We would like to thank the two anonymous referees and B. Bohn for their helpful comments and suggestions. We have addressed all of these and outlined proposed updates we will make to the manuscript in red below (comments in black):

The authors used measured $j(O_D^1)$ photolysis frequencies as a model input. The $j(O_D^1)$ measurements were made with a filter radiometer on a 22 m tower and were covering downward radiation from the upper hemisphere. In fact, because of low ground albedos upward radiation from vegetated surfaces can usually be neglected in the UV-B range, at least for ground based measurements. The same applies for the tower measurements at Mt. Schmücke in good approximation. However, if the tower is situated into a cloud, upward radiation will increase dependent on cloud optical thickness and tower height. In a very thick cloud the radiation field can become virtually isotropic with up-welling radiation as strong as down-welling. Because of the limited tower height this was probably not the case here, but nevertheless $j(O_D^1)$ could have been significantly enhanced.

To estimate the potential contribution of upward radiation, simulations with the TUV model (also used by the authors) were consulted for the Mt. Schmücke station on 01 Oct 2010 (mid of the campaign period). Spectral actinic flux densities were calculated assuming a range of solar zenith angles (SZA), a typical ozone column of 300 DU, standard aerosol, a ground albedo of 0.02, and an elevation of 937 m. Model output was generated for 959 m representing the tower top at 22 m above ground. Moreover, a homogeneous cloud cover of 1000 m thickness was assumed starting directly at the ground and extending to about 2 km cloud top elevation which is typical for continental stratus clouds. The total cloud optical depth (COD) was varied and from the simulated spectra photolysis frequencies $j(O_D^1)$ were calculated.

In a first step the ratios of downward $j(O_D^1)$ under overcast and clear sky conditions was calculated as a function of COD as shown in Fig. 1. These calculations reveal a non-linear dependence that can be utilized to estimate the COD encountered during the campaign: a reduction by 70% as found experimentally corresponds to a COD of about 30-40. These CODs are in reasonable agreement with those that can be estimated from the liquid water content (LWC) measured at the tower top (Petty, 2006):

$$\text{COD} = \frac{3L}{2\pi \rho \rho_l}$$

Here L is the liquid water path, $L = \text{LWC} \times 1000$ m, ρ_l is the density of liquid water and r_{ef} is the effective cloud droplet radius which was assumed to be 10 µm. LWCs between 0.1 and 0.3 g m$^{-3}$ that were measured at the tower result in CODs between 15 and 45.

In a second step the ratio total/downward $j(O_D^1)$ was calculated as shown in Fig. 2. Here a non-linear increase is observed. For the COD estimated above the enhancement factor is about 1.2. Consequently, when the tower is in clouds the measured $j(O_D^1)$ should be scaled up accordingly. The same applies for $j(HCHO)$.

We thank B. Bohn for his valuable comment and recommendations for estimating the upwelling radiation present during cloud events which, in the original manuscript, we did not consider. We have scaled the in-cloud measured $j(O_D^1)$ presented in figures 2 and 3 and the in-cloud $j(O_D^1)$ and $j(HCHO)$ used in the analytical expression to determine the first order loss of HO$_2$ to cloud droplets as suggested. We find, on average, the photolysis rates are enhanced by approximately 17% during cloud events when upwelling is considered. This in turn means that the first order loss process required to reproduce in-cloud HO$_2$ observations increases modestly from 0.1 s$^{-1}$ to 0.14 s$^{-1}$ on average. Owing to the fact that only minor changes in the first order loss are necessary, we still observe good agreement for the HO$_2$ uptake coefficient calculated by varying the first order loss in the analytical expression to reproduce HO$_2$ observations as a function of cloud water pH and the theoretical expression derived by Thornton et al. suggesting that this theoretical expression remains...
appropriate to estimate the loss of HO\textsubscript{2} to cloud droplets even when enhancements in radiation are
included. All figures and discussions in the revised manuscript will be updated to account for in-cloud enhancements of radiation and we will explicitly reference B. Bohn’s comment and include an
outline of the methodology for estimating the contribution from upward radiation in the revised manuscript.

1) As pointed out in the comment by B. Bohn, it is not clear whether the authors have taken upward
scattering of radiation when the tower was inside a cloud into account in their analytical expression
calculating HO\textsubscript{2} concentrations. As stated in the manuscript and illustrated in Figure 1, the FAGE cell
was oriented horizontal to the ground to prevent pooling of water on top of the inlet that could
enter the detection chamber. On page 23771, the authors state that j(O\textsubscript{2}D) was measured “from the
top of the 22m tower, alongside the FAGE detection cell, using a 2\textsubscript{a} filter radiometer.” It is not clear
whether the radiometer was placed on top of the tower near the FAGE inlet but pointed upwards to
measure downward radiation, or placed alongside the horizontally oriented FAGE inlet. This should
be clarified in the revised manuscript.

The filter radiometer pointed upwards throughout the campaign and so only measured downward
radiation. It was located next to the FAGE inlet on the tower. We will clarify this in the revised
manuscript along with the corrections we have now made to account for upwelling radiation (please
see our response to B. Bohn’s comment also).

2) The authors state that the FAGE instrument was calibrated twice weekly during the measurement
campaign in addition to calibrations before and afterwards. However, it is not clear that the
calibrations were done under conditions that attempt to simulate the water conditions inside the
cloud. How did the authors correct their data for quenching by water vapor during the in cloud
measurements? During HOxComp, it was found that there may have been an unknown factor
related to water vapor that may have influenced the HO\textsubscript{2} instrument sensitivities or may have
caused an unknown interference inside the FAGE cells (Fuchs et al., Atmos. Chem. Phys., 10, 12233–
12258, 2010). The authors should comment on the potential impact of water on their in-cloud
measurements of HO\textsubscript{2}.

Calibrations were performed at relevant water vapour concentrations so as to encompass the
ambient water vapour concentrations observed. As such, no correction for quenching of the
fluorescence signal by water vapour is necessary and has not been made. In the lab we have studied
the impact of H\textsubscript{2}O (v) on the sensitivity of this FAGE cell type (as outlined by Commane et al. ACP, 10,
8783–8801, 2010) by systematically varying the H\textsubscript{2}O from 500 ppmV to 10 000 ppmV and observe
only ~ 10% reduction in sensitivity over this H\textsubscript{2}O range for both OH and HO\textsubscript{2} which can be entirely
explained by the known quenching of fluorescence by H\textsubscript{2}O molecules. We will make a remark
reflecting this in the revised manuscript.

3) Incorporating HO\textsubscript{2} uptake onto cloud droplets into the GEOS Chem model leads to significant
changes in radical and H\textsubscript{2}O\textsubscript{2} concentrations depending on the fate of aqueous HO\textsubscript{2}. Figure 10 shows
that HO\textsubscript{2} uptake leading to the formation of water reduces surface radical and H\textsubscript{2}O\textsubscript{2} concentration
(Figure 10a), while HO\textsubscript{2} uptake leading to the formation of H\textsubscript{2}O\textsubscript{2} leads to an increase in surface H\textsubscript{2}O\textsubscript{2}
and less of a reduction in radical concentrations (Figure 10b). However, the column radical and H\textsubscript{2}O\textsubscript{2}
concentration changes appear to show the opposite when HO\textsubscript{2} uptake is incorporated into the
model (Figure 11). In this Figure HO\textsubscript{2} uptake leading to the formation of water leads to an increase in
the column H\textsubscript{2}O\textsubscript{2} concentrations and less of a reduction in radical concentration (Figure 11a), while
HO\textsubscript{2} uptake leading to H\textsubscript{2}O\textsubscript{2} formation leads to a decrease in the column H\textsubscript{2}O\textsubscript{2} and a greater
reduction in the column radical concentrations (Figure 11b). On page 23778 the authors state
referring to the concentration of OH that “changes to the column values are only significant in the case where H$_2$O$_2$ is not produced.” However, in Figure 11a (HO$_2$ uptake leading to water) the column values of OH do not show a significant reduction, while a significant reduction in column OH is shown in Figure 11b (H$_2$O$_2$ produced). Are the results in Figure 11a and b reversed? The authors should clarify their discussion of these model results.

