Sensitivity estimations for cloud droplet formation in the vicinity of the high alpine research station Jungfraujoch (3580 m asl)
by E. Hammer et al.

In the previous review, I have called for a major revision of the paper, pointing out:

1. **Limited reproducibility** due to lack of access to software and data the study is based on, as well as due to the lack of sufficient detail in the description of simulation input parameters.

2. **Lack of proper context** – even though the paper subject has been widely studied in the literature, the initial version of the manuscript lacked references to previous studies.

3. **Paper composition flaws** in the initial version of the manuscript.

4. **Ambiguities in the description of the methodology** that I tried to highlight by asking some specific questions.

In my opinion, the authors did address points 2 and 3 (as well as several points raised by the other reviewers) to an extent that makes the manuscript considerably better. Some of my specific questions from point 4 remain unanswered, and being convinced that clarifying these issues will improve the manuscript, I am repeating these questions in my comments to the authors’ reply below.

There is no improvement with regard to the first point – reproducibility. The authors have added in the revised manuscript an e-mail address of the model author. I do not consider it any better than having an e-mail address of the corresponding author. There is no information on the software version. The provided references do not give information on how the considered equations are numerically solved. Let me quote the ACP guidelines again: “Copernicus Publications encourages authors to also deposit software, algorithms, model code, and other underlying material on suitable repositories/archives whenever possible. These materials should be referenced in the article and preferably cited via a persistent identifier as a DOI.”

Replies to the authors’ comments

In the comments below, I address selected points from the authors’ reply. The comments below contain:

quotes from my original review doubly indented and typeset in blue;

indigo-coloured quotes from the authors’ reply with single indentation;

my present comments in black and with no indentation.

...subsatuated growth of the aerosol is governed by the kappa-koehler equation (this difference is now mentioned in the paper). The kinetic uptake of water from the gas phase is done in a very standard way . . .

Then, in my understanding, the κ-Köhler parameterisation has to be used as well above saturation.

If that is correct, please do not state that it concerns only subsaturated growth.

If that is not correct, please clarify how the aerosol solubility/composition is taken into account above saturation.

The meteorological data is provided by MeteoSwiss such that we are not permitted to make it publicly accessible.

Nevertheless, all other data (such as aerosol parameters measured by the PSI) are available to the interested public by writing an e-mail to the contact author.

Please at least provide a persistent identifier and version information that can help to acquire the data from the mentioned entities.

Please also note that according to the previously cited ACP guidelines, “Authors are required to provide a statement on how their underlying research data can be accessed. This must be placed as the section “Data availability” at the end of the manuscript before the acknowledgements. If the data are not publicly accessible, a detailed explanation of why this is the case is required.”

1http://www.atmospheric-chemistry-and-physics.net/about/data_policy.html
the model timestep choice and integration method (how it copes with the stiffness of the drop growth equations? how it copes with the timestep requirement for simulating the small-scale fluctuations with frequencies up to 20Hz?)

we have added the following text to the model description section “At $S < 0.99$, the model time step is one second, and at $S >= 0.99$, it is calculated such that the water content of the droplet can change by no more than 2% per time step.”

First, I cannot find the added sentence in the revised manuscript.

Second, let me ask the authors again: does this condition result in a timestep value needed to resolve the response of condensation kinetics to the imposed 20 Hz frequency temperature fluctuations? Please mention it in the paper.

The very last summarising paragraph of the paper starts with a statement saying that “small-scale temperature fluctuations are revealed to be the strongest effect on cloud formation process beside the updraft velocity, which is influenced by the temperature fluctuations.”

- I suggest rephrasing the above-quoted sentence so it is made clear that the employed model actually does not differentiate the temperature and velocity fluctuations.
- Such sentence also calls for a comment and reference[s] clarifying if that is in agreement or not with previous studies (see e.g. the summary and references in the review article on “Growth of Cloud Droplets in a Turbulent Environment” by Grabowski and Wang, 2013).
- I also suggest supplementing the conclusions with a brief reiteration of the limitations of the employed modelling method: (i) assumed equilibrium state at RH=99%; (ii) no direct coupling between the latent heat release and the parcel heat budget; (iii) subjecting all particles to the same fluctuations.

