Constraints on Asian ozone using Aura TES, OMI and Terra MOPITT

Z. Jiang¹, J. R. Worden¹, D. B. A. Jones²,³, J. T. Lin⁴, W. W. Verstraeten⁵,⁶, and D. K. Henze⁷

¹Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
²Department of Physics, University of Toronto, Toronto, ON, Canada
³JIFRESSE, University of California, Los Angeles, Los Angeles, CA, USA
⁴Laboratory for Climate and Ocean–Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China
⁵Meteorology and Air Quality Department, Wageningen University, the Netherlands
⁶Earth Observation Climate Department, Royal Netherlands Meteorological Institute, the Netherlands
⁷Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA

Received: 25 June 2014 – Accepted: 17 July 2014 – Published: 29 July 2014

Correspondence to: Z. Jiang (zhe.jiang@jpl.nasa.gov)

Published by Copernicus Publications on behalf of the European Geosciences Union.
Abstract

Rapid industrialization in Asia in the last two decades has resulted in a significant increase in Asian ozone (O$_3$) pre-cursor emissions with likely a corresponding increase in the export of O$_3$ and its pre-cursors. However, the relationship between this increasing O$_3$, the chemical environment, O$_3$ production efficiency, and the partitioning between anthropogenic and natural precursors is unclear. In this work, we use satellite measurements of O$_3$, CO and NO$_2$ from TES (Tropospheric Emission Spectrometer), MOPITT (Measurement of Pollution In The Troposphere) and OMI (Ozone Monitoring Instrument) to quantify O$_3$ pre-cursor emissions for 2006 and their impact on free-tropospheric O$_3$ over North-East Asia, where pollution is typically exported globally due to strong westerlies. Using the GEOS-Chem global chemical transport model, we show that the modeled seasonal variation of O$_3$ based on these updated O$_3$ pre-cursor emissions is consistent with the observed O$_3$ variability and amount, after accounting for known biases in the TES O$_3$ data. Using the adjoint of GEOS-Chem we then partition the relative contributions of natural and anthropogenic sources to free troposphere O$_3$ in this region. We find that the influence of lightning NO$_x$ is important in summer. The contribution from anthropogenic NO$_x$ is dominant in other seasons. China is the major contributor of anthropogenic VOCs (Volatile Organic Compounds), whereas the influence of biogenic VOCs is mainly from Southeast Asia. Our result shows that the influence of India and Southeast Asia emissions on O$_3$ pollution export is significant, comparable with Chinese emissions in winter and about 50% of Chinese emissions in other seasons.

1 Introduction

Unprecedented growth in transportation, coal-fired power plants and the industrial sector in China has resulted in a substantial increase in the emissions of O$_3$ precursors (Lin et al., 2014a). Recent studies (Lamsal et al., 2011; Lin, 2012; Mijling et al., 2013)
show 5–10% annual growth rate of NO\textsubscript{x} emission in China. Wang et al. (2012) found there is 3% annual growth rate of O\textsubscript{3} in Beijing in the period of 2003–2010. East Asian O\textsubscript{3} can be transported to the surface of North America in about 2–3 weeks (Liu and Mauzerall, 2005) by midlatitude westerly winds (Liang et al., 2004, 2005), which likely results in an increase of background O\textsubscript{3} concentration in western North America by 3–7 ppbv (Zhang et al., 2008; Brown et al., 2011).

Use of inverse (top-down) methods to better quantify the emission of NO\textsubscript{x} (Lamsal et al., 2011; Lin and McElroy, 2011; Lin, 2012; Mijling et al., 2013), VOCs (Shim et al., 2005; Fu et al., 2007) and CO (Kopacz et al., 2010; Fortems-Cheiney et al., 2011; Gonzi et al., 2011) are needed to ensure consistency between bottom-up inventories and observations. However, large discrepancies can still exist between bottom-up and top-down based inventories (e.g., Kopacz et al., 2010; Lin et al., 2012b). In this work, we perform a multi-tracer assimilation with the GEOS-Chem model to evaluate the top-down estimates of O\textsubscript{3} precursors (NO\textsubscript{x} and CO) in East Asia. We firstly optimized the CO and NO\textsubscript{x} emission with MOPITT CO and OMI NO\textsubscript{2} retrievals respectively and then evaluate the a posteriori simulation of CO and O\textsubscript{3} by comparing the values with measurements from TES in June–August 2006. Using the adjoint of the GEOS-Chem model (Henze et al., 2007), we then quantify source contributions (NO\textsubscript{x}, CO, VOC) to free tropospheric O\textsubscript{3} pollution over East China and the China outflow region in December 2005–November 2006.