Regrettably, we have labelled Figure 11 incorrectly and as spotted by the referee Figure 11a actually represents the annually averaged fractional change in column HO$_2$, OH and H$_2$O$_2$ with the inclusion of HO$_2$ uptake to clouds leading to the production of H$_2$O$_2$, whilst b) represents the column change with the production of H$_2$O. We will correct the figure caption in the revised manuscript.

Title: Seems a bit too broad for the actual content of the paper and could be more specific to include a direct mention of observations in cloud.

We propose “The influence of clouds on radical concentrations: Observations of OH and HO$_2$ during the Hill Cap Cloud Thüringer (HCCT) campaign in 2010” as an alternative title.

Introduction: I do not see the classic paper by Jacob on cloud chemistry. Jacob, D. J. (1986), Chemistry of OH in remote clouds and its role in the production of formic-acid and peroxymonosulfate, J. Geophys. Res., 91(D9), 9807–9826.

This is an oversight, we will refer to the results from this classic paper on cloud chemistry in the introduction of the revised manuscript.

p 23776 end and 23777 beginning: The comparison of derived gamma values for uptake to cloud droplets with laboratory measurements on aerosol particles is somewhat of an apples/oranges problem. The aerosol particles probed in the lab will have very different ionic contents at the very least, and possibly phase (depending on the experimental conditions). That they agree well or not with values derived in cloud is therefore somewhat inconsequential.

We agree that we are not comparing like with like. However, as no laboratory studies have been performed which look at the uptake of HO$_2$ to cloud droplets, we feel this is the closest comparison we can make. Many of the lab studies have been performed on aqueous aerosol. We will narrow the comparison down to laboratory measured uptakes observed on aqueous aerosol in the revised manuscript.

The value of the gamma for HO$_2$ onto aerosol in the standard version of GEOS-Chem has some history. The model has used the Thornton et al., parameterization in the past, and very high values derived by Mao et al. 2013 (Mao, J., S. Fan, D.J. Jacob, K.R. Travis, Radical loss in the atmosphere from Cu-Fe redox coupling in aerosols, Atmos. Chem. Phys., 13,509-519, 2013b.) Given the uncertainties in the value of the gamma the Model Steering Committee now considers a uniform value of 0.2 to offer the advantage of simplicity. Thus we have returned to the Martin et al value but via a path which has taken us through Thornton and Mao. We will include this reference for the gamma value used in GEOS-Chem in the revised manuscript.

Figure 4 - is the data in this figure a compilation of many different cloud events, or is it one cloud event where the surface area might be correlated with time and
This data is a compilation of all daytime cloud events. We will update the text to clarify this.

pg 23778, line 11, missing a reference after "Thornton".

This will be included.

1. I'm quite surprised there is such a large effect upon "surface" HO2 due to clouds, especially large in the mid and higher latitudes. Are these results the effects of HO2 uptake to both aerosol and cloud relative to no uptake, or really just the effect of uptake to cloud only, on top of an uptake to aerosol at gamma = 0.2? These results should be compared to those from Thornton et al 2008, McIntyre and Evans, Martin et al 003, etc focused upon the effect of HO2 uptake to aerosol particles. Aerosol particles are more likely distributed throughout the vertical near the surface than cloud (outside of fog situations anyway), and the impacts of having fast uptake of HO2 to aerosol particles were comparable to those reported here.

The plots do show the difference between simulations with HO2 uptake onto clouds and those without. We note that the magnitude of the changes calculated here are generally consistent with the simulations presented in (Huijnen et al., 2014, Atmos. Chem. Phys. Discuss., 14, 8575–8632, 2014 www.atmos-chem-phys-discuss.net/14/8575/2014/ doi:10.5194/acpd-14-8575-2014) although the figures in Huijnen et al are not directly comparable with our plots. We now include a plot of the liquid water mass concentrations in the model both as a zonal mean and column integrated in the publication to show that in the GEOS-5 met fields there is significant liquid water in the lowest most levels of the model leading to the uptake.

2. The question is for such a short lived species like HOx, how do cloud, presumably located at the top of the boundary layer or higher, affect surface HO2 concentrations? Does HO2 loss in cloud become a major sink of boundary layer O3 in the model, and therefore impacts the HOx production outside of cloud? Liang and Jacob JGR 1997 found little impact of cloud chemistry on ozone over N. America, which seems some- what consistent with the results presented here. In fact, Liang and Jacob mention the impact of cloud chemistry on ozone might be significant in stratus capped marine boundary layer regions. It would be helpful to therefore show the perturbation to mod- eled surface O3 due to incorporating HO2 uptake in cloud in the model. I assume this output from the model already exists and new simulations would not be needed.

We now include plots of the impact on O3 concentrations in our figures. The impact on O3 is minor globally as the regions where HO2 is perturbed the most are the regions where the HO2 lifetime is long as the NO concentration is low. Thus the impact over ozone production areas is minimal and the impact on O3 destruction is small. Impacts are highest where there are clouds over low NOx area.

3. How were the cloud fields in GEOS-Chem prescribed? Were they fixed between simulations of uptake/no uptake so as to represent the exact same radiation fields and vertical distributions, etc? Does GEOS-Chem realistically represent air mass transport through cloud and thus the average time air spends within cloud?
The model prescribes the cloud liquid water in each grid box from the GEOS-5 Meteorological analysis. Thus the impact of clouds on the radiation field and the vertical distribution of the clouds will be identical in all simulations. The model representation of cloud processes is by necessity of the grid resolution (~250km) fairly crude. However other studies which need to invoke cloud chemistry within the model (notably for SO$_2$ oxidation) suggest that the model is capable of reproducing these features with some fidelity (see for example Alexander, B., D.J. Allman, H.M. Amos, T.D. Fairlie, J. Dachs, D.A. Hegg and R.S. Sletten, Isotopic constraints on sulfate aerosol formation pathways in the marine boundary layer of the subtropical northeast Atlantic Ocean, J. Geophys. Res., 117, D06304, doi:10.1029/2011JD016773, 2012).

4) This section should be expanded to address the above, and also include a discussion on the impact of HO$_2$ uptake in cloud upon the tropospheric ozone burden.

We now include such a discussion.

