaged over the whole China is 30 ppbv, which is about 62 % of the average concentration simulated in O3_TOT, indicating that a significant fraction of surface-layer O₃ over China is from transboundary transport. The
differences in TBO₃ concentrations between the weakest and strongest monsoon years (Fig. 7d) are, to a large extent, similar to those from simulation O₃_TOT (Fig. 4a), in terms of both distributions and magnitudes. Averaged over China, the difference in TBO₃ between the weakest and strongest monsoon years is −1.6 ppbv, which accounts for 80% of the corresponding difference obtained in O₃_TOT. The JJA mass fluxes of TBO₃ for the selected box of (85°–120°E, 20°–46°N, the surface to 250hPa) are also similar to those simulated in O₃_TOT (Table 1), with a net horizontal outflow of 2.8 Tg season⁻¹. These model results indicate that the differences in transboundary transport of O₃ is a dominant mechanism through which the EASM influences interannual variations of JJA O₃ concentrations in China.

5.2 Impacts of the EASM on vertical transport of O₃

Vertical circulations in China have some unique features during the EASM. In summer, two major ascending branches of winds (or strong convections) are observed throughout the entire troposphere (Fig. 8a). One branch is located over the Yangtze River valley, associated with the Mei-yu front (rain belt) of the EASM (Ding and Chan, 2005). The other branch is over the Tibetan Plateau, because the Tibetan Plateau during summer serves as a large heat source, which uplifts heated air to the upper troposphere and even to the stratosphere (Ye, 1981). Fig. 8a shows JJA vertical velocity and simulated vertical mass flux of O₃ at 500 hPa averaged over 1986–2006. Since vertical velocity is not available from the
reanalyzed GEOS-4 meteorological fields, vertical winds presented here are from the NCEP/NACR reanalysis data. The simulated mass fluxes are obtained in O3_TOT. The largest vertical mass fluxes of O3 are simulated to occur over northern China and western China where surface-layer O3 concentrations are high, and to occur over the Tibetan Plateau and its surrounding areas as a result of the strong convections here.

Figure 8b shows the differences in JJA vertical wind velocity and simulated vertical mass flux of O3 at 500 hPa between the weakest and strongest monsoon years. Relative to the strongest monsoon years, anomalous convections are found over central and western China in the weakest monsoon years, leading to enhanced upward transport of O3 from the surface to upper troposphere at these locations. The differences in vertical winds shown in Fig. 8b agree with those reported in Huang (2004).

Table 1 also summarizes the composite analysis on vertical fluxes of O3 through the top side of the selected box (85°–120°E, 20°–46°N, the surface to 250hPa). In simulation O3_TOT, the upward flux of O3 through the top plane of the box in the weakest monsoon years is larger than that in the strongest monsoon years by 1.4 Tg season\(^{-1}\). This anomalous vertical outflow of 1.4 Tg season\(^{-1}\) is smaller than the anomalous horizontal transboundary outflow of 3.3 Tg season\(^{-1}\) (Section 5.1), indicating that the differences in vertical transport of O3 also contribute to lower JJA O3 concentrations in China in the weakest monsoon
years than in the strongest monsoon years, but the impact of the differences in vertical transport is smaller than that of the differences in transboundary transport of O_3.

5.3 Impact of cross-tropopause transport on surface-layer O_3 concentrations

The cross-tropopause transport of O_3 from the stratosphere is an important source of tropospheric O_3. Simulation O_3-ST is performed to quantify the impact of cross-tropopause transport on JJA surface-layer O_3 concentrations. The simulated JJA concentrations of O_3 in simulation O_3-ST (referred to as STO_3) at the surface-layer averaged over 1986–2006 are presented in Fig. 7b. STO_3 shows maximum concentrations of 15–20 ppbv over northwestern China, contributing to the high O_3 concentrations in western China simulated in $O3$-TOT. Averaged over China, the surface-layer concentration of JJA STO_3 is 8 ppbv, which is about 17% of that of JJA O_3 simulated in $O3$-TOT. Concentrations of STO_3 increase with altitude; the ratio of STO_3 to O_3 simulated in $O3$-TOT is about 50% at 200 hPa and about 80% at 100 hPa. Figure 7e shows the differences in surface-layer STO_3 concentrations between the weakest and strongest monsoon years. Relative to the strongest monsoon years, surface-layer STO_3 concentrations are lower by 1–2 ppbv over central China and the Tibetan Plateau in the weakest monsoon years. Averaged over China, the difference in STO_3 between the weakest and strongest monsoon years is -0.45 ppbv, which only
accounts for 23% of the corresponding difference in TOTO$_3$ and hence indicates that the variations in O$_3$ transported from the stratosphere in different monsoon years are not the major factors that drive the interannual variations of JJA surface-layer O$_3$ concentrations in China. Note that the cross-tropopause O$_3$ flux in O3_TOT and O3_ST is specified with the synthetic ozone (“Synoz”) method (McLinden et al., 2000) with a constant cross-tropopause ozone flux of 499 Tg O$_3$ yr$^{-1}$. The latest version of the GEOS-Chem model also has an option of using the linearized ozone (“Linoz”) parameterization scheme of McLinden et al. (2000) to represent O$_3$ in the stratosphere, in which the ozone vertical profiles across the tropopause are relaxed back toward climatological profiles and hence cross-tropopause O$_3$ flux varies with time step and location. We have tested using “Linoz” instead of “Synoz” and found that these two schemes obtain same conclusion about the impact of cross-tropopause O$_3$ on JJA surface-layer O$_3$ in China.

