Response to reviewers’ comments

We thank the reviewers for their thoughtful comments. We have carefully revised the manuscript accordingly. Our point-to-point responses to the reviewers’ comments, which are repeated in italic, are given below.

ACPD manuscript: 10.5194/acpd-14-21149-2014
Authors: L. Yu, J. Smith, A. Laskin, C. Anastasio, J. Laskin, and Q. Zhang

Reviewer #1

Yu et al studied the formation of non-volatile organic compounds through two aqueous mechanisms: oxidation via OH radical initiated by HOOH photolysis, and oxidation through 3C* initiated by photolysis of an aromatic aldehyde (which also includes OH oxidation due to the formation of HOOH via this route). The authors used a variety of analytical methods to describe the composition of the SOA at the half-way reaction mark. This study builds upon Sun et al (2010), adding a molecular-composition analysis based on both positive and negative ion mode high-resolution nano-DESI MS. The authors conclude that hydroxylation and various oligomerization reactions (e.g., coupling of phenoxy and aromatic alkyl radicals) are responsible for the aqueous SOA formation. This is an interesting analytical study that offers insight into a class of poorly-understood reaction mechanism in the aqueous phase, and should be published as such. There are areas that would benefit from clarification and further discussion, which I outline in the specific comments. In particular, it would be valuable to discuss mechanistic differences in guaiacol, syringol, and phenol in terms of the additional methoxy groups as activating substituents in the OH/3C* or abstraction vs. addition pathways of these radicals.

Authors’ reply #1: We have added some discussions on the influence of additional methoxy group on the reactivity of phenols in Sect. 3.1: “The reactivity differences among the three precursors are likely due to the electron-donating effect of the o-methoxy substituents, which may significantly increase the rate of electrophilic reactions on the benzene ring.”

Reviewer’s comment:
1. Including structures of guaiacol, syringol, and phenol would be helpful for understanding the discussion in the introduction and much of the text.

Authors’ reply #2: As suggested, we added the structures of syringol, guaiacol, and phenol in Table 1.

Reviewer’s comment:
2. The authors state in several areas a consistency with Smith et al that the aromatic species react “faster” with 3C* than OH. What does this mean exactly? Are the reaction rate coefficients $k_{\text{3C*}} > k_{\text{OH}}$ or the effective rates $k_{\text{3C*}}[3C*> k_{\text{OH}}[\text{OH}]$? If the former, what is the ratio? If the latter, can the authors make such a meaningful comparison without knowing $[3C*]$ that is
derived from 5uM 3,4DMB+hv and [OH] from 100uM HOOH +hv? Further, as the 3C* study includes OH oxidation (Fig 7), how can the entirety of the reaction be attributed to 3C*?

Authors’ reply #3: Our statement of phenols reacting faster with 3C* than with •OH is based on the effective, or pseudo first-order rate constants for phenol loss (k'_A) measured in our experiments, i.e., $k_3C*[^3C*] > k_{OH}[OH]$. Since the pseudo first-order rate is the product of the bimolecular rate constant and the steady state concentration of the oxidant: $k'_A = k_{A}[Oxidant]$, it is true that k'_A is dependent on oxidant concentrations. However, since the steady state concentrations of •OH and 3C* in our reaction systems are comparable to the concentrations of these oxidants in atmospheric drops, the comparison of k'_A is meaningful. Based on the average k'_A values from our syringol experiments (2.5×10^{-4} s$^{-1}$ for syringol + 3C* and 1.0×10^{-4} s$^{-1}$ for syringol + •OH), and the bimolecular rate constants determined by Smith et al. (in preparation for PCCP), we calculate that steady state concentrations of •OH and 3C* during our experiments are 6.9×10^{-14} mol L$^{-1}$ and 5.1×10^{-15} mol L$^{-1}$, respectively. Thus, the •OH steady state concentration in our solution is similar to the aqueous [•OH] measured in fog and cloud waters (Anastasio and McGregor, 2001; Arakaki et al., 2013). Although there are no reported literature values for [•OH] in ambient fog/cloud waters, recent, not-yet published results from Anastasio’s group suggest a similar order of magnitude of [•OH] in Davis fog water. These points are now clarified in Sect. 3.1.

In terms of the question of whether the phenol loss in reactions with 3C* can be entirely attributed to 3C*, we believe the •OH contribution was minor. While Anastasio et al. (1997) showed that HOOH, a precursor for •OH, is produced from reactions of phenols with 3C*, the amount of HOOH produced is small and •OH oxidation in the triplet experiments appears to be negligible (Smith et al., 2014). Approximately 4-7 molecules of phenol are destroyed for every molecule of HOOH produced under the experimental conditions similar to those used in this study, suggesting that a majority of the photodestroyed phenol leads to products other than HOOH. In response to the reviewer’s comments, we now added the sentence in Sect 3.2: “Note that the amount of HOOH produced in the reactions of phenols + 3C* is small and •OH oxidation appears to be negligible compared to 3C* oxidation (Smith et al., 2014).”

Reviewer’s comment:
3. Additional to the above comment, can the authors provide estimates of steady-state [Oxidant] from HPLC-UV decay trace of the aromatic precursors?

Authors’ reply #4: The steady state concentrations of •OH and 3C* during this study are estimated at 5.1×10^{-15} mol L$^{-1}$ and 6.9×10^{-14} mol L$^{-1}$, respectively, for syringol, 1.4×10^{-15} mol L$^{-1}$ and 2.6×10^{-14} mol L$^{-1}$, respectively, for guaiacol, 4.4×10^{-16} mol L$^{-1}$ and 7.4×10^{-14} mol L$^{-1}$, respectively, for phenol. This information is now provided in Sect. 3.1.

Reviewer’s comment:
4. [Experimental methods] The authors explain later in the text that the reason they blow dry one sample (then later reconstitute in water) and freeze dry the other is to remove the semivolatiles from the blow dry case. Why not explicitly state this in the experimental methods?

Authors’ reply #5: Done as suggested. By the way, we did not freeze dry samples. The flash-frozen samples were prepared by rapidly freezing the solutions using liquid nitrogen. These
samples were stored in the dark under -20 °C and were thawed inside a refrigerator (~ 4°C) prior to analysis. The procedures for AMS analysis of the thawed flash-frozen sample and the reconstituted blown-down samples are exactly the same.

Reviewer’s comment:
5. [Experimental methods] If Milli-Q water served as the analytical blank, did the mass of 3,4DMB count towards the mass yield of the 3C* oxidation system? Were controls performed in the photolysis of 3,4DMB alone and evaporated in the same way?

Authors’ reply #6: The mass of 3,4-DMB was removed from the calculation of the aqSOA mass yields. Control experiments were performed to examine the photolysis of 3,4-DMB alone and the resulting solutions were evaporated in the same way as treating the aqSOA samples. No formation of aqSOA was observed. The results of the control experiments are shown in Smith et al. (2014) (Figure S8 in the Supporting Information). In response to reviewer’s comments, we added the sentence: “In addition, no formation of aqSOA was observed in control experiments in which 3,4-DMB was illuminated alone under the same condition and the resulting solution evaporated in the same way.” at the end of Sect. 2.1.

Reviewer’s comment:
6. [21158, line 1] What is the significance of “near 100%” mass yield, when this value can be exceeded from oxygen incorporation into the phenolic structure?

Authors’ reply #7: Assuming no carbon losses, i.e., no formation of volatile and semivolatile species that evaporate during the experiments or the drying processes, the mass yields of phenol, guaiacol, and syringol should be 201%, 161%, and 143%, respectively, for 3C*-mediated reactions, and 214%, 184% and 142%, respectively, for •OH-mediated reactions, based on comparing the OM/OC ratios of the aqSOA and the corresponding precursors. We added this information in Sect. 3.1: “Based on comparing to the OM/OC of the precursors, the mass yields of the aqSOA should be 142-214% assuming all reacted phenols were converted into low volatility species. However, the measured values are 16-38% lower, indicating that approximately 16-38% of the reacted phenols were converted into volatile and semi-volatile species that evaporated during illumination and/or drying.”

Reviewer’s comment:
7. [21158, lines 26-29] I find this speculation strange. Why would ESI efficiency (in both pos/neg mode) be reduced for “highly oxidized species” when the positive mode ionization is partially cluster formation and the negative mode ionization is deprotonation? Also, more support is needed if one is to claim that ESI alone causes decarboxylation of organic acids – as this ionization mechanism should be excellent for the detection of organic acids in the negative mode without extensive fragmentation. Do authors have evidence that certain carboxylic acids standards undergo this instrument-assisted decomposition in standard ESI? Levens et al 2007 that is cited is not appropriate here, as Levens and coauthors studied losses of neutrals from precursor ions through collision-induced dissociation in an ion trap (e.g., energy was supplied to purposefully fragment ions) as opposed to this study.
Authors’ reply #8: We agree with the reviewer’s comments, and removed related discussions in the revised manuscript.

Reviewer’s comment:
8. [21159, lines 1-5] After considering the 1 – 4% of organic acids that were not analyzed in nano-DESI, what would the corrected O/C be? My assumption is that it does not make much of a difference in the O/C.

Authors’ reply #9: By considering 1-4% of organic acids that were not analyzed in nano-DESI the O/C would increase by 0.03-0.05. The sentence now reads: “According to IC analysis, these small organic anions together represent 0.8-3.8% of the TOC of aqSOA (Table 1). Therefore accounting them for these species would only increase the nano-DESI O/C values by 0.03-0.05”.

Reviewer’s comment:
9. [21160, lines 6-7] Specifically which kind of functional groups in phenol aqSOA would not be well-ionized by both the positive and negative mode nano-DESI that was used here? If there is an aromatic group intact, (+) nano-DESI should ionize these compounds well.