The influence of clouds on radical concentrations:
Observations and modelling studies of HO$_x$ during the Hill Cap Cloud Thüringia (HCCT) campaign in 2010

L. K. Whalley1,2, D. Stone2, I. J. George2,*, S. Mertes3, D. van Pinxteren4, A. Tilgner3, H. Herrmann3, M. J. Evans4,5 and D.E. Heard1,2

[1] (National Centre for Atmospheric Science, University of Leeds, Leeds, LS2 9JT, UK)
[2] (School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK)
[3] (Leibniz-Institut für Troposphärenforschung (TROPOS), Permoserstr. 15, 04318 Leipzig, Germany)
[4] (National Centre for Atmospheric Science, University of York, York, YO10 5DD, UK)
[5] (Department of Chemistry, University of York, York, YO10 5DD, UK)
[*] (Now at National Risk Management Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA)

Correspondence to: L. K. Whalley (l.k.whalley@leeds.ac.uk)

Abstract
The potential for chemistry occurring in cloud droplets to impact atmospheric composition has been known for some time. However, the lack of direct observations and uncertainty in the magnitude of these reactions, led to this area being overlooked in most chemistry transport models. Here we present observations from Mt. Schmücke, Germany, of the HO$_2$ radical made alongside a suite of cloud measurements. HO$_2$ concentrations were depleted in-cloud by up to 90% with the rate of heterogeneous loss of HO$_2$ to clouds necessary to bring model and measurements into agreement demonstrating a dependence on droplet surface area and pH. This provides the first observationally derived assessment for the uptake coefficient of HO$_2$ to cloud droplets and was found to be in good agreement with theoretically derived parameterisations. Global model simulations, including this cloud uptake, showed impacts on the oxidizing capacity of the troposphere that depended critically on whether the HO$_2$ uptake leads to production of H$_2$O$_2$ or H$_2$O.

1 Introduction

Clouds occupy around 15% of the volume of the lower troposphere and can impact atmospheric composition through changes in transport, photolysis, wet deposition and in-cloud oxidation of sulphur. Modelling studies have shown that aqueous phase chemistry can also significantly reduce gaseous HO$_2$ concentrations by heterogeneous uptake and loss into cloud droplets (Jacob, 1996; Tilgner et al., 2005; Huijnen et al., 2014). This chemistry is predicted to reduce OH and O$_3$ concentrations also due to the reduction in the gas-phase concentration of HO$_2$. This in turn, decreases the self-cleansing capacity of the atmosphere and increases the lifetime of many trace gases (Lelieveld and Crutzen, 1990) with impacts for climate and air quality. Aqueous phase models have been developed which combine multiphase chemistry with detailed microphysics (Tilgner et al., 2005), but there are limited experimental field data of gas-phase radical concentrations within clouds to corroborate model predictions of heterogeneous loss of radicals to cloud droplets. There have been a number of aircraft campaigns which have measured OH and HO$_2$ radical concentrations within clouds (Mauldin et al., 1997; Mauldin et al., 1998; Olson et al., 2004; Commare et al., 2010), often, however, simultaneous observations of cloud droplet number and size distributions (or other key gas-phase radical precursors) were not made during these studies, making it difficult to assess the full impact of clouds on radical concentrations. In general therefore climate and air quality models do not consider this impact of clouds on atmospheric composition.
Within the literature, a wide range of uptake coefficients of HO$_2$ to liquid and aerosol surfaces have been considered to reproduce observed HO$_2$ concentrations (e.g. (Sommariva et al., 2004; Haggerstone et al., 2005; Emmerson et al., 2007; Whalley et al., 2010)) with often large uptake coefficients (up to 1 at times) used to reconcile model over-predictions. A wide range of uptake coefficients, not wholly consistent with each other, have been reported from laboratory studies (Abbatt et al., 2012). From measurements conducted in our laboratory, uptake probabilities of HO$_2$ to sub-micron aerosols were found to be less than 0.02 at room temperature (George et al., 2013) for aqueous aerosols that did not contain significant transition metal ions; similarly low uptake coefficients were derived by Thornton and Abbatt (2005). In contrast, measurements by Taketani et al. (2008) suggest higher uptakes of ~0.1 with enhancements observed with increasing relative humidity.

The uptake of HO$_2$ to aqueous aerosols is driven by its high solubility in water owing to its high Henry’s Law constant ($H_{HO_2} = 4.0 \times 10^3$ M atm$^{-1}$ at 298.15 K (Hanson et al., 1992)). Once in the aqueous phase, reaction between dissolved HO$_2$ and its conjugate base, O$_2^-$, occurs rapidly. Thornton et al. (2008) have demonstrated that the solubility and reactivity of HO$_2$ is temperature and pH dependent and if the well characterised aqueous phase reactions (Sect. 2.3, (R1) – (R5)) alone are representative of the heterogeneous loss processes, only small uptake coefficients would be expected at room temperature, consistent with the work by George et al. (2013) and Thornton and Abbatt (2005). The enhanced uptake coefficients reported by Taketani et al. (2008) suggests that there may be additional competing mechanisms occurring, however.

Further uncertainties arise in the literature relating to the eventual gas-phase products from these aqueous-phase reactions. The general consensus, until recently, was that these reactions would ultimately produce H$_2$O$_2$ (Jacob, 1996), but the significance of the reactions depends critically on whether this is the case or whether, instead, H$_2$O is produced (Macintyre and Evans, 2011). This is significant as H$_2$O$_2$ can photolyse to return odd hydrogen (HO$_2$=OH+HO$_2$) to the gas phase, whilst cloud uptake of HO$_2$ to form H$_2$O provides a terminal sink for HO$_x$. Recent work by Mao et al. (2013) postulates that a catalytic mechanism involving the coupling of the transition metal ions Cu(I)/Cu(II) and Fe(II)/Fe(III) may rapidly convert HO$_2$ to H$_2$O, rather than H$_2$O$_2$ in aqueous aerosols. The concentration and availability of dissolved Fe and Cu in cloud droplets tends to be much lower than in
aqueous aerosol (Jacob, 2000) with a large fraction of Cu ions present as organic complexes
(Spokes et al., 1996; Nimmo and Fones, 1997) which are far less reactive towards \(\text{O}_2^- \) and
\(\text{HO}_2(\text{aq}) \) than the free ions (Jacob, 2000) and so it is uncertain whether the mechanism put
forward by Mao et al. (2013) could be extended to heterogeneous processes occurring within
cloud droplets.

To better understand the role of clouds and heterogeneous processes on the oxidative capacity
of the troposphere, coordinated gas-phase measurements of \(\text{OH} \) and \(\text{HO}_2 \) within clouds
together with aerosol-cloud microphysical measurements are needed. The Hill Cap Cloud
Thüringia 2010 (HCCT-2010) campaign which took place in 2010 aimed to characterise the
interaction of particulate matter and trace gases in orographic clouds. This paper presents the
impact of cloud droplets on measured gas-phase \(\text{OH} \) and \(\text{HO}_2 \) and uses these observations to
assess the proposed aqueous phase mechanisms and determine the global impact of clouds on
the tropospheric oxidising capacity.

2 Experimental

The HCCT-2010 campaign took place at the Thüringer Wald mountain range in central
Germany during September and October 2010. The radical measurements were made from
the German Weather Service (DWD) and the Federal Environmental Office (UBA) research
station located close to the summit of Mt. Schmücke (the highest peak in the mountain range,
937 m above sea level, 10°46'8.5" East, 50°39'16.5" North). In October, the UBA station is
immersed in cloud for 25 days on average (Herrmann et al., 2005) and, hence, is highly
suitable for the study of gas and aerosol interactions with orographic cloud. Two additional
experimental sites, approximately 4 km upwind of the summit site at Goldlauter and
approximately 3 km downwind of the summit at Gelhberg were also equipped with a number
of instruments which enabled the processing of a single air parcel as it passed through a cloud
to be assessed by multiphase trajectory models such as SPACCIM (SPectral Aerosol Cloud
Chemistry Interaction Model (Wolke et al., 2005); see Sect. 2.3). Further details of the
locations may be found in Herrmann et al. (2005).