5.4 Impacts of the EASM on local chemical production of O$_3$

The differences in O$_3$ concentrations between O3_TOT and O3_TB simulations are attributed to the enhancement of O$_3$ due to Chinese emissions, referred to as Chinese local O$_3$ (LOCO$_3$). Figure 7c shows that high concentrations of LOCO$_3$ are located in eastern China where the emissions of O$_3$ precursors are large. The maximum LOCO$_3$ concentrations reach 40–45 ppbv. The LOCO$_3$ concentration averaged over the whole China is 18 ppbv, which is about 38% of the value
simulated in O3_TOT. Figure 7f presents the differences in simulated LOCO$_3$ between the weakest and strongest EASM years. Relative to the strongest monsoon years, LOCO$_3$ concentrations in the weakest monsoon years are lower by 2–5 ppbv over southern China and slightly higher by up to 1 ppbv over central China. Averaged over China, the difference in LOCO$_3$ between the weakest and strongest monsoon years is -0.4 ppbv, which accounts for 20% of the corresponding difference in TOTO$_3$ and hence reflects the small impacts of monsoon strength on local chemical production of O$_3$.

The small impacts of monsoon strength on local chemical production of O$_3$ can be further justified by examining the net chemical production of O$_3$ within the selected box (85°–120°E, 20°–46°N, the surface to 250hPa). Sum over the selected box, the net chemical production (chemical production – chemical loss) averaged over the weakest monsoon years is 39.0 Tg season$^{-1}$ in JJA, which is smaller than that averaged over the strongest monsoon years by 0.5%.

6 Comparison of the impact of monsoon strength with the role of changing emissions

We perform simulations O$_3$_EMIS to compare the impact of changing monsoon strength (Section 4) with that of changing anthropogenic emissions on JJA O$_3$ concentrations. Two sensitivity simulations are conducted with 1986 and 2006 anthropogenic emissions, respectively, and year 2006 meteorological parameters are used to drive both simulations. Relative to 1986, year 2006 emissions of NO$_x$,
CO, and NMVOCs in China increase by 111%, 56%, and 9%, respectively, leading to increases in JJA surface-layer O$_3$ by 9–15 ppbv in southeastern China (Fig. 9). Note the locations of large increases in O$_3$ here are different from those of large differences in O$_3$ between the weakest and strongest monsoon years (Fig. 4b). Averaged over China, the change in JJA surface-layer O$_3$ concentration owing to changes in emissions over 1986–2006 is +5.3 ppbv, which is larger than the difference in JJA surface-layer O$_3$ of 2.0 ppbv between the selected weakest and strongest monsoon years. However, the difference in surface-layer O$_3$ between the weak monsoon year 1998 and the strong monsoon year 1997 is −4.2 ppbv, indicating that the impacts of the EASM on JJA O$_3$ can be particularly strong for certain years.

7 Conclusions

We examine the impacts of the East Asian summer monsoon (EASM) on interannual variations of summertime surface-layer O$_3$ concentrations over China using the GEOS-Chem model driven by the assimilated GEOS-4 meteorological data. The interannual variations of O$_3$ concentrations are quantified by values of mean absolute deviation (MAD) and absolute percent departure from the mean (APDM), based on the simulation of O$_3$ for years 1986–2006 with changes in meteorological parameters but fixed anthropogenic emissions at year 2005 levels. The MAD values of JJA surface-layer O$_3$ concentrations in China are in the range of 1.0–4.0 ppbv, with the largest values exceeding 2 ppbv found over northeastern China, coastal areas of South China, and the Tibetan Plateau. The
APDM values of JJA surface-layer O\textsubscript{3} concentrations are 2–5% over central eastern China, 1–3% in northwestern China, and 5–10% over the Tibetan Plateau as well as the border and coastal areas of South China.