2 Observations and model

2.1 TES CO and O\textsubscript{3}

The TES instrument was launched on NASA’s Aura spacecraft on 15 July 2004. The satellite is in a sun-synchronous polar orbit of 705 km and crosses the equator at 01:45 and 13:45 LT. With a footprint of 8 km × 5 km, TES measures radiances between 3.3–15.4 µm with global coverage of 16 days (Beer et al., 2001) of observations. In the
troposphere, TES O$_3$ profile retrievals have 1–2 degrees of freedom for signal (DOFS), and about 1 DOFS for CO. We use data from the “lite” product (http://tes.jpl.nasa.gov/data/) which reports volume mixing ratios (VMR) on 26 pressure levels for O$_3$ and 14 pressure levels for CO. Using an optimal estimation approach, the TES retrievals are conducted with respect to the logarithm of the VMR. The relationship between the retrieved profiles and the true atmospheric state can be expressed as:

$$\hat{z}_{\text{TES}} = z_{a}^{\text{TES}} + A^{\text{TES}} (z - z_{a}^{\text{TES}}) + G \varepsilon$$

(1)

where z is the true atmospheric state (expressed as log(VMR)), z_{a}^{TES} is the TES a priori O$_3$ or CO profile, A^{TES} is the TES averaging kernel matrix and $G \varepsilon$ describes the retrieval error. The averaging kernel matrix represents the sensitivity of the retrieval to the actual trace gas in the atmosphere. The TES retrievals use a monthly mean profile of the trace gas from the MOZART-4 CTM (chemical transport model), averaged over a 10° latitude × 60° longitude, as the a priori information z_{a}^{TES}. According to the recommended quality control criterion, we only use CO and O$_3$ data with major quality flag equals 1. The data with small DOFS (Degree of Freedom for Signal for CO is smaller than 0.8), are dropped as the limited sensitivity reduces the robustness of the calculated O$_3$-CO correlations.

2.2 MOPITT CO

The MOPITT instrument was launched on NASA’s Terra spacecraft on 18 December 1999. The satellite is in a sun-synchronous polar orbit of 705 km and crosses the equator at 10:30 LT. With a footprint of 22 km × 22 km, MOPITT (version 6) combines TIR (4.7 μm) with the NIR (2.3 μm) and has better sensitivity to lower tropospheric CO over land (Worden et al., 2010). MOPITT CO retrievals are reported on 10 pressure levels (surface, 900, 800, 700, 600, 500, 400, 300, 200 and 100 hPa). Similar to the TES product, relationship between the retrieved CO profiles and the true atmospheric state can be expressed as:

$$\hat{z}_{\text{MOPITT}} = z_{a}^{\text{MOPITT}} + A^{\text{MOPITT}} (z - z_{a}^{\text{MOPITT}}) + G \varepsilon$$

(2)

where z_{a}^{MOPITT} is the MOPITT a priori CO profile and A^{MOPITT} is the MOPITT averaging kernel matrix.
state can be expressed as:

$$z_{MOP}^{\text{MOP}} = z_{a}^{\text{MOP}} + A^{\text{MOP}} \left(z - z_{a}^{\text{MOP}} \right) + G \varepsilon$$

(2)

where z is the true atmospheric state (expressed as log(VMR)), z_{a}^{MOP} is the MOPITT a priori CO profile, A^{MOP} is the MOPITT averaging kernel matrix and $G \varepsilon$ describes the retrieval error.

The MOPITT retrievals use a monthly mean profile from the MOZART-4 CTM as the a priori information. We reject MOPITT data with CO column amounts less than 5×10^{17} molec cm$^{-2}$ and if low clouds are observed. The nighttime data is excluded in the assimilation, due to the NIR radiances measure reflected solar radiation. The version 5 data have been evaluated recently against NOAA aircraft measurements (Deeter et al., 2013), which shows small bias in the low and middle troposphere, but 14% positive bias at 200 hPa retrieval level. The new version 6 data significantly reduces the bias in the upper troposphere but magnifies the positive bias at the surface level. In this work, we decide to use the new version 6 data, as we focus on the free troposphere, which is not affected by the positive bias in the retrieval at the surface level.