Authors’ reply #10: In negative ion mode nano-DESI analysis, phenol and carboxyl groups should be readily ionized while aldehyde, ketone, and methoxy groups are ionized less efficiently. In positive ion mode nano-DESI analysis, larger oligomers containing multiple carbonyl groups form sodium adducts. All other groups in phenolic compounds are not very well ionized in positive ion mode.

Reviewer’s comment:
10. [21164, line 3] The AMS results are only quantitative if the specific ion (e.g., C16H18O6+) does not show up as smaller fragments, thus dispersing the signal of the molecule. Do authors have evidence that this is the case from calibrations with standards? Further, this is nitrate-equivalent mass which has its own assumptions about ionization and line-transfer efficiency.

Authors’ reply #11: Since the fragment pattern of 70 eV EI mass spectrometry is reproducible (McLafferty and Turecek, 1993), unique ions can be used as tracer species to quantify the concentration of the parent compound. We will examine the quantification of individual compounds using AMS in details in future studies. We added the sentences “Since the fragmentation pattern from 70 eV electron ionization is reproducible (McLafferty and Turecek, 1993), unique ions can be used as tracer species to quantify the concentration of the parent compound.” in Sect. 3.3.

Reviewer’s comment:
11. [21165, lines 1-4] Can the authors expand on why the structures of guaiacol and syringol would lead to these observed mechanistic differences?

Authors’ reply #12: It is unclear to us why guaiacol aqSOA are composed of more oligomers and derivatives than syringol aqSOA are. One possible reason is that guaiacol oligomers are more stable than syringol oligomers. This is a topic that will be subjected to future research.
Reviewer's comment:
12. [21166, lines 5-6] The authors mention that they examined the optical properties of “phenolic aqSOA” but only discuss syringol? Do phenol and guaiacol follow the same general behavior? Why not show their spectra?

Authors’ reply #13: The aqSOA of phenol and guaiacol also show enhanced absorption in the UV-Vis region. The optical properties of phenolic aqSOA will be reported in detail in a publication in the near future (Smith et al., in preparation). We added the sentence in Sect. 3.4: “Phenol and guaiacol aqSOA also show enhanced absorption in the tropospheric sunlight wavelengths (> 300 nm), while phenol and guaiacol themselves do not.”

Reviewer's comment:
13. [21166, line 18] Again, this is an interesting point, i.e., that the t_1/2 reactivities is higher for compounds with fewer methoxy groups within one oxidation system, that should be expanded to discuss structure-activity relationships.

Authors’ reply #14: Precursors with fewer methoxy groups react more slowly with the oxidant, and have longer half-lives under illumination. We attribute the positive correlation between the reactivities and methoxy groups to the electron-donating effect of the o-methoxy substituents, which can increase the rate of electrophilic reactions on the benzene ring by large factors. We mentioned this point in Sect. 3.1.

Reviewer's comment:
14. [21167, lines 15-end] While the particular AMS ions listed appear to be useful in this single-precursor system study, I disagree that these nominal mass assignments can be “signatures” in the ambient environment. Concerns about EI fragmentation aside, nominal mass resolution at a high m/z as 306 produces a large array of possible molecular formula candidates when sources are unknown. In the atmosphere, there is little evidence that these molecular formulas are unique to a particular chemical system. The authors should also consider the possibility that nominal even-mass ions like 306 can be assigned to either a CxHyOz aromatic ion radical or CxHyOzN cation in the atmosphere. For identifying the impact of phenolic aqSOA, it seems more promising to apply nano-DESI, as the authors have done, to field samples than AMS.

Authors’ reply #15: We agree that it is interesting to apply nano-DESI to field samples in order to identify phenolic aqSOA in ambient air and we indeed plan to do so in the future. But it is challenging to use nano-DESI for quantification, although progress has been made in this aspect (Nguyen et al., 2013). On the other hand, AMS uses 70 eV electron impact ionization, and the EI fragmentation pattern is reproducible, which allows for the identification and quantification of individual molecule in the mixture (McLafferty and Turecek, 1993). The EI ionization may also generate unique ions that are representative of the parent molecules. It is therefore viable to apply AMS signature ions for identifying phenolic aqSOA species and analyzing. We have revised this paragraph to make these points clearer. It now reads: “Overall, our results indicate that aqueous-phase processing of phenols represents an important pathway for the production of low-volatility, highly oxygenated and high molecular weight species, which remain in the particle phase after water evaporation. Since phenolic aqSOA are both water soluble and light
absorbing, understanding the impacts of these reactions on the chemical and physical properties, and thus the climatic and health effects, of atmospheric particles may be important, especially in regions influenced by biomass burning emissions. An approach for evaluating the importance of phenolic aqSOA formation in the atmosphere is to systematically analyze the AMS mass spectra of ambient aerosol for signature ions representative of phenolic aqSOA. AMS has been broadly applied for chemical analysis of ambient aerosol and multivariate statistical approaches (e.g., positive matrix factorization) have been frequently used on organic aerosol mass spectral data to determine factors representing different sources and processes (Ulbrich et al., 2009; Zhang et al., 2011). An important criterion for validating the extracted factor is via examining the mass spectra of the factors for signature ions (Zhang et al., 2011). The fact that AMS uses 70 eV EI ionization, which ionizes and fragments molecules with reproducible pattern (McLafferty and Turecek, 1993), allows for the identification and quantification of certain compounds or compound classes in a mixture via signature ions. Indeed, previous studies have demonstrated the capability of using unique AMS ions to fingerprint species such as hydrocarbon-like and oxygenated organic aerosols (Zhang et al., 2005), polycyclic aromatic hydrocarbons (PAH) (Dzepina et al., 2007), methanesulfonic acid (MSA) (Ge et al., 2012), and certain nitrogen- and sulfur-containing organic aerosols (Farmer et al., 2010; Ge et al., 2014).

With this in mind, in this study, we identified several ions that are potentially representative of phenolic aqSOA, including $\text{C}_{16}\text{H}_{18}\text{O}_{6}^+$ ($m/z = 306$) for syringol dimer, $\text{C}_{14}\text{H}_{14}\text{O}_{4}^+$ ($m/z = 246$) for guaiacol dimer, $\text{C}_{14}\text{H}_{14}\text{O}_{5}^+$ ($m/z = 262$) and $\text{C}_{14}\text{H}_{14}\text{O}_{6}^+$ ($m/z = 278$) for hydroxylated guaiacol dimer, $\text{C}_{13}\text{H}_{10}\text{O}_{2}^+$ ($m/z = 186$) for phenol dimer, $\text{C}_{21}\text{H}_{20}\text{O}_{6}^+$ ($m/z = 368$) for guaiacol trimer, and $\text{C}_{18}\text{H}_{14}\text{O}_{3}^+$ ($m/z = 278$) for phenol trimer (Fig. 8). Since all these ions have odd number of electrons with relatively high m/z's, their productions in the AMS are more directly linked to the specific parent compounds, meaning that they are less likely contributed by confounding molecules (McLafferty and Turecek, 1993). In addition, while large hydrocarbon molecules, e.g., those from vehicle emissions, may generate significant ion signals at $m/z > 200$, most of them are even-electron ions and contain no oxygen. They are therefore easily differentiated from the isobaric ions from phenolic aqSOA. Nevertheless, it is important to point out that the validity of using the signature ions identified in this study needs to be evaluated by examining ambient organic aerosol mass spectrometry data. In addition, analyzing field samples with nano-DESI may also provide important insights into the impacts of aqueous phase processing of phenolic compounds in the atmosphere.”

Reviewer #2

The authors present a detailed study of the products of aqueous-phase oxidation of phenol, guaiacol, syringol. They examine oxidation by the OH radical and by the triplet excited states of 3,4-DMB. This manuscript can be viewed as a companion paper to Smith et al., ES&T (2014). In that study the authors presented the kinetics and SOA yields of these processes, but the discussion is confined to product characterization here. The volatility and optical properties of the SOA are also examined, although these results are discussed only briefly in the manuscript.
Reviewer’s comment:
1. The $^3\text{C}^*$ pathway is very interesting and potentially important. I would like to hear more from the authors regarding their choice of 3,4-DMB as a photosensitizer. Why was this model compound chosen when other aromatic carbonyl compounds exist in biomass burning aerosol which might be more environmentally relevant? Could any of the reactants (or the aromatic carbonyl products they form) also act as photosensitizers? Were any control experiments performed to investigate this?

Authors’ reply #1: There are three reasons for choosing 3,4-DMB as the photosensitizer. First, 3,4-DMB has high molar absorptivities across the solar UV wavelengths and is an effective source of $^3\text{C}^*$ (Anastasio et al., 1997). Secondly, 3,4-DMB is emitted in large amounts from biomass burning (Schauer et al., 2001) and exists nearly exclusively in condensed phases in the atmosphere. Lastly, 3,4-DMB is commercially available. In response to the reviewer’s comments, we added the following sentence in Sect. 2.1: “3,4-DMB was chosen as the photosensitizer in this study to represent non-phenolic aromatic carbonyls, which are emitted in large quantities from wood burning (Schauer et al., 2001), exist nearly exclusively in condensed phases in the atmosphere, and rapidly form $^3\text{C}^*$ that efficiently oxidizes phenols (Anastasio et al., 1997).”

Phenols themselves have little or no light absorption in the solar range and are not effective photosensitizers. Some of the products formed during illumination absorb light at longer wavelengths and might be photosensitizers, but we do not think that they contributed significantly to phenol loss in our experiments since the kinetics of phenol loss out to one half-life all showed good first-order decays, indicating relatively stable oxidant concentrations. For this reason, it is unlikely that intermediate species are a significant source of $^3\text{C}^*$ during the initial stage of the reaction. However, there are indications that other reactions could have become important after prolonged illumination. For example, we found that the destruction rate of guaiacol deviates from first-order decay after ~ 1.3 hours of reaction (Yu et al., in preparation). Note that the t$_{1/2}$ of guaiacol + $^3\text{C}^*$ is 35 min and all the aqSOA studied in this work were acquired at t$_{1/2}$. We will explore the influence of intermediate phenol reaction products on photosensitized chemistry in future studies. In response to the reviewer’s comments, we have added relevant discussions in Sect. 2.1.