With fixed anthropogenic emissions, simulated JJA O\textsubscript{3} concentrations averaged over China exhibit strong positive correlation (with a correlation coefficient of +0.75) with the East Asian summer monsoon index (EASMI) in the time period of 1986–2006, indicating that JJA O\textsubscript{3} concentrations are lower (or higher) in weaker (or stronger) EASM years. Relative to JJA surface-layer O\textsubscript{3} concentrations in the strongest EASM years (1990, 1994, 1997, 2002, and 2006), O\textsubscript{3} levels in the weakest EASM years (1988, 1989, 1996, 1998, and 2003) are lower over almost whole China with the national mean O\textsubscript{3} concentration lower by 2.0 ppbv (or 4%).

Sensitivity studies are performed to identify the key processes through which the variations in EASM strength influence interannual variations of JJA O\textsubscript{3} in China. The difference in transboundary transport of O\textsubscript{3} is found to be the most dominant factor that leads to lower O\textsubscript{3} concentrations in the weakest EASM years than in the strongest EASM years. Relative to the strongest EASM years, the weakest EASM years have less inflow by 0.11 Tg season-1 at the west boundary, larger inflow fluxes of O\textsubscript{3} by 4.2 Tg season-1 at the south boundary and by 5.5 Tg season-1 at the north boundary, and larger outflow by 12.9 Tg season-1 at the east boundary, as horizontal mass fluxes of O\textsubscript{3} at the four lateral boundaries of the selected box (85\degree–120\degree E, 20\degree–46\degree N, the surface to 250 hPa) are calculated. As a
result, the weakest EASM years have larger outflow of O₃ than the strongest EASM years, which, together with the enhanced vertical convections in the weakest EASM years, explain about 80% of the differences in surface-layer O₃ concentrations between the weakest and strongest EASM years.

We also perform a sensitivity simulation O₃_EMIS to compare the impact of changing monsoon strength with that of changing anthropogenic emissions on JJA O₃ concentrations. Averaged over China, the change in JJA surface-layer O₃ concentration owing to changes in emissions over 1986–2006 is +5.3 ppbv, which is larger than the difference in JJA surface-layer O₃ of 2.0 ppbv between the selected weakest and strongest monsoon years. However, the difference in surface-layer O₃ between the weak monsoon year 1998 and the strong monsoon year 1997 is −4.2 ppbv, indicating that the impacts of the EASM on JJA O₃ can be particularly strong for certain years. Note that while the largest increases in O₃ by anthropogenic emissions are located over southeastern China, the largest impacts of EASM on O₃ are found over central and western China.

Acknowledgements. This work was supported by the National Basic Research Program of China (973 program, Grant 2014CB441202), the Strategic Priority Research Program of the Chinese Academy of Sciences Strategic Priority Research Program Grant No. XDA05100503, the National Natural Science Foundation of China under grant 41021004, as well as the China Meteorological
Administration special funding in atmospheric science GYHY200906020.
References

Intergovernmental Panel on Climate Change (IPCC), Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the inter-governmental panel on climate change, edited by: Solomon, S. et al., Cambridge University Press, Cambridge, United Kingdom and New York, 1–996, 2007.

Logan, J. A.: An analysis of ozonesonde data for the troposphere: Recommendations for testing 3-D models and development of a gridded

Wang, B., and Ding, Q.: Global monsoon: Dominant mode of annual variation in the tropics, Dynam. Atmos. Oceans, 44, 165–183,

Zhou, L. T. and Huang, R. H.: Interdecadal variability of summer rainfall in

Table 1. The composite analyses of horizontal and vertical fluxes of O$_3$ (Tg season$^{-1}$) for the selected box of (85°–120°E, 20°–46°N, the surface to 250 hPa) based on simulations O3_TOT and O3_TB. The values are averaged over the five weakest (1988, 1989, 1996, 1998, and 2003) and five strongest monsoon years (1990, 1994, 1997, 2002, and 2006), and the differences are calculated as (weakest-strongest). For horizontal fluxes, positive values indicate eastward or northward transport and negative values indicate westward or southward transport. For vertical fluxes, positive values indicate upward transport.