2.3 OMI NO$_2$

The OMI instrument was also launched on NASA’s Aura spacecraft. The sensor has a spatial resolution of 13 km \times 24 km (Levelt et al., 2006). OMI provides daily global coverage with measurements of both direct and atmosphere-backscattered sunlight in the ultraviolet-visible range from 270 to 500 nm; 405–465 nm is used to retrieve tropospheric NO$_2$ columns. In this study, the daily level-2 data from KNMI DOMINO-2 product (Boersma et al., 2011) are averaged to obtain monthly mean vertical column densities (VCDs) for subsequent emission inversion. The details for the data treatment are described in Lin (2012).
2.4 GEOS-Chem

The GEOS-Chem CTM (http://www.geos-chem.org) is driven by assimilated meteorological observation from the NASA Goddard Earth Observing System (GEOS-5) at the Global Modeling and data Assimilation Office. We use version v34 of the GEOS-Chem adjoint, which is based on v8-02-01 of GEOS-Chem, with relevant updates through v9-01-01. The standard GEOS-Chem chemistry mechanism includes 43 tracers, which can simulate detailed tropospheric O$_3$–NO$_x$–hydrocarbon chemistry, including the radiative and heterogeneous effects of aerosols. The GEOS-5 meteorological fields have 72 vertical levels and the lowest 31 levels are terrain following levels. In order to minimize the amount of memory required to run GEOS-Chem, the model is run with a reduced vertical resolution, in which the levels in the stratosphere are lumped together online.

The native horizontal resolution of GEOS-5 is 0.5° x 0.667°, but it is usually degraded to 4° x 5° or 2° x 2.5° in global scale simulations. A nested simulation can be achieved by running a 0.5° x 0.667° resolution model within a regional domain using the boundary condition provided from a global, coarse resolution mode (Wang et al., 2004; Chen et al., 2009). Recently, the adjoint of nested GEOS-Chem was developed by Jiang et al. (2014). In this work, following Jiang et al. (2014), we run the model with 0.5° x 0.667° resolution over Asia. The boundary condition is generated with a global-scale 4° x 5° resolution simulation.

The anthropogenic emission inventories are identical to those used in Jiang et al. (2013). The global anthropogenic emission inventory is EDGAR 3.2FT2000 (Olivier et al., 2001), updated by the following regional emission inventories: the INTEX-B Asia emissions inventory for 2006 (Zhang et al., 2009b), the Cooperative Program for Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in Europe (EMEP) inventory for Europe in 2000 (Vestreng et al., 2002), the US Environmental Protection Agency National Emission Inventory (NEI) for 2005 in North America, the Criteria Air Contaminants (CAC) inventory for Canada, and the Big Bend Regional...
Aerosol and Visibility Observational (BRAVO) Study Emissions Inventory for Mexico (Kuhns et al., 2003). Biomass burning emissions are from the inter-annual GFED3 inventory with 3 h resolution (van der Werf et al., 2010). The biogenic emissions are from MEGAN 2.0 (Millet et al., 2008). Figure 1 shows the anthropogenic emission of NO\textsubscript{x} and CO in Asia in June 2006. There are strong pollutant emissions in the North China Plain. The urban emission centers can also be clearly identified.

3 Inversion approach

3.1 4DVAR inversion for global CO emission

The 2006 global CO emissions are optimized with a 4DVAR method. The inverse method minimizes the cost function $J(x)$ to provide an optimal estimate of the CO sources,

$$J(x) = (F(x) - y)^T S^{-1}_x (F(x) - y) + (x - x_a)^T S^{-1}_a (x - x_a)$$

where x is the state vector of emissions, x_a is the a priori estimate, y is a vector of observed concentrations, and $F(x)$ is the forward model, which represents the transport of the CO emissions in the GEOS-Chem model and accounts for the vertical smoothing of the MOPITT retrieval. S_x and S_a are the observational and a priori error covariance matrices, respectively. The first term of the cost function represents the mismatch between the simulated and observed concentrations. The second term represents the departure of the estimate from the a priori.