2.1 Radical measurements

\(\text{OH} \) and \(\text{HO}_2 \) measurements were made using the fluorescence assay by gas expansion
technique (FAGE). Details of the instrumentation can be found in Whalley et al. (2010). A
single FAGE fluorescence cell was used for sequential measurements of \(\text{OH} \) and \(\text{HO}_2 \). This
was operated from the top of a 22 m high tower to co-locate with cloud measurements and ensure that the measurements were performed in full cloud. The cell was held at 1 Torr using a roots blower backed rotary pump system which was housed in an air-conditioned shipping container at the base of the tower (Fig. 1) and was connected to the cell via 30 m of flexible hosing (5 cm OD). 308 nm tuneable, pulsed laser light was used to electronically excite OH radicals, this was delivered to the cell via a 30 m fibre optic cable (Oz optics) with the laser system (a Nd:YAG pumped Ti:Sapphire, Photonic Industries) housed in the shipping container. Fluorescence was detected by a channel photo multiplier (CPM) (Perkin Elmer) and gated photon counting. Data were acquired every second (photon counts from 5000 laser shots), with a data acquisition cycle consisting of 220 seconds with the laser wavelength tuned to the OH transition (NO was injected after 110 sec to rapidly convert HO\textsubscript{2} to OH, to allow the quantification of HO\textsubscript{2}) and 110 sec tuned away from the OH transition to determine the background signal from laser scattered light.

The sensitivity of the fluorescence cell for OH and HO\textsubscript{2} was determined twice weekly during the measurement period through calibration using VUV photolysis of H\textsubscript{2}O vapour in a turbulent flow of zero air (BOC, BTCA air). Calibrations were performed at relevant H\textsubscript{2}O vapour concentrations so as to encompass the ambient H\textsubscript{2}O vapour concentrations observed. As such, no correction for quenching of the fluorescence signal due to changing conditions was necessary. The impact of H\textsubscript{2}O (v) on the sensitivity of this FAGE cell type (as outlined by Commane et al., (2010)) has been studied by systematically varying the H\textsubscript{2}O concentration from 500 ppmV to 10 000 ppmV and only ~ 10 % reduction in sensitivity over this range for both OH and HO\textsubscript{2} was observed. This reduction is entirely explained by the known quenching of fluorescence by H\textsubscript{2}O molecules. The lamp flux was determined by N\textsubscript{2}O actinometry (see Commane et al. (2010) for further details); this was carried out before and after the campaign and the values agreed within 21 %; the average flux was used to determine the sensitivity. The limit of detection (LOD) at a signal to noise ratio of one for one data acquisition cycle was ~6×106 molecule cm-3 and ~8.5×105 molecule cm-3 for OH and HO\textsubscript{2}, respectively.

A number of operational modifications (from the standard University of Leeds ground-based operations (Whalley et al., 2010)) were necessary to facilitate measurements of the gas-phase concentrations of the radicals within clouds. As tower measurements were required (schematic of the measurement set-up is provided in Fig. 1), a single, smaller (4.5 cm (ID)
diameter stainless steel cylinder) FAGE fluorescence cell, based on the University of Leeds aircraft cell design (Commane et al., 2010) was used for sequential measurements of OH and HO$_2$. Ambient air was drawn into the cell through a 1 mm diameter pinhole nozzle. The distance between sampling nozzle and radical detection region was 18 cm and NO (10 SCCM, BOC, 99.5%) was injected ~8 cm below the nozzle for titration of HO$_2$ to OH.

The fluorescence cell was orientated with the nozzle pointing horizontal to the ground in an attempt to minimise water pooling on the nozzle and being sucked into the cell during cloud events. Occasional droplets were ingested by the cell and resulted in an instantaneous large increase in the laser scattered signal. These spiked increases were discreet and short-lived; the data presented here have been filtered to remove these spikes, which were easy to identify.

Tests have been conducted post-campaign to determine the level of HO$_2$ interference from RO$_2$ radicals (Fuchs et al., 2011). Under this particular experimental set-up, an equivalent amount of ethene-derived RO$_2$ radicals to HO$_2$ were found to contribute 46 % to the total HO$_2$ signal (Whalley et al., 2013). The FAGE instrument was found not to be sensitive to CH$_3$O$_2$, and other short-chain alkane-derived RO$_2$ radicals but is sensitive to other alkene and aromatic derived RO$_2$ radicals with similar sensitivities to that for ethene-derived RO$_2$. The instrument is also sensitive to longer-chain alkane-derived RO$_2$ radicals (>C$_3$) albeit to a smaller extent, as reported by Whalley et al. (2013). For this rural environment, at this time of year, however, the contribution of alkene and aromatic-derived RO$_2$ radicals to the total RO$_2$ budget is expected to be small as the parent VOCs for these particular RO$_2$ types were at low concentrations; isoprene concentrations, for example, were on average just 12.6 pptv. As a consequence of this, the resultant HO$_2$ interference from RO$_2$ radicals should also be low.

2.2 Model expression and constraints

An analytical expression has been used to predict the mean diurnal HO$_2$ concentrations throughout the campaign both during cloud events and outside of cloud events. This expression was originally developed by Carslaw et al. (1999) for modelling OH, HO$_2$ and RO$_2$ radicals in the marine boundary layer and was found to agree with full Master Chemical Mechanism (MCM) model predictions for OH and HO$_2$ to within 20% for daytime hours. It has since been extended further by Smith et al. (2006) to include additional HO$_2$ sinks, such as heterogeneous loss ($k_{l,\text{wall}}$). The expression, given in Eq. (3), derives from the solution of simultaneous steady state expressions for OH and CH$_3$O$_2$ (Eq. (1) and Eq. (2) below) and
includes any primary sources of HO\textsubscript{2} not coming from radical propagation steps such as formaldehyde photolysis:

\[[OH] = \frac{2f_j [O_3^1 D] + [HO_2] [k_{HO_2+NO}[NO] + k_{HO_2+O_3}[O_3]]}{k_{CO+OH}[CO] + k_{H_2+OH}[H_2] + k_{HCHO+OH}[HCHO] + k_{CH_4+OH}[CH_4] + k_{NO_2+OH}[NO_2] + k_{O_3+OH}[O_3]} \] \hspace{1cm} (1)

\[[CH_3O_2] = \frac{k_{CH_4+OH}[CH_4][OH]}{k_{CH_3O_2+NO_2}[HO_2] + k_{CH_3O_2+NO}[NO]} \] \hspace{1cm} (2)

\[\beta [HO_2]^3 + \gamma [HO_2]^2 + \delta [HO_2] + \epsilon = 0 \] \hspace{1cm} (3)

where

\[\beta = 2k_{T2}(k_{T3B} + k_{T1A}) \]
\[\gamma = 2k_{T3}J_1 + 2k_{T3}k_{PS}[NO]B + 2k_{T2}k_{PS}[CH_4]B + k_{T}[NO_2]k_{T2}B + 2Ak_{T1}k_{PS}[NO] \]
\[\delta = 2k_{T3}k_{PS}J_1[NO] + 2k_{T2}k_{PS}J_1[CH_4] + k_{T1}[NO_2]k_{T2} + k_{T2}[NO_2]k_{PS}[NO] - (J_1 + J_2)Ak_{T2} \]
\[\epsilon = f_j k_1[NO_2]k_{PS}[NO] - (J_1 + J_2)Ak_{PS}[NO] \]