<table>
<thead>
<tr>
<th>Side of the selected box</th>
<th>O3_TOT</th>
<th>O3_TB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Weakest</td>
<td>Strongest</td>
</tr>
<tr>
<td>Horizontal mass fluxes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>West</td>
<td>+83.7</td>
<td>+83.8</td>
</tr>
<tr>
<td>East</td>
<td>+106.5</td>
<td>+93.5</td>
</tr>
<tr>
<td>South</td>
<td>+13.4</td>
<td>+9.2</td>
</tr>
<tr>
<td>North</td>
<td>−19.3</td>
<td>−13.7</td>
</tr>
<tr>
<td>Vertical mass fluxes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top</td>
<td>+22.1</td>
<td>+20.7</td>
</tr>
</tbody>
</table>
Figure Captions

Fig. 1. (a) Simulated JJA surface-layer O$_3$ concentrations (ppbv) that are averaged over years 1986–2006 of simulation O3_TOT. (b) Mean absolute deviation (MAD, ppbv) and (c) absolute percent departure from the mean (APDM, %) calculated with 1986–2006 simulation of O$_3$ in O3_TOT.

Fig. 2. Comparisons of observed and simulated JJA mean surface-layer O$_3$ concentrations at Hok Tsui (22°13’ N, 114°15’ E) in Hong Kong (left) and Ryori (39°03’N, 144°82’E) in Japan (right). Correlation coefficient between simulations and observations is shown at top right corner of each panel, which is calculated over the time period with observations available.

Fig. 3. (a) The normalized time series of EASMI (blue bars, left y-axis) and the simulated JJA surface-layer O$_3$ concentrations (black line, right y-axis, ppbv) averaged over China for years of 1986–2006. (b) Spatial distribution of the correlation coefficients between the EASMI and the JJA surface-layer O$_3$ concentrations. The dotted areas indicate statistical significance with 95% confidence from a two-tailed Student’s t-test. The EASMI are calculated using the GEOS-4 assimilated meteorological data.

Fig. 4. Horizontal distributions of (a) absolute and (b) percentage differences in JJA surface-layer O$_3$ concentrations between the five weakest and strongest EASM years (weakest–strongest). Pressure-longitude cross sections averaged over 20°–46°N for (c) absolute and (d) percentage differences in JJA O$_3$ concentrations between the five weakest and strongest EASM years (weakest–strongest). Results are from simulation O3_TOT and unit is shown on top of each panel.

Fig. 5. The JJA mean horizontal winds at (a) 850 hPa and (b) 500 hPa averaged over 1986–2006. The composite differences in horizontal winds between the five weakest and strongest EASM years (weakest–strongest) at (c) 850 hPa and (d) 500 hPa. Horizontal winds are from the GEOS-4 assimilated meteorological data. Unit is shown on top of each panel. The location of box (85°–120°E, 20°–46°N, the surface to 250 hPa) selected to capture the features of transboundary O$_3$ transport is also shown in (d).

Fig. 6. The composite differences in horizontal O$_3$ fluxes (shades, kg s$^{-1}$) and winds (contours, m s$^{-1}$) at (a) south, (b) north, (c) west, and (d) east boundaries of the selected box of (85°–120°E, 20°–46°N, the surface to 250 hPa) between the five weakest and strongest EASM years (weakest–strongest). Fluxes and winds
that are eastward or northward are positive, and those that are westward and
southward are negative. Mass fluxes are from simulation O3_TOT. Longitudinal
and meridional winds are from the GEOS-4 assimilated meteorological data.

Fig. 7. The JJA surface-layer O₃ concentrations (ppbv) from (a) simulation
O3_TB (referred to as TBO₃), (b) simulation O3_ST (referred to as STO₃), and (c)
simulation O3_TOT minus simulation O3_TB (referred to as LOCO₃). Panels (a),
(b), and (c) are the averages over 1986–2006. Panels (d), (e), and (f) are the
composite differences (ppbv) in TBO₃, STO₃, and LOCO₃, respectively, between
the five weakest and strongest EASM years (weakest–strongest).

Fig. 8. (a) The spatial distributions of JJA mean vertical wind velocity (contours,
Pa s⁻¹*1000) and simulated upward mass flux of O₃ (shades, kg s⁻¹) averaged
over 1986–2006. (b) The composite differences in vertical wind (contours, Pa
s⁻¹*1000) and simulated upward mass flux of O₃ (shades, kg s⁻¹) between the five
weakest and strongest EASM years (weakest–strongest). Vertical winds are from
the NCEP/NACR reanalysis data.