Reviewer’s comment:
2. The authors propose a mechanism in Figure 7 based on their product analysis. It wasn’t clear to me why the authors concluded that the $^3\text{C}^*$ exclusively oxidizes phenols directly, rather than also reacting with O$_2$ to producing singlet molecular oxygen (and therefore other oxidants) in the aqueous phase (e.g. Figure 4 of Smith et al. (2014))?

Authors’ reply #2: The $^3\text{C}^*$ triplet can indeed react with O$_2$ to produce singlet oxygen (and perhaps other oxidants), which can oxidize phenols and possibly lead to the production of aqSOA. However, as we described in Smith et al. (2014), singlet molecular oxygen appears to be a negligible oxidant in our solutions because of the rapid triplet-mediated reactions. Thus we did not include this pathway in Fig. 7.
3. The recent work of C. George and coworkers demonstrating SOA formation via photosensitizer chemistry (Aregahegn et al. (2013), Rossignol et al. (2014), Monge et al. (2012)) should be referenced in the introduction.

Authors’ reply #3: As suggested, we have added relevant discussions and cited these literatures in the introduction.

Reviewer’s comment:
4. Can the authors comment on the possible impacts of sample drying on the observed product distributions (e.g. oligomers and light-absorbing species)?

Authors’ reply #4: As discussed in Smith et al. (2014), there are some differences in the SOA mass yields determined gravimetrically from N₂ blowdown of solutions and those determined in real-time by HR-ToF-AMS. A possible reason is that some semi-volatile components may have reacted and formed low-volatility products during the N₂ blowdown procedure, probably because of the presence of small amount of sulfuric acid in the solution, which was added to adjust the pH of the solution (Smith et al., 2014). Despite this, according to our analysis, the ESI-MS spectra of the blown-down sample reconstituted in Milli-Q water and the flash-frozen sample for the aqSOA formed from syringol + ³C* are overall similar. For example, 65 - 70% of the molecules identified in these two sample types are common species and for both samples, oligomers and their derivatives account for ~ 50% of the total signal in the ESI spectra. In addition, the AMS spectra of the blown-down samples and those of the flash-frozen samples are overall similar. For these reasons, it appears that sample drying had relatively small influence on the observed product distribution. Nevertheless, it is important to conduct future studies to understand the reasons for these methodological differences in aqSOA yield, and evaluate the possible influence of sample drying process on aqSOA mass, composition, and light-absorbing species. In response to the reviewer’s comments, we have added relevant discussions in Sect. 3.1.

References

Farmer, D. K., Matsunaga, A., Docherty, K. S., Surratt, J. D., Seinfeld, J. H., Ziemann, P. J. and Jimenez, J. L.: Response of an aerosol mass spectrometer to organonitrates and organosulfates and

Chemical characterization of SOA formed from aqueous-phase reactions of phenols with the triplet excited state of carbonyl and hydroxyl radical

Lu Yu¹, Jeremy Smith², Alexander Laskin³, Cort Anastasio², Julia Laskin⁴, Qi Zhang¹*
¹Department of Environmental Toxicology, University of California, 1 Shields Ave., Davis, CA 95616, USA
²Department of Land, Air and Water Resources, University of California, 1 Shields Ave., Davis, CA 95616, USA
³Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
⁴Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA

*Corresponding Author: Qi Zhang, Department of Environmental Toxicology, University of California, 1 Shields Ave., Davis, CA 95616, USA. Tel.: 530-752-5779; fax: 530-752-3394; e-mail: dkwzhang@ucdavis.edu
Abstract

Phenolic compounds, which are emitted in significant amounts from biomass burning, can undergo fast reactions in atmospheric aqueous phases to form secondary organic aerosol (aqSOA). In this study, we investigate the reactions of phenol and two methoxy-phenols (syringol and guaiacol) with two major aqueous phase oxidants – the triplet excited states of an aromatic carbonyl ($^3C^*$) and hydroxyl radical (\cdotOH). We thoroughly characterize the low-volatility species produced from these reactions and interpret their formation mechanisms using aerosol mass spectrometry (AMS), nanospray desorption electrospray ionization mass spectrometry (nano-DESI MS), and ion chromatography (IC). A large number of oxygenated molecules are identified, including oligomers containing up to six monomer units, functionalized monomer and oligomers with carbonyl, carboxyl, and hydroxyl groups, and small organic acid anions (e.g., formate, acetate, oxalate, and malate). The average atomic oxygen-to-carbon (O/C) ratios of phenolic aqSOA are in the range of 0.85-1.23, similar to those of low-volatility oxygenated organic aerosol (LV-OOA) observed in ambient air. The aqSOA compositions are overall similar for the same precursor, but the reactions mediated by $^3C^*$ are faster than \cdotOH-mediated reactions and produce more oligomers and hydroxylated species at the point when 50% of the phenol had reacted. Profiles determined using a thermodenuder indicate that the volatility of phenolic aqSOA is influenced by both oligomer content and O/C ratio. In addition, the aqSOA shows enhanced light absorption in the UV-vis region, suggesting that aqueous-phase reactions of phenols are likely an important source of brown carbon in the atmosphere, especially in regions influenced by biomass burning.

Keywords: phenol, guaiacol, syringol, particulate matter, hydroxyl radical, $^3C^*$, SOA formation mechanisms, aqSOA
1. Introduction

Secondary organic aerosol (SOA) is ubiquitous in the atmosphere (Murphy et al., 2006; Zhang et al., 2007; Jimenez et al., 2009) and plays an important role in climate, human health, and air quality. Thus, understanding the impacts of SOA requires a thorough knowledge of the formation, evolution, and composition of SOA. This knowledge, however, is still limited because atmospheric organic chemistry is extremely complex. Numerous sources emit organic compounds and organic aerosol is formed and transformed via complicated chemical and physical processes in the atmosphere (Kanakidou et al., 2005).

SOA formation can take place in both gas and condensed phases. Much of the previous research on SOA has mainly focused on gas-phase reactions of volatile organic compounds (Hallquist et al., 2009). Recent work, however, has shown that SOA can also be produced efficiently in cloud and fog drops and water-containing aerosol (Blando and Turpin, 2000; Lim et al., 2005; Altieri et al., 2006; Ervens et al., 2011). Understanding the characteristics of SOA formed from aqueous-phase reactions (aqSOA) is important for properly representing its formation pathways in models and for elucidating its climatic and health effects.

Phenols are important precursors of aqSOA because 1) they are emitted in large quantities from biomass burning (Hawthorne et al., 1989; Schauer et al., 2001); 2) they have high Henry’s Law constants and can partition significantly into atmospheric aqueous phases (Sagebiel and Seiber, 1993; Sander, 1999); and 3) they can undergo fast reactions with hydroxyl radical (•OH) and triplet excited states of organic compounds (²C*) formed via light absorption by dissolved chromophores (Anastasio et al., 1997; Canonica et al., 2000; Smith et al., 2014). In the aqueous phase, •OH is typically considered a dominant oxidant for organics. However, a recent study by Smith et al. (2014) showed that the destruction rates of phenols by ³C* are comparable
to or faster than those by •OH under typical ambient conditions in areas influenced by biomass burning. An important source of $^3\text{C}*$ in the atmosphere is non-phenolic aromatic carbonyls – a group of compounds that are emitted from wood combustion in significant amounts (Hawthorne et al., 1992; Simoneit et al., 1999) and have been detected in fog and cloud droplets (Leuenberger et al., 1985; Sagebiel and Seiber, 1993). These compounds, once dissolved in water, can absorb light to form $^3\text{C}*$ and catalyze the photooxidation of phenols and generate aqSOA with little or no loss of the aromatic carbonyl (Anastasio et al., 1997; Smith et al., 2014). This is an indication that non-phenolic aromatic carbonyls, along with a number of other organic compounds recently reported (Monge et al., 2012; Aregahegn et al., 2013; Rossignol et al., 2014), can act as photosensitizer to promote SOA formation in atmospheric condensed phases.

Recent studies have shown that phenols react with •OH and $^3\text{C}*$ to form aqSOA with mass yields close to 100% (Smith et al., 2014) and that the reaction products include small organic acids, hydroxylated phenols, and oligomers (Sun et al., 2010). However, since Sun et al. (2010) mainly used an Aerodyne high-resolution time-of-flight aerosol mass spectrometer with an electron impact (EI) ionization source, in which analyte molecules are generally extensively fragmented (Canagaratna et al., 2007), the molecular composition of the phenolic aqSOA was not sufficiently characterized. In addition, since Sun et al. (2010) examined phenol reactions only with •OH, almost nothing is known about the chemistry of aqSOA formed from $^3\text{C}*$ reactions.

In this study, we thoroughly characterize the aqueous reaction products of phenols with $^3\text{C}*$ produced from a non-phenolic aromatic carbonyl and •OH from hydrogen peroxide (HOOH) under simulated sunlight illumination. We studied three basic structures of biomass-burning
phenols – phenol (C₆H₆O), guaiacol (C₇H₈O₂; 2-methoxyphenol), and syringol (C₈H₁₀O₃; 2,6-
dimethoxyphenol). We examine the molecular and bulk compositions of low-volatility species
produced from these reactions and use this information to interpret the formation pathways of
phenolic aqSOA.