where

\[J_1 = P(OH) = 2f_j [O_3^1 D] \]

\[J_2 = 2J(HCHO \rightarrow 2HO_2)[HCHO] \]

\[A = k_{CO+OH}[CO] + k_{H_2+OH}[H_2] + k_{HCHO+OH}[HCHO] + k_{CH_4+OH}[CH_4] + k_{NO_2+OH}[NO_2] + k_{O_3+OH}[O_3] \]

\[B = k_{HO_2+NO}[NO] + k_{HO_2+O_3}[O_3] + k_{loss} \]

\[k_T = k_{OH+NO_2} \]
\[k_{T1} = k_{HO_2+HO_2} \]
\[k_{T2} = k_{HO_2+CH_3O_2} \]
\[k_{T3} = k_{OH+HO_2} \]
Limited CO concentration data are available from the summit site during the project, owing to instrumental problems for the first two weeks of measurements. An average CO concentration of 231 ppbv was used in the analytical expression to determine \(\text{HO}_2 \) concentrations although additional model runs at \(+ \) and \(-1\sigma \) of this average concentration (297 ppbv and 165 ppbv respectively) were also made to assess the sensitivity of the predicted \(\text{HO}_2 \) concentration to this constraint. Similarly, only discrete (non-continuous) measurements of HCHO were made during the project; an average value of 479 pptv was used as a model constraint and further model runs at \(+ \) and \(-1\sigma \) of this average concentration (818 pptv and 139 pptv respectively) were made.

\(j(\text{O}^1\text{D}) \) was measured from the top of the 22 m tower, alongside the FAGE detection cell, using a 2-\(\pi \) filter radiometer (Bohn et al., 2008) which pointed skywards throughout the campaign. The photolysis rates of formaldehyde, \(j(\text{HCHO}) \), have been calculated using the Tropospheric Ultraviolet and Visible (TUV) radiation model (Madronich and Flocke, 1998). The correlation between TUV calculated \(j(\text{HCHO}) \) with TUV calculated \(j(\text{O}^1\text{D}) \) was determined allowing these photolysis rates to be scaled to the measured \(j(\text{O}^1\text{D}) \) values to account for the presence of clouds. During cloud events, upward radiation will increase, with the magnitude of this increase dependent on the cloud optical depth (COD) and measurement height (Bohn, 2014). The contribution of upward radiation as a function of COD has been estimated using the TUV model using the methodology outlined by Bohn (2014). This estimated increase in upward radiation has been added to the in-cloud photolysis rates presented in Section 3. On average, photolysis rates are enhanced by \(~17\%\) during cloud events due to upwelling. A constant value of 1760 ppbv was assumed for \(\text{CH}_4 \) and a value of 508 ppbv was taken for \(\text{H}_2 \), \(\text{O}_3 \) and \(\text{NO}_x \) measurements were made from the top of the tower using commercial analysers which ran continuously from the 16\(^{th}\) September (day 3 of the field project). Details of the ancillary measurements used for comparison and model constraints are provided in Table 1. Further details of many of the measurement techniques can be found in the overview paper from an earlier hill cap cloud experiment, the Field Investigations of Budgets and Conversions of Particle Phase Organics in Tropospheric Cloud Processes (FEBUKA) project (Herrmann et al., 2005).
Rate coefficients are taken from the most recent recommendations in the Master Chemical Mechanism (MCMv3.2), http://mcm.leeds.ac.uk/MCM/.

A constant uptake rate for HO₂ \((k_{\text{u,0}})\) of 0.14 s⁻¹ to cloud droplets was included during cloud events to reproduce the average HO₂ in-cloud observations. Additional model runs with no uptake during cloud events have also been run for comparison, as have model runs in which the first order loss to droplets was varied to replicate the HO₂ observations as a function of i) cloud droplet surface area and ii) pH (Sect. 3.1).

2.3 Aqueous phase chemistry

An outline of the aqueous phase reactions thought to be occurring, and which converts HO₂ to H₂O₂, is given below:

\[
\begin{align*}
\text{HO}_2(g) & \rightleftharpoons \text{HO}_2(aq) \quad \text{(R1)} \\
\text{HO}_2(aq) & \rightleftharpoons \text{H}^+(aq) + \text{O}_2^-(aq) \quad \text{(R2)} \\
\text{HO}_2(aq) + \text{HO}_2(aq) & \rightarrow \text{H}_2\text{O}_2(aq) + \text{O}_2(aq) \quad \text{(R3)} \\
\text{HO}_2(aq) + \text{O}_2^-(aq) (+\text{H}_2\text{O}(l)) & \rightarrow \text{H}_2\text{O}_2(aq) + \text{O}_2(aq) + \text{OH}^-(aq) \quad \text{(R4)} \\
\text{O}_2^- + \text{O}_2(aq) (+\text{H}_2\text{O}(l)) & \rightarrow \text{OH}^-(aq) + \text{OH}(aq) + 2\text{O}_2 \quad \text{(R5)}
\end{align*}
\]

The equations used to calculate the theoretical increase in \(\gamma_{\text{HO}_2}\) with increasing pH, as proposed by Thornton et al. (2008), which have been compared with \(\gamma_{\text{HO}_2}\) determined in this work (Sect. 3.1), are given by:

\[
\frac{1}{\gamma_{\text{HO}_2}} = \frac{1}{a_{\text{HO}_2}} + \frac{2.04 \times 10^9}{8000(\text{H}_{\text{eff}} R T)^2 k_{\text{eff}}[\text{HO}_2(g)] T_F} \quad \text{(4)}
\]

where

\[
H_{\text{eff}} = H_{\text{HO}_2} \left[1 + \frac{K_{\text{eq}}}{[\text{H}^+]^2} \right] \quad \text{(5)}
\]

and
The values used in Eq. (4) – Eq. (6) to calculate γ_{HO_2} are provided in Table 2.

2.4 Trajectory model

In addition to the modelling exercises, outlined in Sect. 2.2 above, an up-to-date chemistry process model, SPACCIM (SPectral Aerosol Cloud Chemistry Interaction Model (Wolke et al., 2005)) has been used to simulate the gas phase HO$_2$ radical concentrations along a trajectory during the mountain overflow of an air parcel passing an orographic hill cap cloud to further explore the heterogeneous loss processes occurring during the cloud events encountered. This model combines complex microphysical and detailed multiphase chemistry, permitting a detailed description of the chemical processing of gases, deliquesced particles and cloud droplets. SPACCIM incorporates the MCMv3.1-CAPRAMv4.0a mechanism (Master Chemical Mechanism (Saunders et al., 2003) / Chemical Aqueous Phase RAdical Mechanism (Tilgner et al., 2013; Brauer et al., in preparation)) with 11381 gas phase and 7125 aqueous phase reactions. The MCMv3.1-CAPRAMv4.0a mechanism incorporates a detailed description of the inorganic and organic multiphase chemistry including phase transfer in deliquesced particles and cloud droplets based on a time-dependent size-resolved aerosol/cloud spectra. Further details about the SPACCIM model framework and the chemical mechanisms are given elsewhere in the literature (Tilgner et al., 2013; Wolke et al., 2005; Sehili et al., 2005) (and references therein).