The cost function in Eq. (3) is minimized by reducing the gradient, $\partial J/\partial x$, using the adjoint of GEOS-Chem model in a 4DVAR approach (Henze et al., 2007), which has been previously used for assimilation of CO and O\textsubscript{3} (Kopacz et al., 2010; Singh et al., 2011; Parrington et al., 2012; Jiang et al., 2014b). Similar as in Jiang et al. (2013, 2014b), we produce improved initial conditions by assimilating MOPITT version 6 data,
using the sequential sub-optimal Kalman filter (Parrington et al., 2008), from 1 January 2006 to 1 January 2007. The optimized initial conditions are archived at the beginning of each month. Consequently, the initial conditions for the model simulation are independent from the inverse analyses.

3.2 Regression-based inversion for China NO\textsubscript{x} emissions

The 2006 Chinese NO\textsubscript{x} emissions are optimized with a regression-based multi-step method exploiting the distinctive seasonality of different sources (Lin, 2012). Neglecting horizontal transport and assuming a linear relationship between the total VCD of NO\textsubscript{2} and VCDs from individual sources, the predicted VCD (\(\Omega_p\)) for a given grid can be expressed as the sum of individual emission sources, multiplied by certain scaling factors:

\[
\Omega_p = k_a \Omega_a + k_l \Omega_l + k_s \Omega_s + k_b \Omega_b
\]

(4)

The subscripts “a”, “l”, “s”, and “b” indicate anthropogenic, lightning, soil and biomass burning sources of NO\textsubscript{x}, respectively. The updated emission estimates can be obtained by reducing the sum of \([(\Omega_r - \Omega_p)/\sigma]^2\) across the 12 months; here \(\Omega_r\) is the retrieved VCD and \(\sigma\) is the standard deviation. To better represent the resolution-dependent NO\textsubscript{x} chemistry (Valin et al., 2011), the inversion was conducted with the highest resolution of GEOS-Chem. The seasonality-based inversion method also reduced the influence of potential biases in OMI NO\textsubscript{2} data (Lin et al., 2014b), particularly in winter. The details for the inversion process were described in Lin (2012).
4 Results and discussion

4.1 Evaluation of the model simulation and top-down estimates of O$_3$ precursors

In this work, we are interested in the domain of East China, as shown in Fig. 1, because it is the largest pollutant emission contributor in East Asia. We will also study the domain where outflow of Asian pollution dominates. Figure 2 shows the monthly regional mean O$_3$ and CO concentration at 681 hPa for June, July and August for the period 2006–2010, driven with a priori emission inventories. The modeled O$_3$ concentrations are generally within 10% of the TES data after accounting for the approximately 7 ppb bias in the TES O$_3$ measurements (e.g., Worden et al., 2007; Verstraeten et al., 2013). On the other hand, the modeled CO is biased low. This could be associated with the positive bias in OH, as indicated by Jiang et al. (2014b). The bias can be reduced by integrating the coarse-resolution global and fine-resolution nested simulations in a two-way coupled manner, such that results from the nested model can be used to improve the global model (within the nested domain) and ultimately affect its lateral boundary conditions (via the global transport of CO and other species) (Yan et al., 2014). Another possible reason is that the TES CO data are biased towards polluted air parcels because of its relatively low sensitivity whereas the model captures background values as discussed in Pechony et al. (2013). Both model and TES show similar trends and interannual variability indicating that changes in the modeled emissions and their chemical production of ozone are well described with the changes in the bottom up emissions.

O$_3$–CO correlations can be used to constrain O$_3$ sources and transport (e.g., Zhang et al., 2006). Positive correlations usually indicate that a region has experienced photochemical O$_3$ production, whereas negative correlations may result from O$_3$ chemical loss or influence of stratospheric air. For example, Zhang et al. (2006) demonstrated that TES data can be used to examine global distribution of O$_3$–CO correlations. Voulgarakis et al. (2011) found significant positive correlations in the northern Pacific during the summer of 2005–2008. Kim et al. (2013) used OMI O$_3$ and AIRS CO to show that
the GEOS-Chem model is able to reproduce the observed O$_3$–CO correlations and slopes in western Pacific, but failed in some tropical regions due to model transport error associated with deep convection.