2. Experimental Methods

2.1 Phenolic aqSOA samples

The aqSOA samples of phenol, guaiacol, and syringol were prepared during simulated
sunlight illumination under two oxidant conditions: (1) via reaction with 3C* formed from 5 μM
3,4-dimethoxybenzaldehyde (3,4-DMB) and (2) via reaction with •OH generated from 100 μM
hydrogen peroxide (HOOH; Table 1). Details of the experiments are given in Smith et al.
(2014) and a brief summary is given here. Initial solutions were composed of air-saturated Milli-Q water (resistance > 18 MΩ-
cm; Millipore) containing 100 μM of a single phenol and adjusted to pH = 5 using sulforbic acid. Each solution was illuminated in an RPR-200 Photoreactor System (George et al.,
2014) until approximately half of the initial phenol was degraded (as monitored by a high
performance liquid chromatograph (HPLC) with a UV-vis detector). At that point, 12.0 mL of
the illuminated solution was placed in an aluminum cup and blown gently to dryness with pure
N₂ at room temperature. Another aliquot of the illuminated solution was flash frozen with liquid
nitrogen and stored at -20 °C in the dark until analysis. Note that the flash-frozen samples contain dissolved volatile species, low-volatility species and unreacted precursors, while the blown-down samples are composed of only low-volatility species. Indeed, HPLC analysis of the blown-down samples detected negligible amounts of the initial phenols, indicating that they were completely removed. In addition, all phenolic precursors show first-order decay during photoreactions to a time of one half-life (Smith et al., 2014), indicating that the reaction intermediates or products are not acting as significant photosensitizers. The phenol precursors themselves are not effective photosensitizers since they have little or no light absorption in the solar range (Smith et al., 2014). Dark control experiments, carried out under the same condition except in the dark, showed negligible loss of phenol and no formation of aqSOA. In addition, no formation of aqSOA was observed in control experiments in which 3,4-DMB was illuminated alone under the same condition and the resulting solution evaporated in the same way.

2.2 Analytical methods

2.2.1 Aerosol Mass Spectrometry (AMS) measurement and data analysis

In this study, a High Resolution Time-of-Flight Aerosol Mass Spectrometer (Aerodyne Res. Inc., Billerica, MA; thereafter referred to as AMS) was used to characterize the bulk chemical composition and elemental ratios of the low-volatility substances in both blown-down and flash-frozen samples. The working principles of the AMS have been discussed previously (DeCarlo et al., 2006; Canagaratna et al., 2007). Briefly, the AMS analyzes nonrefractory aerosols that can be evaporated at ~ 600 °C under high vacuum via 70 eV EI mass spectrometry. In this study, the AMS was operated alternatively between “V” and “W” ion optical modes (mass resolutions of ~ 3000 and ~ 5000, respectively) to acquire mass spectra up to m/z 500 and m/z 300, respectively. Prior to AMS analysis, each blown-down sample was
dissolved in 6.0 mL Milli-Q water and the flash-frozen samples were thawed overnight inside a refrigerator (~ 4 °C). The liquid samples were atomized in argon (Industrial Grade, 99.997%) using a constant output atomizer coupled with a diffusion dryer and the resulting particles were analyzed by the AMS downstream of a digitally controlled thermodenuder (TD) (Fierz et al., 2007). The TD consists of a bypass line and a heated line terminating in a section with activated carbon cloth. The temperature inside the heated line was programmed to cycle through 7 different temperatures (25, 40, 65, 85, 100, 150, and 200 °C) every hour. An automated 3-way valve switched the sample flow between bypass and TD modes every 5 min. By comparing the measurements between these two modes, we can determine the volatility profiles of the aqSOA. Between every two sample runs, Milli-Q water was atomized and analyzed as an analytical blank.

The AMS data were analyzed using the AMS data analysis software (SQUIRREL v1.12 and PIKA v1.53 downloaded from http://cires.colorado.edu/jimenez-group/ToFAMSResources/ToFSoftware/). The W-mode data was analyzed to determine the atomic ratios of oxygen-to-carbon (O/C) and hydrogen-to-carbon (H/C) and the organic mass-to-carbon ratio (OM/OC) of phenolic aqSOA (Aiken et al., 2008). V-mode data were analyzed for information of higher molecular weight ions with \(m/z > 300 \), such as syringol dimer \(C_{16}H_{18}O_{6}^+ \) (\(m/z \) 306) and guaiacol trimer \(C_{21}H_{20}O_{6}^+ \) (\(m/z \) 368). Note that accurately quantifying the organic contributions to the \(H_2O^+ \), \(CO^+ \), and \(CO_2^+ \) signals in an ensemble mass spectrum is critical to the determination of the O/C and H/C ratios of an organic aerosol (Aiken et al., 2008; Sun et al., 2009; Collier and Zhang, 2013). Since Ar was used as the carrier gas for atomization, \(N_2 \) and \(CO_2 \) did not interfere with the quantification of the organic \(CO^+ \) and \(CO_2^+ \) signals. In terms of the \(H_2O^+ \) signal, contribution from gaseous water molecules was negligible because the relative humidity measured at the AMS inlet was very low (< 2%). In addition, since heating the aerosol
to 40 °C prior to AMS sampling led to almost no change in the relative intensities of the H$_2$O$^+$ signal in the mass spectra of aqSOA (Fig. S1 in the supplementary information), particles appeared to be completely dry. The organic portion of the H$_2$O$^+$ signal was thus determined as the difference between the measured H$_2$O$^+$ signal and the sulfate-associated H$_2$O$^+$ signal estimated according to the known fragmentation pattern of sulfates (Allan et al., 2004).

2.2.2 Nanospray Desorption Electrospray Ionization Mass Spectrometry (nano-DESI MS)

measurement and data analysis

Prior to nano-DESI MS analysis, the blown-down samples of phenolic aqSOA were dissolved in Milli-Q water, atomized, and collected on Teflon membrane filters. The analyses were performed using a high-resolution LTQ-Orbitrap mass spectrometer (Thermo Electron, Bremen, Germany) with a resolving power (m/Δm) of 100,000 at m/z = 400. The instrument is equipped with a nano-DESI source assembled from two fused-silica capillaries (150 μm o.d./50 μm i.d.) (Roach et al., 2010b). Analyte molecules extracted into the liquid bridge formed between the two capillaries are transferred to a mass spectrometer inlet and ionized by nanoelectrospray. The analysis was performed under the following conditions: spray voltage of 3-5 kV, 0.5-1 mm distance from the tip of the nanospray capillary to the 300 °C heated inlet of the LTQ-Orbitrap, and 0.3-0.9 μL/min flow rate of acetonitrile : water (1:1 volume) solvent. The instrument was calibrated using a standard mixture of caffeine, MRFA (met-arg-phe-ala) peptide, and Ultramark 1621 (Thermo Scientific, Inc.) for the positive ion mode and a standard mixture containing sodium dodecyl sulfate, sodium taurocholate, and Ultramark 1621 (Thermo Scientific, Inc.) for the negative ion mode. Both positive and negative mode mass spectra were acquired using the Xcalibur software (Thermo Electron, Inc.). To analyze a sample, the nano-DESI probe
was first placed on a clean area of the filter to record the background signal for ~ 3min and then positioned on the sample region to acquire data for an additional 4-5min (Roach et al., 2010a). Peaks with S/N > 10 were selected using the Decon2LS software developed at the Pacific Northwest National Laboratory (PNNL) (Jaitly et al., 2009). Further data processing was performed with Microsoft Excel using a set of built-in macros developed by Roach et al. (2011). The background and sample peaks were aligned, and the peaks corresponding to 13C isotopes were removed. Only peaks in the sample spectra that are at least 10 times bigger than the corresponding peaks in the background spectra were retained for further analysis. Peaks were segregated into different groups using the higher-order mass defect transformation developed by Roach et al. (2011). Specifically, the peaks were first grouped using a CH$_2$-based transformation and then an H$_2$-based second-order transformation. Formula Calculator v. 1.1 (http://www.magnet.fsu.edu/usershub/scientificdivisions/icr/icr_software.html) was then used to assign the molecular formula to each group using the following constraints: $C \geq 0$, $H \geq 0$, $O \geq 0$ for the negative ion mode data and $C \geq 0$, $H \geq 0$, $O \geq 0$, Na ≤ 1 for the positive ion mode data. Approximately 70% of the peaks were assigned with molecular formula within these constraints. The formulas of neutral species were subsequently determined by removing the adduct ion (e.g., a proton or a sodium ion) from the positive ions or by adding a proton to the negative ions.

Kendrick representation of high resolution mass spectral data can be used to search for potential oligomeric units (Hughey et al., 2001). In this study, O-based Kendrick diagram was used to investigate the degree of hydroxylation. The Kendrick mass (KM) and Kendrick mass defect (KMD) are calculated using the following two equations:

\[
\text{KM} = \frac{\text{observed mass} \times 16}{15.9949}
\]
\[
\text{KMD} = \text{NM} - \text{KM}
\]
Where, 16 is the nominal mass of O, 15.9949 is the exact mass of the O, and NM is the KM rounded to the nearest integer. Plotting KMD versus KM reveals homologous series of compounds differing only by the number of base units which fall on horizontal lines.