The measured meteorological data as well as the physical and chemical aerosol and gas phase data at the upwind site in the village of Goldlauter provided the basis for the time-resolved initialisation of the model. In addition, separate initial box model runs with the MCM mechanism were performed to provide a more comprehensive initialisation of the chemical gas phase composition at the simulation start. SPACCIM simulations were performed with an air parcel adveited along a predefined orography-following trajectory from the upwind site (Goldlauter) through the hill cap cloud, passing Mt. Schmücke (summit site), to the downwind site (Gehlberg). Parcel simulations were performed every 20 minutes allowing a time-resolved comparison of the predicted and measured HO$_2$ data at the summit site.
2.5 Global chemistry transport model

The GEOS-Chem model version 9.1.3 (www.geoschem.org) has been run to assess the global impact of the uptake of HO$_2$ by cloud droplets. The model was run at 2x2.5 degree global resolution for two years. The first year was considered a spin-up and has been ignored. The standard model includes uptake of HO$_2$ onto aerosols (with an uptake coefficient of 0.2), but, the model has been updated in this work to include an uptake of HO$_2$ onto clouds. This is parameterized as a first order loss onto clouds in a similar way to that onto aerosols following Schwartz (1984) using the temperature dependent parameterization of Thornton et al. (2008) with a cloud pH of 5. The cloud surface area is derived from the cloud liquid water in the each model grid box (provided from the meteorological analyses) and cloud droplet radius is taken to be 6µm over continents and 10µm over oceans. Clouds below 258 K are assumed to be ice and no uptake occurs. The parameterization takes diffusional limitation in the gas phase into account but not in the cloud phase. All simulations use the same cloud liquid water fields, thus the impact of clouds on photolysis, wet deposition and transport is identical in all simulations.

3 Results and Discussion

Near continuous OH and HO$_2$ measurements were made at the Mt. Schmücke site from 13th September to 19th October 2010, during which 35 separate orographic cloud events were encountered which lasted as little as 24 min to more than 2 days in duration. Fig. 2 shows the time-series of OH, HO$_2$, j(O1D), NO, O$_3$ and liquid water content. OH concentrations were close to or below the limit of detection (LOD) of the instrument for much of the measurement period. A clear diurnal signal was only observable when several days of data were averaged together outside of cloud events (Fig. 3). The peak OH concentration was observed at midday at ~1 x 106 molecule cm$^{-3}$. No clear OH diurnal profile was observed during cloud events. HO$_2$ concentrations were variable depending on whether the site was in cloud or not. The average diurnal peak concentration of HO$_2$ was ~4 x 107 molecule cm$^{-3}$ outside of cloud events (Fig. 3). A diurnal profile of HO$_2$ was also observed when sampling within clouds with peak concentrations reduced by approximately 90% on average. The measured rate of ozone photolysis, j(O1D), varied with time of day and cloud thickness. Daily peak photolysis rates were 8.8 x 10$^{-6}$ s$^{-1}$ and 4.1 x 10$^{-6}$ s$^{-1}$ outside and within clouds, respectively. Clouds thus reduced photolysis rates by ~60%.
Fig. 4 shows the dependence of measured HO\(_2\) concentration on cloud droplet surface area for all daytime cloud events. The observed HO\(_2\) concentration has been divided by the observed \(j(O^1D)\) to remove the impact of the changing photolysis rates within the cloud. This ratio has then been normalized to 1 when the droplet surface area was zero and plotted against the cloud droplet surface area. The decrease in the ratio with increasing droplet surface area suggests that in addition to the reduction in HO\(_2\) caused by a reduction in the photolysis rates within clouds, there is a further loss process of HO\(_2\) that increases with cloud droplet surface area. A similar decrease in the ratio is also observed with increasing liquid water (not shown). From these observations it becomes apparent that a heterogeneous process must be occurring in the presence of clouds.

An insight into the mechanism by which HO\(_2\) is lost to clouds is demonstrated by the dependence of the measured HO\(_2\) concentration as a function of cloud water pH (Fig. 5a). Throughout the project the pH of the cloud water was recorded every hour and ranged from 3.4 to 5.3. The lowest in-cloud HO\(_2\) occurred in clouds with the highest cloud water pH suggesting that the solubility of HO\(_2\) was enhanced at higher pH as might be expected given that HO\(_2\) is a weak acid.

3.1 Determining the uptake coefficient for HO\(_2\) to cloud droplets

The analytical expression derived by Carslaw et al. (1999), and given in Eq. (3), has been used to estimate HO\(_2\) concentrations both in and out of cloud events (Fig. 6). The expression represents reasonably well the campaign mean diurnal observation of HO\(_2\) outside of the cloud events during the daytime (red dashed line and shading). During cloud events, however, the model (black dashed line and shading) over-estimates the observed (grey line) HO\(_2\) throughout the day. The inclusion of a first order loss process \(k_{Loss}=0.14\) s\(^{-1}\) in the analytical expression is able to bring the observations and calculation into better agreement on average. The cloud droplet surface area was variable during the different cloud events encountered (1.2±0.4×10\(^3\) cm\(^2\) m\(^{-3}\)) although no diurnal trend in this parameter was evident. A clear anti-correlation between the observed HO\(_2\) concentration and droplet surface area was observed and this correlation could only be reproduced by the analytical expression by increasing \(k_{Loss}\) in the model from 2.0×10\(^{-2}\) s\(^{-1}\) to 3.5×10\(^{-1}\) s\(^{-1}\) as the surface area increased from 1.2×10\(^2\) cm\(^2\) m\(^{-3}\) to 1.5×10\(^3\) cm\(^2\) m\(^{-3}\) (Fig. 7).
This first order loss rate can be converted into an uptake coefficient (γ_{HO_2}) using Eq. (7) (Schwartz, 1984). Using campaign mean values for cloud surface area (A) of $1.2 \times 10^3 \text{ cm}^2 \text{ m}^{-2}$, droplet radius ($r_p$) of 6 µm, gas phase diffusion constant for HO$_2$ (D_g) of 0.25 cm2 s$^{-1}$, and molecular speed of HO$_2$ (ω) of 64000 cm s$^{-1}$ gives an uptake coefficient of 0.01; the uptake coefficient as a function of cloud droplet surface area is presented in the upper panel of figure 5.

$$k_{\text{loss}} = \left(\frac{r_p}{D_g} + \frac{4}{\gamma_{\text{HO}_2} \omega}\right)^{-1} A \quad (7)$$

These derived uptake coefficients are in good agreement with laboratory studies (Abbatt et al., 2012), including recent measurements in our laboratory, which ranged between 0.003 – 0.02, for heterogeneous loss of HO$_2$ on aqueous (NH$_4$)$_2$SO$_4$, NaCl and NH$_4$NO$_3$ sub-micron aerosols (George et al., 2013). This methodology provides, for the first time, a direct field assessment of the heterogeneous rate of loss of HO$_2$.

Repeating this analysis but splitting the observations by cloud pH leads to values of γ_{HO_2} ranging from 1.65×10^{-3} at a pH of 3.7 to 8.84×10^{-2} at a pH of 5.2 (Fig. 5b). These values are in good agreement with those calculated by Thornton et al. (2008) suggesting that the Thornton mechanism (which is based entirely on the known aqueous phase chemistry) is in play in real clouds and that it can be used to estimate the heterogeneous loss of HO$_2$ to cloud surfaces in the troposphere.