Table 1 shows the monthly regional mean O$_3$ and CO correlation and slope values for the free troposphere (825–383 hPa) for June, July and August 2006–2010; the model is driven by a priori emissions. The uncertainty in the O$_3$ and CO concentrations are due to random errors in the TES O$_3$ and CO observations and natural variability (Zhang et al., 2006). For this reason, we also show the mean value over the analysis time period. The correlation and slope values of TES and GEOS-Chem are generally consistent for both domains. The positive correlation coefficients imply influence of photochemical O$_3$ production, which become stronger from continent to the ocean outflow domains. As in previous studies (Zhang et al., 2006; Voulgarakis et al., 2011; Kim et al., 2013), there are small differences between the simulation and observation. There are relatively large discrepancies over the ocean, perhaps due to transport error because transport of “clean” air from the Pacific can have substantially different chemical characteristics from Asian air.

The consistency between model and TES in the interannual variations, correlation coefficients and slopes demonstrates that the model has good agreement with data over East Asia and Northwest Pacific (or Asian outflow region). The next step is an evaluation of the uncertainties in the emission inventories. As described in Sect. 3, the 2006 global CO emission are constrained with MOPITT data; the 2006 Chinese NO$_x$ emission are constrained with OMI data. As shown in Fig. 3, Chinese anthropogenic NO$_x$ emission in June 2006 is enhanced by 14%, from 1.86 Tg to 2.11 Tg. Similar adjustment is obtained for winter with smaller magnitude. In June 2006, the Chinese anthropogenic CO emission is increased from 17.09 Tg to 18.93 Tg, with a mean scaling factor of 1.11. The small uncertainty in the CO emission in summer is consistent with Jiang et al. (2014b).

The monthly regional mean O$_3$ and CO concentrations of the a posteriori simulation for June, July and August 2006 are shown in Fig. 2. In order to remove the influence
of the initial conditions, the updated-simulation is obtained by running the model from 1 January 2006, with updated inventories of NO\textsubscript{x} and CO. Over the China outflow region, the updated simulation reduces the bias relative to TES by 30\% for CO and 20\% for O\textsubscript{3}. Over eastern China, the bias relative to TES is reduced by 40\% for CO. It is not surprising to see the updated inventories had only a modest impact for O\textsubscript{3} since the agreement between the a priori and the observation was already good (to within 10\% in June and better than 1\% in July and August). The significant reduction in the relative bias provides confidence that the chemical scheme is sufficient to evaluate the partitioning of the natural and anthropogenic emissions.

Because the updated NO\textsubscript{x} and CO emissions are only slightly higher (about 10\%) than the a priori, the response of O\textsubscript{3} to this discrepancy should be linear, as indicated by Wild et al. (2012). To avoid the influence of potential bias in the top-down emission estimations (Jiang et al., 2011; Lin et al., 2012b), it will be good to use the a priori emission inventories in the following analysis. Its effect on the partition, based on the monthly/seasonal regional mean free tropospheric O\textsubscript{3}, should be ignorable.

4.2 Dependency of O\textsubscript{3} on anthropogenic and natural NO\textsubscript{x}, CO and VOCs

In this section, we will use the adjoint of the GEOS-Chem model (Henze et al., 2007) to quantify source contributions (NO\textsubscript{x}, CO, VOC) to free tropospheric O\textsubscript{3} pollution over East China and the China Outflow region. We are interested in these two domains as they have significant influence on the long-range pollution transport. Similar to previous studies (Zhang et al., 2009; Bowman et al., 2012; Lapina et al., 2014), the analysis is based on a sensitivity calculation from an adjoint model. In this work, both transport and chemistry components are run backwards and thus provide a more computationally efficient method for a receptor-oriented problem than the traditional approach by perturbing emissions.