Double bond equivalent (DBE) indicates the number of double bonds and rings in a closed-shell organic molecule (Pellegrin, 1983). For a molecule with a nominal formula of $C_xH_yO_z$ (where x, y, z denote the number of C, H, and O atoms, respectively, in the molecule),

$$\text{DBE} = 1 - \frac{y}{2} + x.$$

2.2.3 Ion Chromatography (IC) and Total Organic Carbon (TOC) analysis

Concentrations of inorganic/organic anions were measured using an ion chromatograph (Metrohm 881 Compact IC Pro, Switzerland) equipped with an autosampler, a Metrosep RP2 guard/3.6 column and a Metrosep A Supp15 250/4.0 column, and a conductivity detector. Details on the IC method are given in Ge et al. (2014). Briefly, anions were eluted at 0.8 ml/min using an eluent of 5 mM Na$_2$CO$_3$ and 0.3 mM NaOH in water. This method can separate and quantify 9 organic anions (glycolate, formate, acetate, pyruvate, oxalate, malate, malonate, maleate, and fumarate) and 7 inorganic anions (F$^-$, Cl$^-$, NO$_2^-$, Br$^-$, NO$_3^-$, SO$_4^{2-}$ and PO$_4^{3-}$). The IC results were evaluated in terms of reproducibilities of retention times and peak heights and linearity of the calibration curves. Analysis of external check standards, including a 7-anion standard mixture (Dionex) and 4 individual standards (Metrohm), always produced results that were within 10% of certified values. Relative differences for replicate analyses were within 3%.

A Shimadzu TOC-VCPH analyzer was applied to measure TOC in the aqSOA samples. The instrument uses a combustion tube filled with oxidation catalyst to convert all carbon atoms into CO$_2$ at 720 °C under ultrapure air and quantifies the resulting CO$_2$ using a non-dispersive
infrared (NDIR) analyzer. Prior to combustion, inorganic carbon species (carbonates/bicarbonates and dissolved CO\textsubscript{2}) is transformed into CO\textsubscript{2} by 25\% H\textsubscript{3}PO\textsubscript{4}, bubbled out, and determined by NDIR. TOC is determined as the difference. The TOC analyzer was calibrated using the standard solutions of NaHCO\textsubscript{3}, Na\textsubscript{2}CO\textsubscript{3}, and potassium hydrogen phthalate (Sigma-Aldrich or Wako-Japan, ≥ 99.0\%). Results from external TOC check standards (Aqua Solutions) were always within 10\% of certified values.

3. Results and discussion

3.1 Overview of the chemical characteristics of phenolic aqSOA

The lifetime of phenols with respect to 3C* and •OH reactions in atmospheric fog and cloud water is on the order of minutes to hours during daytime (Smith et al., 2014). Compared to •OH, the reaction rates of 3C* reacts more quickly with phenols are faster, but the mass yields of aqSOA from both reactions are near 100\% for phenol, guaiacol, and syringol (Smith et al., 2014). The reaction rate comparisons in this manuscript are based on the experimentally measured pseudo first-order rate constants for phenol loss (\(k'_{\text{ArOH}}\), which are equal to the product of the bimolecular rate constant and steady state concentration of oxidant: \(k'_{\text{ArOH}} = k_{\text{ArOH} + \text{Oxidant}}[\text{Oxidant}]\) (Smith et al., 2014). Based on bimolecular rate constants determined by Smith et al. (in preparation), the steady-state concentrations of •OH and 3C* during this study are estimated at 10-16 - 10-15 mol L-1 and ~ 10-14 mol L-1, respectively, which are similar to the typical aqueous •OH concentration in fog and cloud waters (Anastasio and McGregor, 2001; Arakaki et al., 2013) and the 3C* concentration measured in Davis fog waters (R. Kaur, unpublished results).

As shown in Fig. 1 and summarized in Table 1, the aqSOA formed from all three phenols with both oxidants are highly oxygenated—

with average O/C ratios in the range of 0.85-1.23,

with average O/C ratios in the range of 0.85-1.23 and average organic mass to carbon ratios
(OM/OC) in the range of 2.27-2.79. Based on a comparison to the OM/OC of the precursors, the mass yields of the aqSOA should be 142 - 214%, assuming all reacted phenols were converted into low volatility species. However, the measured values are 16-38% lower, indicating that approximately 16-38% of the reacted phenols were converted into volatile and semi-volatile species that evaporated during illumination and/or drying. These results are consistent with a previous study by Sun et al. (2010), where O/C ratios of phenolic aqSOA formed from direct photodegradation and •OH oxidation were in the range of 0.80-1.06. The O/C of phenolic SOA from gas-phase •OH oxidation are also near unity (Chhabra et al., 2011; Yee et al., 2013). Due to high oxygen contents, the organic mass-to-carbon (OM/OC) ratios of the aqSOA are high (average = 2.27-2.79; Table 1). Note that the OM/OC ratios determined by AMS agree well with those determined based on aqSOA mass measured gravimetrically and organic carbon mass measured by a TOC analyzer (Fig. S2). For the same oxidant, the O/C ratio of the aqSOA formed at t_{1/2} follows the order: phenol > guaiacol > syringol (Table 1). This trend is likely driven by precursor reactivity, which determines how long the solution needed to be illuminated to reach one half-life, and has the order: syringol > guaiacol > phenol. The reactivity differences among the three precursors are likely due to the electron-donating effect of the o-methoxy substituents, which may increase the rate of electrophilic reactions on the benzene ring. Longer illumination time increases the formation of highly oxygenated species and smaller-ring-opening species \((n_C < 6)\). For the same reason, •OH oxidation, which is slower than \(^3\text{C}^*\) reaction for the same phenol precursor, generally produces more oxidized aqSOA at \(t_{1/2}\).

Figures S3 and S4 show the nano-DESI MS spectra of the aqSOA of syringol, guaiacol, and phenol formed from \(^3\text{C}^*\) and •OH reactions, respectively. Hundreds of species were identified, all of which are oxygenated with the median O/C ratios of the molecules varying from...
0.33-0.55 in different aqSOA samples (Fig. 1). The signal-weighted average O/C ratios (Bateman et al., 2012) of phenolic aqSOA are in the range of 0.31-0.65 according to the negative ion mode nano-DESI results, which are significantly lower than the average O/C of bulk aqSOA measured by the AMS (Fig. 1). This discrepancy may be attributed to lower electrospray ionization efficiencies of some highly oxidized species or the dissociation of quasi-molecular ions which leads to the loss of highly oxygenated moieties (e.g., loss of CO₂ for aromatic carboxylic acids) in nano-DESI analysis (Levsen et al., 2007). In addition, in order to provide better coverage of high-mass ions, nano-DESI mass spectra were analyzed only for ions with m/z > 100. Therefore, high O/C species with molecular weight lower than 100 dalton (Da), such as oxalate (O/C = 2), formate (O/C = 1), and pyruvate (O/C = 1), were not observed in our nano-DESI experiments. According to IC analysis, these small organic anions together represent 0.8-3.8% of the TOC of aqSOA (Table 1), systematically lower than the average O/C of bulk aqSOA measured by the AMS (Fig. 1). However, due to large differences between the AMS and the nano-DESI methodology, in terms of sample analysis, data processing, and assumptions used for average O/C calculations, a direct comparison between these two sets of O/C data should be cautioned.

Figure 2 shows the AMS spectra of different aqSOA acquired after 50% of the initial phenols had reacted (i.e., at t₁/₂). A prominent feature of these spectra is that CO₂⁺ (m/z = 44), H₂O⁺ (m/z = 18), and CO⁺ (m/z = 28) are the largest peaks, similar to the spectral pattern of fulvic acid – a model compound representative of highly processed and oxidized organic particulate matter and humic-like substances (HULIS) (Zhang et al., 2005; Ofner et al., 2011). The AMS spectra of syringol aqSOA formed from different oxidants are almost identical (Fig. 2), indicating similar chemical compositions. Similarly, nano-DESI analysis shows the formation of
a large number of common species, i.e., 883 species with common elemental composition (Table 1), through the reactions of syringol with $^3\text{C}^*$ and •OH, which account for 76% and 88%, respectively, of the total number of molecules identified in the corresponding aqSOA. A similar overlap of common species was observed for guaiacol aqSOA. But the molecular compositions of phenol aqSOA are more different between the two oxidants (Table 1), which is consistent with the fact that the AMS spectra of the two phenol aqSOA are largely different at $m/z \geq 80$ (Fig. 2l). The more distinct compositional differences of phenol aqSOA between the •OH and $^3\text{C}^*$ reactions is probably due to the larger difference in reaction times (i.e., $t_{1/2} = 672$ min vs. 480 min; Table 1). Detailed discussions on the comparisons of aqSOA produced from the same precursor but different oxidants are given in Sect. 3.3.

A total number of 149 common molecules were identified in all samples (Table 1). Figure 3 shows the Van Krevelen diagram of these common molecules. A majority of these molecules have molecular weight lower than 400 Da and DBE < 12 (Fig. 3), indicating that they contain two or less aromatic rings and that they were likely produced from ring-opening reactions. In addition, small carboxylate anions were observed in all aqSOA samples, although they represent only a small fraction of the TOC (Table 1). It is interesting to point out that the number of molecules observed by nano-DESI decreases with increasing illumination time across all 3 phenols, suggesting that increased aging simplifies the products to a smaller set (Table 1). However, this trend could also be related to ionization efficiency of different types of phenolic aqSOA. For example, syringol aqSOA has more methoxy groups, thus is easier to get ionized by nano-DESI, compared to phenol aqSOA.

Both flash-frozen (FF) and blown-down (BD) samples were chemically characterized and show almost identical AMS spectra (Fig. S5). This is a confirmation.
MS spectra of the aqueous solution of the blown-down sample and the flash-frozen sample for
the aqSOA formed from syringol + 3C* are also overall similar. These observations confirm that
the non-volatile components of these two sample types are chemically very similar, and the
blown-down procedure had relatively small influence on the observed product distribution. Since
FF samples contain dissolved volatile species which should have evaporated during nebulization
and drying, we estimated the amount of these species by examining the differences in the TOC
concentrations between FF and BD samples after correction for the mass of unreacted precursors.
Figure 4 shows the contributions of reactants (phenolic precursor and DMB) and products
(dissolved volatile species and aqSOA) to the solution TOC after illumination to $t_{1/2}$. Dissolved
volatile species formed during photolysis represent a small fraction (2.7 - 6.6%; Table 1) of the
total carbon originally present in the reactants, consistent with the high mass yields of phenolic
aqSOA reported by Smith et al. (2014).