SPACCIM simulations (Wolke et al., 2005) have also been carried out, focussing on one particular cloud event which fulfilled the required meteorological and connected flow conditions for the cloud passage experiment (additional simulations relating to the other cloud events encountered during HCCT will be presented in future publications). The modelled and measured HO$_2$ concentrations at Mt. Schmücke during the cloud event, FCE1.1, are presented in Fig. 8. Comparisons between modelled and measured concentrations demonstrate the simulated HO$_2$ concentrations are in a similar range as the measurements. The mean simulated HO$_2$ concentrations of 3.1×10^6 molecule cm$^{-3}$ for FCE1.1 are a factor of 1.4 greater than the HO$_2$ measurements which were, on average 2.2×10^6 molecule cm$^{-3}$ during this particular cloud event. A further trajectory model simulation has been run and compared to measured HO$_2$ concentrations at Mt. Schmücke during a non-cloud event, NCE0.8, also. Fig. 9 reveals that the model is able to reproduce the
modelled HO$_2$ concentrations well and tracks the temporal concentration profile throughout this event. The mean predicted HO$_2$ concentration is just 24% smaller than the measurements. The agreement between the trajectory modelled and measured in-cloud HO$_2$ values confirms the significant reductions of radicals within clouds predicted by complex multiphase box models in the past (Lelieveld and Crutzen, 1990; Tilgner et al., 2005; Tilgner et al., 2013) and supports the findings presented above. Importantly, the results imply that the phase transfer data for HO$_2$ used within SPACCIM simulations, e.g. the applied mass accommodation coefficient ($\alpha_{\text{HO}_2} = 10^{-2}$), are appropriate to reproduce the reduced HO$_2$ concentrations for in-cloud conditions. These applied parameters control the uptake fluxes towards the aqueous phase and, ultimately, the aqueous phase HO$_X$ levels. Confidence in the values assumed for these parameters is essential to model in-cloud oxidation within the aqueous phase accurately, with the multiphase chemistry of other important chemical subsystems, such as the S(IV) to S(VI) conversion, the redox-cycling of transition metal ions and the processing of organic compounds all heavily dependent upon the values taken.

3.2 Global impact of the uptake of HO$_2$ onto cloud droplets

The GEOS-Chem Chemistry Transport Model (www.geos-chem.org) has been used to assess the impact of the uptake of HO$_2$ onto cloud droplets on the global oxidizing capacity using the, now field-validated, mechanism of Thornton et al. (2008). To investigate both the impact of the uptake and whether H$_2$O$_2$ is produced three simulations are run, i) with no cloud uptake of HO$_2$, ii) with cloud uptake (assumed pH of 5) of HO$_2$ using the Thornton mechanism to produce H$_2$O$_2$, and iii) with cloud uptake (assumed pH of 5) of HO$_2$ to produce H$_2$O. All simulations include HO$_2$ uptake onto aerosol with γ_{HO_2} of 0.2, which is the standard value used in GEOS-Chem (Martin et al., 2003; Macintyre and Evans, 2011).

Fig. 10 shows the annual fractional change in surface HO$_2$, OH, H$_2$O$_2$ and O$_3$ concentrations with cloud uptake switched on, and with either H$_2$O$_2$ being produced or not. Column changes are shown in Fig. 11. Both with and without H$_2$O$_2$ production, the impact is most evident in areas with long HO$_2$ lifetimes, i.e. regions with low NO$_x$ and low HO$_2$ concentrations, and with significant cloud water densities (see Figure 12). These are concentrated in the extra-tropics with up to 25% and 10% reduction in surface and column concentrations respectively. The impact on the H$_2$O$_2$ concentration depends critically on whether H$_2$O$_2$ is produced or not within clouds. In the extra-tropics there are up to 30% increases in surface H$_2$O$_2$ if it is
produced with a similar reduction if it is not. The impact on surface extra-tropical oxidizing
capacity (OH) are of the order 10-20% for both cases, but changes to the column values are
only significant in the case where H$_2$O$_2$ is not produced. Changes in O$_3$ concentration are
surprisingly small in both simulations. This reflects both the anti-correlation between NO
concentrations and HO$_2$ lifetimes, and the low cloud water densities over the polluted
continental regions. The largest fractional changes in HO$_2$ concentration occur in regions
which are not producing O$_3$. The change in the lifetime due to the HO$_2$ uptake onto clouds
thus has little impact on O$_3$ production. The large surface impact of the cloud uptake
primarily reflects uptake of HO$_2$ by clouds at the surface (see figure 12a) rather than a
transported impact of cloud processes from aloft downwards. The small impact on O$_3$ is
consistent with results of Liang and Jacob. (1997). These simulations make a variety of
approximations (see Sect. 2.5) but they indicate that the uptake of HO$_2$ onto clouds at the
rates observed in this field campaign may offer a substantial perturbation to the oxidizing
capacity (OH and H$_2$O$_2$) of the atmosphere, especially in the extra-tropics, but seems to have
a very small impact on O$_3$ concentrations.

4 Conclusions

We have shown here experimentally for the first time that the uptake of HO$_2$ onto clouds can
have a significant impact on the composition of the atmosphere in a way consistent with
theoretical predictions. It seems likely, however, that chemistry occurring within clouds will
have other currently unknown impacts on the composition of the atmosphere. Global and
regional models need to be developed further to investigate these impacts with predictive pH
an especially important development. The impact of these processes may also change in the
future with climate induced impacts on the hydrological cycle. Further laboratory, field
studies and modelling are required to help resolve these remaining complex questions.

Acknowledgements

The authors would like to thank Dr. Trevor Ingham, John Spence and Matthew Broadbent for
help with the development of the FAGE instrument to facilitate tower measurements. HCCT-
2010 was partially funded by the German Research Foundation (DFG), grant He 3086/15-1.
SM participation was funded by DFG, grant ME-3534/1-2. LW, DS, IG, ME and DH are
grateful to the Natural Environment Research Council for funding.
References

Bohn, B.: Interactive comment, Atmos Chem Phys Discuss, 14, C7390-C7394, 2014.

Whalley, L. K., Blitz, M. A., Desservettaz, M., Seakins, P. W., and Heard, D. E.: Reporting the sensitivity of laser-induced fluorescence instruments used for HO\textsubscript{2} detection to an...
interference from RO\textsubscript{2} radicals and introducing a novel approach that enables HO\textsubscript{2} and certain RO\textsubscript{2} types to be selectively measured, Atmospheric Measurement Techniques, 6, 3425–3440, 2013.

Table 1. Details of ancillary measurements used for comparison with radical observations and cubic model constraints.