Figure 4 shows the contributions of anthropogenic NO\textsubscript{x}, lightning NO\textsubscript{x}, anthropogenic CO and biogenic isoprene on free tropospheric (819–396 hPa) O\textsubscript{3} over eastern China. The value can be explained as the percentage change of regional mean
O₃ due to a fractional change in emissions in a particular grid. For example, assuming unchanged chemical environment, one particular grid with contribution 0.02% implies mean free tropospheric O₃ over eastern China will be increased by 0.02%, if the NOₓ emission in this grid is increased by 100%. The result shows that anthropogenic NOₓ contributes significantly to the O₃ distribution in this region. Although the influence of lightning NOₓ is weaker, the larger geographical distribution of lightning NOₓ makes it an important source. The contribution of anthropogenic CO is mainly from China, whereas Southeast Asia is the major contributor of biogenic isoprene with a negative sensitivity. It implies China is the major source of anthropogenic hydrocarbons and Southeast Asia is the major source of biogenic hydrocarbons. It should be reminded that the sensitivity to biogenic isoprene is highly dependent on the isoprene chemistry scheme, as indicated by Mao et al. (2013). The contributions on the China Outflow region free troposphere O₃ are shown in Fig. 5. The O₃ distribution is more sensitive to the anthropogenic NOₓ emission from the coast rather than from the inland continent. The sensitivity hotspots clearly show a northeastward movement as the season progresses, from Southeast China (June) to Korean and Japan (August), reflecting the influence of the East Asia monsoon.

To understand the seasonal variation of O₃ production efficiency, we calculated the global scale sensitivities of anthropogenic and lightning NOₓ during December 2005–November 2006 with 4° × 5° resolution. The values of sensitivities, as shown in Fig. 6, are significantly larger than those in Figs. 4 and 5, due to the change of grid size and smaller effect from initial condition, which will be discussed later. The sensitivity of O₃ to anthropogenic NOₓ, has a marked seasonal variation, increasing from the Northern Hemisphere winter to the summer. Kondo et al. (2008) found the slope of East Asia O₃ formation to NOₓ is proportional to HO₂ and thus increases from winter to spring. Increased solar radiation is another reason for the high O₃ production rate in the summer. Figure 6 also highlights the effect of anthropogenic NOₓ from southwest China, showing a significant effect on free troposphere O₃ over eastern China, particularly in September–November. Similar to anthropogenic NOₓ, the contribution of lightning NOₓ...
is maximum in the Northern Hemisphere summer, partly associated with the East Asia monsoon. The sensitivities of O$_3$ over eastern China and the China Outflow region have similar distributions, although the China Outflow O$_3$ is more sensitive to coastal emissions.

Table 2 shows the regional total contributions of anthropogenic and lightning NO$_x$, calculated by summing the sensitivities shown in Fig. 6. Assuming unchanged chemical environment, it can be explained as the percentage change of regional mean O$_3$ due to 100% change in NO$_x$ emission with current O$_3$ production efficiency. For example, 100% increase of Chinese anthropogenic NO$_x$ emission in June–August 2006 will result in 10.16% increase of tropospheric mean O$_3$ over eastern China. Of course, the result of an actual 100% change of NO$_x$ will be different to quantify because of non-linear chemistry. Furthermore, this sensitivity depends on the modeled transport and the robustness of the chemical production of ozone. For example, if the production of ozone is too “fast” then the sensitivity of free-tropospheric ozone to surface emissions is too small as too much ozone is produced in the boundary layer (where loss-mechanisms dominate) vs. the free-troposphere. To evaluate the sensitivities further, we enhanced Chinese anthropogenic NO$_x$ emission by 10% uniformly as a perturbation. Using the initial conditions provided from standard simulation, the 3 month perturbation simulations are started on 1 December 2005, 1 March 2006, 1 June 2006 and 1 September 2006, individually. The relative difference of regional mean O$_3$, between the perturbation and standard simulations, is then multiplied by 10. As shown in Table 2, the results of two methods are highly consistent, which demonstrates our sensitivity analysis works well. Similar as Wild et al. (2012), the consistency also confirms that 10% NO$_x$ perturbation gives linear O$_3$ responses over East Asia. Considering the high computation efficiency, adjoint sensitivity analysis is thus a good alternative to the traditional perturbation method.