3.2 Insights into aqSOA formation mechanisms

In this section we synthesize the molecular composition and bulk chemistry results and
interpret the formation mechanisms of phenolic aqSOA. A notable result is the large number of
dimer and higher oligomers (up to hexamer) found in the aqSOA. As shown in Figures S3 and
S4, the nano-DESI MS spectra of phenolic aqSOA contain clearly distinguished regions
corresponding to monomers, dimers, trimers, tetramers, pentamers, and hexamers and their
oxidation products. We therefore determine the distributions of phenolic aqSOA species based
on the degree of oligomerization by summing signals in each region (Fig. 5). Oligomers and
related derivative species clearly account for a significant fraction (24.2% - 92.6%) of the total
signals in the nano-DESI spectra of all phenolic aqSOA. Substituted monomers and smaller-ring-
opening species \(n_c < 6 \) are also present in all aqSOA and they are particularly abundant in that of phenol + \(\cdot \text{OH} \).

Table 2 lists the 10 most abundant compounds identified in the aqSOA of syringol formed through reaction with \(\cdot \text{OH} \) or \(^3\text{C}^*\). Among them 7 are common species, including syringol dimer (C\(_{16}\)H\(_{18}\)O\(_6\)), hydroxylated syringol (C\(_8\)H\(_{10}\)O\(_5\)), three dimer derivatives (C\(_{15}\)H\(_{14}\)O\(_6\), C\(_{15}\)H\(_{16}\)O\(_6\) and C\(_{15}\)H\(_{16}\)O\(_9\)), and two monomer derivatives (C\(_{15}\)H\(_{18}\)O\(_7\) and C\(_{12}\)H\(_{12}\)O\(_7\)). Guaiacol aqSOA is also dominated by the dimer and related species whereas substituted monomers are more abundant in phenol aqSOA (Fig. 5). The presence of dimers and substituted monomers is also evident in the AMS spectra. As an example, Figure 6 shows the AMS spectra of phenol aqSOA along with the NIST mass spectra of possible products. The spectra of guaiacol and syringol aqSOA are shown in Figures S6 and S7. Note that the AMS spectrum of biphenyl-4,4'-diol – a substituted phenolic compound – is very similar to the NIST mass spectrum (Fig. S8), indicating the validity of interpreting the AMS spectra of the phenolic aqSOA based on the NIST spectra of possible products. The AMS spectra of phenol aqSOA show a prominent peak at \(m/z = 186 \) (C\(_{12}\)H\(_{10}\)O\(_2^+\)), which is the molecular ion (M\(^+\)) of phenol dimer (Fig. 6). Similarly, the molecular ion of guaiacol dimer (C\(_{14}\)H\(_{14}\)O\(_4^+\); \(m/z = 246 \); Fig. S6) is also noticeable in the AMS spectra. These results indicate that oligomerization is an important aqueous-phase reaction pathway that leads to the formation of aqSOA from phenols.

Hydroxylation is another important reaction pathway that forms and transforms phenolic aqSOA. As shown in Figure S9, the O-based Kendrick diagram of syringol aqSOA clearly indicates the presence of a large number of species with different degrees of hydroxylation. Similarly, AMS analysis reveals the ubiquitous formation of hydroxylated products as well. For example, the AMS spectra of phenol aqSOA show prominent peaks at \(m/z = 110 \) (C\(_6\)H\(_6\)O\(_2^+\)) and
\(m/z = 202 \) (C\(_{12}\)H\(_{10}\)O\(_3\)\(^+\)), suggesting the presence of hydroxylated phenol and hydroxylated phenol dimer, respectively (Fig. 6). In addition, signature ions representing 2-methoxyhydroquinone are detected in guaiacol aqSOA (Fig. S6) and 3,4,5-trihydroxy benzoic acid is likely a product of syringol oxidation (Fig. S7).

Both nano-DESI and AMS results further reveal the broad formation of aldehydes, esters, and carboxylated products. As shown in Table 2, C\(_9\)H\(_{10}\)O\(_4\) (MW = 182; DBE = 5), which was found to present at high abundance in the aqSOA of syringol + \(^3\)C\(^*\), is likely a syringol aldehyde. In addition, the pronounced C\(_7\)H\(_5\)O\(_2\)\(^+\) (\(m/z = 121 \)) peak in the AMS spectra of phenol aqSOA (Fig. 6a) indicates the formation of phenol esters such as methylparaben and ethylparaben (Fig. 6d) and the prominent C\(_8\)H\(_7\)O\(_3\)\(^+\) (\(m/z = 151 \)) signal in the guaiacol aqSOA spectra (Fig. S6a) suggests the formation of a guaiacol ester – methyl vanillate (Fig. S6c).

Small organic acid anions (i.e., formate, acetate, oxalate, malate, malonate, etc.) are observed in all samples and these species together account for less than 4% of the TOC in aqSOA (Table 1). Note that the importance of organic acids is likely underestimated as IC only quantifies a limited number of low molecular weight aliphatic acids. Nano-DESI analysis further reveals the presence of a number of aromatic compounds with substituted carboxyl groups (e.g., aromatic esters; Fig. S10) and the formation of highly oxygenated C3-C5 aliphatic species in all samples, some of which (e.g., C\(_3\)H\(_4\)O\(_4\), C\(_4\)H\(_6\)O\(_4\) and C\(_5\)H\(_6\)O\(_5\)) are likely carboxylic acids based on DBE values. Furthermore, both nano-DESI and AMS analyses identify demethoxylated aromatic products (e.g., C\(_{15}\)H\(_{16}\)O\(_6\) and C\(_{13}\)H\(_{16}\)O\(_9\) in Table 2). These results together indicate that various fragmentation pathways, such as the cleavage of the aromatic rings and the losses of methoxy (-OCH\(_3\)) groups, are also important during the aqueous-phase reactions of phenols.
Based on these results, we propose a scheme in Fig. 7 of the main pathways of aqSOA formation through the reactions of phenols + 3C*. Briefly, phenols react with 3C* and undergo multiple steps to eventually form HOOH (Anastasio et al., 1997), which is a source of •OH via photolysis. The addition of •OH to the aromatic ring, followed by O$_2$ addition and HO$_2^*$ elimination, leads to the formation of hydroxylated products (Barzaghi and Herrmann, 2002). In the meantime, the •OH-phenol adduct can undergo unimolecular elimination of H$_2$O to form a phenoxy radical (Atkinson et al., 1992; Barzaghi and Herrmann, 2002; Olariu et al., 2002), which then combines with another radical to form dimer and higher oligomers. Note that the amount of HOOH produced in the reactions of phenols + 3C* is small and •OH oxidation appears to be negligible compared to the oxidation of phenols by 3C* (Smith et al., 2014). Phenoxy radical may also form from the oxidation of phenols by 3C* via electron transfer coupled with proton transfer from the phenoxy radical cation or from solvent water (Anastasio et al., 1997). Demethoxylation takes place through attachment of •OH to ring positions occupied by methoxyl groups, followed by elimination of a methanol molecule to form semiquinone radicals (Steenken and O'Neill, 1977). Esterification of phenols can occur as a result of the reactions with organic acids (Offenhauer, 1964). Furthermore, the reactants and the products from all these pathways may undergo ring-opening process, forming ketones and carboxylic acids. Similar species, including oligomers, esters, carbonyls, carboxylic acids, and demethoxylated products, can be formed in •OH-mediated reactions as well (Sun et al., 2010), although apparently with different reaction yields and rates.

3.3 Comparisons of phenolic aqSOA produced from different oxidants: •OH vs. 3C*

As discussed above, aqueous reactions of phenols produce a variety of low-volatility species including oligomers, functionalized monomer and oligomers (with varying numbers of
carbonyl, carboxyl, ester, and hydroxyl groups), and small organic acids (e.g., formate, acetate, oxalate, and malate). Although aqSOA formed from the same precursor generally appear to be chemically similar, there are significant compositional differences between the products from •OH and 3C* reactions. Overall, the molecular compositions of guaiacol and phenol aqSOA are more dependent on the oxidant than are syringol aqSOA (Fig. 5). Similarly, the AMS spectral patterns at m/z ≥ 80 exhibit more significant differences between •OH and 3C* for guaiacol (r² = 0.65; Fig. 2j) and phenol (r² = 0.42; Fig. 2l) whereas those for syringol are almost identical (r² = 0.97; Fig. 2h). Furthermore, a majority of the aqSOA molecules of phenol + •OH contain only one benzene ring, whereas the 3C* reaction produces more oligomers and substituted species based on the DBE values.

Since the AMS results are quantitative, we further compare the relative abundances of signature ions in the AMS spectra of different aqSOA (Fig. Since the fragmentation pattern from 70 eV electron ionization is reproducible (McLafferty and Turecek, 1993), unique ions can be used as tracer species to quantify the concentration of the parent compound. Thus, we further compare the relative abundances of signature ions in the AMS spectra of the aqSOA formed from •OH- and 3C*-mediated reactions (Fig. 8). Details on the signature ions and their proposed precursors are given in Table S1. All these ions are odd electron ions, which usually have special mechanistic significances and are more indicative of the chemical identities of the precursors (McLafferty and Turecek, 1993). These ions can potentially be used to analyze ambient organic aerosol data for the presence of phenolic aqSOA. For instance, a previous study by our group observed C₁₆H₁₈O₆⁺ (m/z 306) and C₁₄H₁₄O₄⁺ (m/z 246) – signature ions representing syringol and guaiacol dimers, respectively, in ambient aerosols significantly influenced by wood combustion and fog processing (Sun et al., 2010). Similar to the nano-DESI results, the AMS
results also indicate that the aqSOA formed via $^3\text{C}^*$ are more enriched of dimers and higher oligomers compared to •OH for a given phenol. These observations suggest that more coupling of phenoxy radicals takes place during reactions initiated by $^3\text{C}^*$ than by •OH. On the other hand, both IC and nano-DESI results indicate that •OH-mediated reactions promote the formation of organic acids and other small-ring-opening species ($n_C < 6$) (see Sect. 3.2), consistent with the observations that •OH reaction generally leads to more oxidized aqSOA as well as water-soluble volatile species (Table 1).