Please also consider revising the abstract so that the list and priority of conclusions there matches the one from the final section of the paper. I suggest removing from the abstract the mention of the division by 4 of the velocity.

The paper reports on the sensitivity of cloud droplet activation process, in particular the sensitivity to the small-scale fluctuations of vertical velocity and temperature. This is a widely studied topic and the paper clearly lacks references to other studies discussing analogous tools, methodologies and results, e.g.: Clark and Hall 1979, Kulmala et al. 1997, Feingold 2003, Lance et al., 2004, Chuang 2006, Ditas et al. 2012, Partridge et al. 2012.

As of now, the discussion of the methodology and results is left without proper context. This also makes it hard for the reader to understand where the novelty of the presented results lies.

Thank you for providing these references. The reviewer is correct in that the introduction did not provide a detailed enough discussion of previous work. We have included a discussion of all of these papers in the introduction (sizable section of text not reproduced here), as well as in the discussion of figure 5, which shows similar features to what was found in the studies of Chuang, Feingold and Partridge.

Let me point out that the list of references I provided was composed having in mind the subject of the sensitivity of CCN activation models, and in particular the sensitivity to the small-scale fluctuations of vertical velocity and temperature. Yet, it the revised manuscript, it is presented as a list of studies dealing with modelling of CCN activation in general. Please reformulate the first sentence on page 4 so it includes the mentions of sensitivity and small-scale fluctuations.

Also, I do encourage the authors to fill in the gap in the referenced literature between 1979 and 1997. Citing Kulmala 1997 in my previous comment, I provided a quote from the paper in J. Aerosol Sci 28, and not the one in Nature (that’s just to ensure if the different choice was intentional).
the whole section 2.1.2 bears well too much similarity to section 3.4 (with the same title) from Hammer et al. 2014, ACP

We added a sentence at the beginning of 2.1.2 to make it clear that this section was put from Hammer et al. (2014): “(This section is composed by a summary of section 3.4 from Hammer et al. (2014).)” and removed “see detailed explanation in Hammer et al., 2014”).

My point was to encourage shortening and/or rephrasing it.

Further comments

- page 2, line 21: please add unit to 0.46 (Hz?) – last sentence of the abstract
- page 2, lines 13,23: repetition of “can significantly alter CCN activation”
- page 4, line 14: wrong tense for “find”
- page 5, line 18: “To develop effective models . . .” – please specify what kind of models
- page 6, line 17: I suggest moving the paragraph with reference to Table 1 from section 2 (Methods) to the end of section 1 (Introduction) and extending it to a brief description of the paper structure.
- page 7, line 14: κ parameter already mentioned while the work of Petters & Kreidenweis is cited only on page 10
- page 8, line 10: there is a “when when” repetition
- page 8, line 11: “updraught” spelling, while elsewhere “updraft”
- page 10: section 2.2 contains just a single subsection 2.2.1 – please skip subsectioning here
- page 10, line 17: isn’t there a cause/effect mismatch in “Water removal due to precipitation is negligible since it is assumed that the total water content is preserved”
- page 11, line 14: please specify that the assumption refers to the dry size spectrum
- page 11, line 26: “i.e. equation” seems unneeded?
- page 12, line 13: what does “but” refer to in the last sentence of section 2.2.1? (also probably replacing “fast” with “fastest” will match authors’ intent)
- page 14, 20, sect 2.3.4: sensitivity of κ on SS should probably be changed to sensitivity of SS on κ
- page 15: title and content of section 2.4: please replace “reference model” with “reference simulations” – the model is the same
- page 16: is “solid” (i.e. non-dashed) meant when referring to “black” lines?
- page 16, line 15: isn’t it the velocity that has an effect on SS, and not the other way round?
- page 18, line 15: please rephrase “Thus, for the sensitivity...” to something like “To assess the sensitivity...”
- page 19, line 11: I suggest removing the “describing the Raoult term of the Köhler equation”
- page 20: last paragraph: please rephrase so that the reader is aware what “ratios” the text refers to
- page 22 (vs. 10): ZOMM acronym is differently deciphered
- page 23, line 27: unit missing for 0.46
- references:
 - please differentiate between the two Hammer et al. 2014 papers when citing (e.g.: 2014a, 2014b)
 - Clark and Hall 1979 entry is out of alphabetical order in the reference list

Hope that helps!