Fig. 9. The changes in simulated JJA surface-layer O₃ concentrations (ppbv)
owing to the changes in anthropogenic emissions of O₃ precursors over 1986–
2006, based on simulations of O3_EMIS.
Fig. 1. (a) Simulated JJA surface-layer O$_3$ concentrations (ppbv) that are averaged over years 1986–2006 of simulation O3_TOT. (b) Mean absolute deviation (MAD, ppbv) and (c) absolute percent departure from the mean (APDM, %) calculated with 1986–2006 simulation of O$_3$ in O3_TOT.
Fig. 2. Comparisons of observed and simulated JJA mean surface-layer O₃ concentrations at Hok Tsui (22°13' N, 114°15' E) in Hong Kong (left) and Ryori (39°03'N, 144°82'E) in Japan (right). Correlation coefficient between simulations and observations is shown at top right corner of each panel, which is calculated over the time period with observations available.
Fig. 3. (a) The normalized time series of EASMI (blue bars, left y-axis) and the simulated JJA surface-layer O$_3$ concentrations (black line, right y-axis, ppbv) averaged over China for years of 1986–2006. (b) Spatial distribution of the correlation coefficients between the EASMI and the JJA surface-layer O$_3$ concentrations. The dotted areas indicate statistical significance with 95% confidence from a two-tailed Student’s t-test. The EASMI are calculated using the GEOS-4 assimilated meteorological data.
Fig. 4. Horizontal distributions of (a) absolute and (b) percentage differences in JJA surface-layer O$_3$ concentrations between the five weakest and strongest EASM years (weakest–strongest). Pressure-longitude cross sections averaged over 20°–46°N for (c) absolute and (d) percentage differences in JJA O$_3$ concentrations between the five weakest and strongest EASM years (weakest–strongest). Results are from simulation O3_TOT and unit is shown on top of each panel.
Fig. 5. The JJA mean horizontal winds at (a) 850 hPa and (b) 500 hPa averaged over 1986–2006. The composite differences in horizontal winds between the five weakest and strongest EASM years (weakest–strongest) at (c) 850 hPa and (d) 500 hPa. Horizontal winds are from the GEOS-4 assimilated meteorological data. Unit is shown on top of each panel. The location of box (85°–120°E, 20°–46°N, the surface to 250 hPa) selected to capture the features of transboundary O\(_3\) transport is also shown in (d).
Fig. 6. The composite differences in horizontal O$_3$ fluxes (shades, kg s$^{-1}$) and winds (contours, m s$^{-1}$) at (a) south, (b) north, (c) west, and (d) east boundaries of the selected box of (85°–120°E, 20°–46°N, the surface to 250 hPa) between the five weakest and strongest EASM years (weakest–strongest). Fluxes and winds that are eastward or northward are positive, and those that are westward and southward are negative. Mass fluxes are from simulation O3_TOT. Longitudinal and meridional winds are from the GEOS-4 assimilated meteorological data.
Fig. 7. The JJA surface-layer O_3 concentrations (ppbv) from (a) simulation $O3_{TB}$ (referred to as TBO_3), (b) simulation $O3_{ST}$ (referred to as STO_3), and (c) simulation $O3_{TOT}$ minus simulation $O3_{TB}$ (referred to as $LOCO_3$). Panels (a), (b), and (c) are the averages over 1986–2006. Panels (d), (e), and (f) are the composite differences (ppbv) in TBO_3, STO_3, and $LOCO_3$, respectively, between the five weakest and strongest EASM years (weakest–strongest).
Fig. 8. (a) The spatial distributions of JJA mean vertical wind velocity (contours, Pa s$^{-1}$*1000) and simulated upward mass flux of O$_3$ (shades, kg s$^{-1}$) averaged over 1986–2006. (b) The composite differences in vertical wind (contours, Pa s$^{-1}$*1000) and simulated upward mass flux of O$_3$ (shades, kg s$^{-1}$) between the five weakest and strongest EASM years (weakest–strongest). Vertical winds are from the NCEP/NACR reanalysis data.
Fig. 9. The changes in simulated JJA surface-layer O$_3$ concentrations (ppbv) owing to the changes in anthropogenic emissions of O$_3$ precursors over 1986–2006, based on simulations of O3_EMIS.