A possible reason for the compositional differences observed in the aqSOA of the same precursor but different oxidants is that $^3\text{C}^*$ reacts faster with phenols (Smith et al., 2014) and thus takes shorter time to oxidize the same amount of phenols compared to •OH. Longer illumination allows further oxidation and fragmentation of higher molecular weight species to happen, leading to the formation of smaller molecules with fewer aromatic rings. Indeed, the compositions of syringol aqSOA, which were produced after comparable illumination durations, are highly similar between the two oxidation conditions according to both nano-DESI and AMS results whereas the difference is the largest for phenol aqSOA whose illumination times are substantially different between $^3\text{C}^*$ and •OH oxidation (Figs. 2 and 5). However, the fact that there are more oligomers and their derivatives in guaiacol + $^3\text{C}^*$ condition compared to syringol + •OH (Fig. 5) even though the guaiacol solution was illuminated longer illustrates that coupling of phenoxy radicals is a more favored pathway through $^3\text{C}^*$ reaction.

3.4 Volatility profiles and UV-vis absorption spectra of phenolic aqSOA

As discussed above, the chemical compositions of the phenolic aqSOA are complex. As a result, the volatilities of the aqSOA species span a broad range, from very low vapor pressure
compounds such as oligomers to more volatile species such as low molecular weight acids. Figure 9 shows the volatility profiles of phenolic aqSOA formed from 3C* reactions measured by a thermodenuder coupled with the AMS. Ammonium sulfate and ammonium nitrate were analyzed simultaneously as references. On average, phenolic aqSOA are more volatile than ammonium sulfate, but less volatile than ammonium nitrate (Fig. 9). The fact that a significant fraction of the aqSOA mass remains in the particle phase even at 200 °C (Fig. 9) is consistent with the presence of some very low volatility species such as oligomers. Compared to guaiacol and syringol aqSOA, phenol aqSOA show the slowest decay with increasing TD temperature, indicating that they are comprised of more low-volatility species. This is consistent with our chemical analyses which reveal that the aqSOA of phenol + 3C* are composed of a larger fraction of species containing more than two aromatic rings, including trimer and higher oligomers (Fig. 5) and. This is also consistent with fact that the O/C ratios of phenol aqSOA are also highest among all three precursors for the same oxidant. These results together suggest that the volatility of phenolic aqSOA is strongly influenced by both polymer contents and average oxidation degree, as reported previously (Huffman et al., 2009).

Recently, light-absorbing OA, also termed as “brown carbon”, has attracted much attention, due to their ability to absorb sunlight and thus affect the radiative budget of the earth (Shapiro et al., 2009). Previous studies have shown that the aqueous-phase oxidation of phenols forms low-volatility oligomers, which absorb significant amounts of UV-visible light and likely account for a significant portion of atmospheric HULIS (Gelencser et al., 2003; Chang and Thompson, 2010). In this study, we examined the optical properties of phenolic aqSOA using UV-vis spectroscopy. Figure 10 shows an example of the UV-vis spectra of syringol aqSOA formed in the reactions with 3C* and •OH, respectively, at $t_{1/2}$. Both syringol aqSOA samples
absorb in the tropospheric sunlight wavelengths (> 300 nm), while syringol does not. This enhancement is likely explained by the formation of conjugated structures as a result of polymerization and functionalization due to the additions of hydroxyl, carbonyl, and carboxyl functional groups to the aromatic rings. Phenol and guaiacol aqSOA also show enhanced absorption in the tropospheric sunlight wavelengths (> 300 nm), while phenol and guaiacol themselves do not. These results indicate that aqueous-phase reactions of phenols are likely an important source of brown carbon in the atmosphere, especially in regions influenced by biomass burning.

4. Conclusions and implications

We thoroughly characterized the chemical composition and studied the volatility and optical properties of phenolic aqSOA formed via reactions with two different oxidants: \(^3\)C* and •OH. Elemental analysis of the AMS spectra indicates that all phenolic aqSOA are highly oxidized (O/C ratios: 0.85-1.23), despite the fact that some of the reactions were very fast (\(t_{1/2} < 1\) hr for syringol). For the same oxidant, the oxidation degree of the aqSOA formed at \(t_{1/2}\) follows the order: phenol > guaiacol > syringol. A large number of aqSOA molecules are identified, including oligomers (up to hexamers) and their derivatives with varying numbers of carbonyl, carboxyl, ester, and hydroxyl groups. A large number of ring-opening species (\(n_C < 6\)) including small organic acids (e.g., oxalate, formate, and acetate) are also identified. While the bulk compositions of the aqSOA are overall similar at \(t_{1/2}\) between the two oxidants for a given precursor, compositional differences are observed. Generally speaking, reactions mediated by •OH produce more highly oxygenated species with a single aromatic ring, while oxidation by \(^3\)C* enhances the formation of higher molecular weight species including oligomers and their oxygenated derivatives. The physical properties, such as volatility and light absorptivity, of the
phenol aqSOA depend on their chemical compositions. Our thermodenuder experiments indicate that the volatility profiles of phenolic aqSOA are influenced by both oligomer contents and average oxidation degree. In addition, the formation of aqSOA species with enhanced conjugated double bonds is probably responsible for the significant light absorption in the actinic region, suggesting that aqueous-phase reactions of phenols are an important source of brown carbon in the atmosphere.

Overall, our results indicate that aqueous-phase processing of phenols represents an important pathway for the production of low-volatility, highly oxygenated and high molecular weight species, which remain in the particle phase after water evaporation. Since aqSOA formed from reactions of phenolic compounds are aqSOA is both water soluble and light absorbing, understanding the impacts of these reactions might significantly influence on the chemical and physical properties, and thus the climatic and health effects, of atmospheric particles may be important, especially in regions influenced by biomass burning emissions. In this study, we also identified a number of An approach for evaluating the importance of phenolic aqSOA formation in the atmosphere is to systematically analyze the AMS mass spectra of ambient aerosol for signature ions that are representative of phenolic aqSOA, e.g., \(\text{C}_{14}\text{H}_{12}\text{O}_6^+ (m/z = 306) \) for syringol dimer, \(\text{C}_{14}\text{H}_{12}\text{O}_5^+ (m/z = 246) \) for guaiacol dimer, \(\text{C}_{14}\text{H}_{12}\text{O}_4^+ (m/z = 262) \) and \(\text{C}_{14}\text{H}_{12}\text{O}_5^+ (m/z = 278) \) for hydroxylated guaiacol dimer, \(\text{C}_{12}\text{H}_{10}\text{O}_2^+ (m/z = 186) \) for phenol dimer, \(\text{C}_{21}\text{H}_{20}\text{O}_6^+ (m/z = 368) \) for guaiacol trimer, and \(\text{C}_{12}\text{H}_{12}\text{O}_3^+ (m/z = 278) \) for phenol trimer (Fig. 8). AMS has been broadly applied for chemical analysis of ambient aerosol and multivariate statistical approaches (e.g., positive matrix factorization) have been frequently used on organic aerosol mass spectral data to determine factors representing different sources and processes (Ulbrich et al., 2009; Zhang et al., 2011). An important criterion for validating the extracted factor is via
examining the mass spectra of the factors for signature ions (Zhang et al., 2011). The signature ions identified in this study could be compared to ambient organic aerosol mass spectrometry data to investigate the impacts of phenolic aqSOA formation. The fact that AMS uses 70 eV EI ionization, which ionizes and fragments molecules with reproducible pattern (McLafferty and Turecek, 1993), allows for the identification and quantification of certain compounds or compound classes in a mixture via signature ions. Indeed, previous studies have demonstrated the capability of using unique AMS ions to fingerprint species such as hydrocarbon-like and oxygenated organic aerosols (Zhang et al., 2005), polycyclic aromatic hydrocarbons (PAH) (Dzepina et al., 2007), methanesulfonic acid (MSA) (Ge et al., 2012), and certain nitrogen- and sulfur-containing organic aerosols (Farmer et al., 2010; Ge et al., 2014).

With this in mind, this study suggests several ions that are potentially representative of phenolic aqSOA, including C_{16}H_{18}O_{6}^+ (m/z = 306) for syringol dimer, C_{14}H_{14}O_{4}^+ (m/z = 246) for guaiacol dimer, C_{14}H_{14}O_{5}^+ (m/z = 262) and C_{14}H_{14}O_{6}^+ (m/z = 278) for hydroxylated guaiacol dimer, C_{12}H_{10}O_{2}^+ (m/z = 186) for phenol dimer, C_{21}H_{20}O_{6}^+ (m/z = 368) for guaiacol trimer, and C_{18}H_{14}O_{3}^+ (m/z = 278) for phenol trimer (Fig. 8). Since all these ions have odd number of electrons with relatively high m/z’s, their productions in the AMS are more directly linked to the specific parent compounds, meaning that they are less likely contributed by confounding molecules (McLafferty and Turecek, 1993). In addition, while large hydrocarbon molecules, e.g., those from vehicle emissions, may generate significant ion signals at m/z > 200, most of them are even-electron ions and contain no oxygen. They are therefore easily differentiated from the isobaric ions from phenolic SOA. Nevertheless, it is important to point out that the validity of using the aqSOA signature ions identified in this study needs to be evaluated by examining ambient organic aerosol mass spectrometry data. In addition, analyzing field samples with nano-
DESI may also provide important insights into the impacts of aqueous phase processing of phenolic compounds in the atmosphere.