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid Water Content</td>
<td>Gerber particle volume monitor</td>
</tr>
<tr>
<td>Particle Surface Area (drops)</td>
<td>Gerber particle volume monitor</td>
</tr>
<tr>
<td>Effective Drop Radius</td>
<td>Gerber particle volume monitor</td>
</tr>
<tr>
<td>Temperature</td>
<td>Automatic weather station</td>
</tr>
<tr>
<td>Relative Humidity</td>
<td>Automatic weather station</td>
</tr>
<tr>
<td>j(O'D)</td>
<td>Filter Radiometer</td>
</tr>
<tr>
<td>Cloud droplet pH</td>
<td>Mettler 405-60 88TE-S7/120</td>
</tr>
<tr>
<td>NOx</td>
<td>Chemiluminescence detector</td>
</tr>
<tr>
<td>O3</td>
<td>TEI-42c, UV absorption</td>
</tr>
<tr>
<td>CO</td>
<td>Thermo Electron CO analyser</td>
</tr>
<tr>
<td>HCHO</td>
<td>2,4-dinitrophenylhydrazine (DNPH) cartridge samples</td>
</tr>
</tbody>
</table>

Table 2. The values used for the calculation of the theoretical uptake coefficient, black triangles, Fig. 5b, as a function of pH; values given at a pH = 5 here.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>T (Temperature)</td>
<td>279 K</td>
<td>Mean HCCT-2010 temperature</td>
</tr>
<tr>
<td>H_{H_2O} (Henry’s law constant)</td>
<td>1.72×10^4 M atm$^{-1}$</td>
<td>At 279 K</td>
</tr>
<tr>
<td>H_{eff} (Effective Henry’s law constant)</td>
<td>8.8×10^4 M</td>
<td></td>
</tr>
<tr>
<td>K_{eq} (Equilibrium constant associated with R2)</td>
<td>4.2×10^7 M</td>
<td>At 279 K</td>
</tr>
<tr>
<td>k_3 (Rate constant for reaction R3)</td>
<td>8.6×10^7 M$^{-1}$ s$^{-1}$</td>
<td>Bielski et al.(1985)</td>
</tr>
<tr>
<td>k_4 (Rate constant for reaction R4)</td>
<td>1.0×10^8 M$^{-1}$ s$^{-1}$</td>
<td>Bielski et al.(1985)</td>
</tr>
<tr>
<td>k_{eff} (effective second order rate constant)</td>
<td>1.65×10^9 M$^{-1}$ s$^{-1}$</td>
<td>At 279 K, pH = 5</td>
</tr>
<tr>
<td>α_{H_2O} (accommodation coefficient)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ω (mean molecule speed of HO$_2$)</td>
<td>64000 cm2 s$^{-1}$</td>
<td>At 279 K</td>
</tr>
<tr>
<td>N_A (Avogadro’s number)</td>
<td>6.02×10^{23} mol$^{-1}$</td>
<td></td>
</tr>
<tr>
<td>R (Universal gas constant)</td>
<td>0.082057 atm L mol$^{-1}$ K$^{-1}$</td>
<td></td>
</tr>
<tr>
<td>[HO$_2$]</td>
<td>2×10^7 molecule cm$^{-3}$</td>
<td></td>
</tr>
<tr>
<td>r_p (particle radius)</td>
<td>$6 \mu m$</td>
<td>Mean cloud droplet radius</td>
</tr>
</tbody>
</table>
Figure 1. Schematic of the FAGE instrument setup during the HCCT-2010 campaign. ‘PD’ refers to photodiode, used to normalise the observed HO$_2$ signal to laser power.
Figure 2. Time-series showing the average liquid water content during each cloud episode (blue, horizontal lines), [OH] (purple), [HO₂] (red), j(O¹D) (orange), NO (green) and O₃ (grey). All data are the average concentrations determined for each FAGE data acquisition cycle apart from OH concentrations which are hourly.

Figure 3. Average diurnal profiles of j(O¹D), OH, HO₂ in cloud (grey) and out of cloud (coloured). The error bars represent the 1σ variability of the averaged data; only the variability in the out of cloud radical data is shown for clarity. Each data point represents 10 minute averaged data apart from the OH, for which the hourly averaged data are given.
Figure 4. The dependence of the measured HO$_2$ concentration as a function of cloud droplet surface area. To remove the influence of changing photolysis rates the measured HO$_2$ concentrations have been divided by the correspondingly observed rate of photolysis of ozone (j(O1D)). This ratio has then been normalized to give a value of 1 when the droplet surface area was zero. The systematic decrease in this normalized ratio with increasing droplet surface area suggests that in addition to the reduction in HO$_2$ caused by a reduction in the photolysis rates within clouds, there is a further loss process that increases with cloud droplet surface area. The ratio decreases linearly with increasing droplet surface area up to 1500 cm2m$^{-3}$ with the line of best fit being Ratio = 1 - 5x10$^{-5}$xSA.
Figure 5a. Dependence of the HO$_2$ concentration observed in cloud as a function of cloud pH. All in-cloud HO$_2$ data were averaged into corresponding pH bins (0.6 pH units). The [HO$_2$] decreases exponentially with increasing pH with the line of best fit ([HO$_2$] = 3.8 \times 10^5 + 5.5 \times 10^9 \exp^{-2.2pH}) displayed by the grey line. Figure 5b. The cloud uptake coefficient estimated by optimizing the HO$_2$ concentration calculated from the analytic expression of Carslaw et al. (1999) compared to the observed HO$_2$ concentration as a function of pH (red triangles). The theoretical expression derived by Thornton et al. (2008) (Eq. (4)) using parameters provided in Table 2 is shown as the black triangles with the grey line being a best-fit line for these data ($\gamma_{\text{HO}_2} = 2.15 \times 10^{-6} \exp^{2.01pH}$).
Figure 6, Upper panel. Average measured (solid red line) and simulated (dashed red line) diurnal profile of HO\textsubscript{2} concentrations outside of cloud events. The simulation is based on an expression originally determined by Carslaw et al. (1999) and described further in Sect. 2.2. The shading highlights the sensitivity of the model to ± 1σ changes in the CO and HCHO concentrations used as constraints.

Lower panel. Average measured (solid grey line) and modelled (dashed black and blue lines) diurnal profile of HO\textsubscript{2} concentration during cloud events. The model was run without (grey) and with (blue) a loss of HO\textsubscript{2} to cloud droplets equal to a first order loss rate of 0.1 s-1. The shading highlights the sensitivity of the model to ± 1σ changes in the CO and HCHO concentrations used as constraints.
Figure 7, lower panel. The dependence of the measured HO₂ concentration (grey circles) and modelled HO₂ concentration with a variable first order loss (red squares) as a function of cloud droplet surface area.

Middle panel. The dependence of the first order loss term used in the model expression to best replicate the observed in-cloud HO₂ as a function cloud droplet surface area. The line of best fit being \(k_{\text{loss}} = 2.0 \pm 0.1 \times 10^{-5} \times \text{SA} \).

Upper panel. The dependence of \(\gamma_{\text{HO}_2} \) calculated using Eq. 7 as a function of cloud droplet surface area and constrained with the variable first order loss term as shown in the middle panel. The line of best fit being \(\gamma_{\text{HO}_2} = 2.9 \pm 0.5 \times 10^{-5} \times \text{SA} \).
Figure 8. Comparison of the measured (green squares) and modelled (red triangles), gas phase HO₂ concentrations at Mt. Schmücke site during cloud event FCE1.1 (14th, 15th Sept. 2010 11:00-01:00 CEST).
Figure 9. Comparison of the measured (green squares) and modelled (red triangles) gas phase HO$_2$ concentrations at Mt. Schmücke site during the non-cloud event NCE0.8.

Figure 10. Annually average fractional change in surface HO$_2$, OH, H$_2$O$_2$, and O$_3$ with the inclusion of HO$_2$ uptake into clouds leading to a) the production of H$_2$O and b) the production of H$_2$O$_2$ assuming a cloud pH of 5 and the Thornton et al. (2008) parameterization.
Figure 1. Annually averaged fractional change in column HO$_2$, OH, H$_2$O$_2$, and O$_3$ with the inclusion of HO$_2$ uptake into clouds leading to a) the production of H$_2$O and b) the production of H$_2$O$_2$ assuming a cloud pH of 5 and the Thornton et al. (2008) parameterization.
Figure 12. Annually averaged cloud water in the GEOS5 fields as a) a column total and b) a zonal mean.