Acknowledgements

This work was supported by the U.S. National Science Foundation, Grant No. AGS-103675, and the California Agricultural Experiment Station (Projects CA-D-ETX-2102-H and CA-D*-LAW-6403-RR). The nano-DESI measurements were performed at the W.R. Wiley Environmental Molecular Sciences Laboratory (EMSL) - a national scientific user facility located at PNNL, and sponsored by the Office of Biological and Environmental Research of the U.S. PNNL is operated for US DOE by Battelle Memorial Institute under Contract No. DE-AC06-76RL01830. Additional funding was provided by a Jastro-Shields Graduate Research Award (UC Davis) and graduate fellowships from the Atmospheric Aerosols and Health (AAH) program at UC Davis to Lu Yu and Jeremy Smith. We thank Dr. Ann Dillner, Kathryn George, and Dr. Sonya Collier for help with experiments.

References

Table 1. Summary of the chemical characteristics of phenolic aqSOA formed under different experimental conditions.

<table>
<thead>
<tr>
<th>Sample information</th>
<th>AMS results</th>
<th>Nano-DESI MS results</th>
<th>IC results</th>
<th>TOC results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precursor</td>
<td>Oxidant</td>
<td>t$_{1/2}^a$ (min)</td>
<td>OM/OC</td>
<td>O/C H/C</td>
</tr>
<tr>
<td>Syringol (C8H${10}$O$_3$)</td>
<td>3C*</td>
<td>16</td>
<td>2.29</td>
<td>0.85 1.66 0.04</td>
</tr>
<tr>
<td></td>
<td>•OH</td>
<td>45</td>
<td>2.27</td>
<td>0.86 1.64 0.08</td>
</tr>
<tr>
<td>Guaiacol (C$_7$H$_8$O$_2$)</td>
<td>3C*</td>
<td>35</td>
<td>2.37</td>
<td>0.92 1.79 0.05</td>
</tr>
<tr>
<td></td>
<td>•OH</td>
<td>160</td>
<td>2.72</td>
<td>1.18 1.85 0.51</td>
</tr>
<tr>
<td>Phenol (C$_6$H$_5$O)</td>
<td>3C*</td>
<td>480</td>
<td>2.63</td>
<td>1.11 1.70 0.52</td>
</tr>
<tr>
<td></td>
<td>•OH</td>
<td>672</td>
<td>2.79</td>
<td>1.23 1.72 0.74</td>
</tr>
</tbody>
</table>

a t$_{1/2}$ is the time when approximately half of the phenolic precursor was reacted (as monitored by HPLC/UV-vis).

b OSC indicates the oxidation state of the carbon atom ($= 2 \times$ O/C – H/C)

c % of total ion signal at $m/z \geq 80$ in the AMS spectra.

d estimated based on the signal contribution of the molecular ions of the dimers in the AMS spectra and the NIST spectra. NIST spectrum of syringol dimer is not available.

e total number of molecules identified in the (+) ion mode and (-) ion mode nano-DESI MS spectra.

f % of organic carbon mass in aqSOA accounted for by the sum of 8 organic acids (formate, acetate, pyruvate, malate, oxalate, malonate, fumarate, and maleate).

g dissolved volatile species is calculated as the differences in TOC between flash-frozen and blown-down samples after correction for the mass of unreacted precursors.
<table>
<thead>
<tr>
<th>No.</th>
<th>(^3\text{C}^*) reaction</th>
<th>(\cdot\text{OH}) reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Molecular formula(^a)</td>
<td>Proposed structure</td>
</tr>
<tr>
<td>1</td>
<td>C({16})H({18})O(_6) (306.1103)</td>
<td>[Image]</td>
</tr>
<tr>
<td>2</td>
<td>C({8})H({10})O(_4) (182.0579)</td>
<td>[Image]</td>
</tr>
<tr>
<td>3</td>
<td>C({15})H({14})O(_6) (290.0790)</td>
<td>[Image]</td>
</tr>
<tr>
<td>4</td>
<td>C({15})H({18})O(_6) (292.0946)</td>
<td>[Image]</td>
</tr>
<tr>
<td>5</td>
<td>C({8})H({10})O(_5) (186.0528)</td>
<td>[Image]</td>
</tr>
<tr>
<td>6</td>
<td>C({15})H({18})O(_7) (310.1052)</td>
<td>[Image]</td>
</tr>
<tr>
<td>7</td>
<td>C({12})H({12})O(_7) (268.0583)</td>
<td>[Image]</td>
</tr>
<tr>
<td>8</td>
<td>C({15})H({16})O(_9) (340.0794)</td>
<td>[Image]</td>
</tr>
<tr>
<td>9</td>
<td>C({15})H({18})O(_9) (354.0950)</td>
<td>[Image]</td>
</tr>
<tr>
<td>10</td>
<td>C({15})H({14})O(_8) (322.0688)</td>
<td>[Image]</td>
</tr>
</tbody>
</table>

\(^a\) Molecular formula of top 10 most abundant compounds with their exact mass in the parenthesis.
Figure 1. The average O/C ratios of aqSOA formed from the reactions of syringol (SYR), guaiacol (GUA), and phenol (PhOH) with $^3\text{C}^*$ and $\cdot\text{OH}$, respectively determined by AMS (blue bars) and the average O/C of organic acids determined by IC (pink squares). The distributions of the O/C of individual molecules in the aqSOA determined by nano-DESI MS are shown in box plots, in which the whiskers above and below the boxes indicate the 95th and 5th percentiles, the upper and lower boundaries of the boxes indicate the 75th and 25th percentiles, and the lines in the boxes indicate the median values and the cross symbols indicate the mean values. The O/C of the precursors are shown as black circles.
Figure 2. AMS spectra of aqSOA formed from the reactions of (a-b) syringol (SYR), (c-d) guaiacol (GUA), and (e-f) phenol (PhOH) with 3C* and •OH, respectively. The peaks are color-coded according to four ion categories: $C_xH_y^{+}$, $C_xH_yO_x^{+}$, $C_xH_yO_z^{+}$, and $H_yO_1^{+}$ ($x \geq 1; y \geq 0; z \geq 2$). The ion signals at $m/z \geq 80$ are enhanced by a factor of 20 for clarity. The photoreaction time and the elemental ratios of the aqSOA are shown in the legends. Scatter plots that compare the mass spectra of aqSOA formed from two different oxidants for all m/z's (g, i, k) and for $m/z \geq 80$ (h, j, l) were performed using the orthogonal distance regression (ODR). The linear regression slopes and correlation coefficients are shown in the legends.
Figure 3. (a) Van Krevelen diagram of common molecules identified in every phenolic aqSOA via nano-DESI MS analysis. Each data point is colored by its DBE value. (b) A frequency histogram of the molecular weight of these common molecules.
Figure 4. Contributions of reactants (phenolic precursor and DMB) and products (dissolved volatile species and aqSOA) to the solution TOC after illumination to $t_{1/2}$. TOC amounts are expressed relative to the TOC in the initial solution prior to illumination (i.e., at t_0).
Figure 5. The signal weighted distributions of syringol (SYR), guaiacol (GUA) and phenol (PhOH) aqSOA formed in 3C*- and •OH-mediated reactions, respectively, based on the degree of oligomerization. The data are from the (-) nano-DESI MS spectra. Note that hexamer and derivatives are only found in (+) nano-DESI MS spectrum for GUA aqSOA initiated with 3C* and (-) nano-DESI MS spectrum for PhOH aqSOA initiated with 3C*. The numbers indicate the contributions of individual categories to the total signals for each sample.
Figure 6. Comparisons between (a) the AMS mass spectra (in integer m/z) of phenol (PhOH) aqSOA formed via reactions with 3C* and •OH, respectively, and the NIST mass spectra of (b) biphenol-4,4'-diol and 4-phenoxyphenol, (c) 4,4'-dihydroxydiphenyl ether, (d) methylparaben and ethylparaben, (e) catechol and hydroquinone, and (f) phenol. The chemical structures for each compound are shown and the molecular ions (M$^+$•) are marked.
Figure 7. A schematic illustrates the formation of hydroxylated species, dimers and higher oligomers, esters, and demethoxylated products from aqueous photooxidation of phenolic compounds. Species produced via pathways a - e may undergo further ring-opening processes to form ketones and carboxylic acids. Phenol: R₁=H, R₂=H; Guaiacol: R₁=OCH₃, R₂=H; Syringol: R₁=OCH₃, R₂=OCH₃. Note that while radical coupling here is shown through the carbon opposite (para) the phenoxy group, other geometric isomers will also be formed during these reactions.
Figure 8. Comparisons of the relative abundances of signature ions in the AMS spectra of the aqSOA of (a) syringol (SYR), (b) guaiacol (GUA), and (c) phenol (PhOH) produced from $^{3}\text{C}^*$- and •OH-mediated reactions. The signal contributions of certain signature ions are enhanced for clarity. The m/z values of the signature ions are shown in front of the ion formula in the x-axes. Identities of possible parent compounds are shown to the right. 2OH represents 2 additional hydroxyl groups attached to the aromatic ring.
Figure 9. Mass thermograms of ammonium sulfate \((\text{NH}_4\text{}_2\text{SO}_4)\), ammonium nitrate \((\text{NH}_4\text{NO}_3)\), syringol (SYR), guaiacol (GUA) and phenol (PhOH) aqSOA formed in \(^3\text{C}*\)-mediated aqueous-phase reactions.
Figure 10. UV-vis spectra of syringol and syringol aqSOA formed in 3C*- and •OH-mediated aqueous-phase reactions. The aqSOA spectra were corrected for absorbance contributions from unreacted reactants (syringol and DMB).