As shown in Table 2, the effect of increased Chinese anthropogenic NO$_x$ on free troposphere O$_3$ is limited. Assuming an unchanged chemical environment, a 100% increase of Chinese anthropogenic NO$_x$, during a 3 month period, will only result in
2.68% increase of free tropospheric O_3 in the winter and 10.16% in the summer, associated with the chemical environment of China, which is more inclined to be VOC limited. Furthermore, O_3 distribution in initial conditions are not affected by the change of NO_x emission. Because of the long O_3 lifetime in the free troposphere, O_3 from initial conditions have a substantial influence on the distribution of ozone. A 18 month continuous perturbation simulation, started on 1 June 2005, will enhance the effect of Chinese anthropogenic NO_x to 3.27% in winter and 10.46% in summer.

Over eastern China, the effect of anthropogenic NO_x emission from the ROA on free tropospheric O_3 is about 50% of Chinese local emission in winter and spring, whereas Chinese local emission dominates in the summer and fall. The large contribution of ROA is mainly due to the fact that free tropospheric (819–396 hPa) O_3 values are used in this analysis. According to our test, the boundary layer (surface–819 hPa) O_3 is highly dependent on China local emission rather than long-range transport.

Because of the rapid growth of pollutant emission, transpacific transport of Asian pollutant to North America has attracted significant attention (Zhang et al., 2008, 2009; Walker et al., 2010; Bertram et al., 2013; Lin et al., 2008, 2014a). The major transport mechanisms includes northeastward export of Asian pollution to about 50° N, and then cross the Pacific in midlatitude westerly winds (Liang et al., 2004, 2005). Our results show that the influence of ROA on O_3 pollution export is significant. In the China Outflow region, the influence of ROA is comparable with Chinese emissions in winter and about 50% of Chinese emissions in other seasons. The contribution of lightning NO_x over China is generally small relative to anthropogenic emissions except during the summer (Table 2). The effect of ROA lightning NO_x is similar as the Chinese contribution but slightly larger.

5 Summary

We quantified Asian O_3 and the contributions of its precursors, during the period December 2005–November 2006, using the GEOS-Chem model and O_3 precursor...
observations of NO$_2$ from OMI and CO from MOPITT. The 2006 global CO emissions are constrained with a 4DVAR method, using MOPITT CO (version 6) measurements. In June 2006, the inversion increases the China anthropogenic CO emission by 11%. The 2006 China NO$_x$ emission is constrained with a regression-based multi-step approach, using OMI data. In June 2006, the anthropogenic NO$_x$ emission in China is increased by 14%.

The model simulation was evaluated with TES O$_3$ and CO observations. The modeled concentrations are underestimated for both O$_3$ and CO, but reproduces the O$_3$ (CO) interannual variation quite well. As with previous studies (Zhang et al., 2006; Voulgarakis et al., 2011; Kim et al., 2013), the modeled O$_3$–CO correlation and slope are consistent with the data. The updated inventories reduces the bias relative to TES measurements. Over the China Outflow region, it is reduced by 20% for O$_3$ and 30% for CO. The good agreement between model O$_3$ and CO and its correlations with observations from TES demonstrate the reliability of the model simulation, the chemical scheme and the updated inventories.

We quantified source contributions (NO$_x$, CO, VOC) to free tropospheric O$_3$ pollution over East China and the China Outflow region with a sensitivity calculation approach. Our results show anthropogenic emissions from the Rest-of-Asia (ROA) has an important influence on free tropospheric O$_3$ over China and its outflow region and consequently background O$_3$ concentrations of North America. The observed seasonal variation in O$_3$ is due to the seasonal change in the O$_3$ production efficiency, related with HO$_2$ and solar radiation. The contributions of lightning NO$_x$ to free-tropospheric O$_3$ from China and ROA is small, except in June–August due to the effect of the East Asia monsoon. Finally, our result shows that China is the major contributor of anthropogenic VOCs, whereas the influence of biogenic VOCs is mainly from Southeast Asia.

Acknowledgements. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. This Research was supported by the NASA ROSES Aura Science Team NNH10ZDA001N-AURA. Daven K. Henze was funded by NASA ACMAP NNX13AK86G.
Willem W. Verstraeten was funded by the Netherlands Organization for Scientific Research, NWO Vidi grant 864.09.001.

References

Vestreng, V. and Klein, H.: Emission data reported to UNECE/EMEP, Quality assurance and trend analysis and Presentation of WebDab, Norwegian Meteorological Institute, Oslo, Norway, MSC-W Status Report, 2002.

Table 1. Monthly regional mean O_3 and CO correlation and slope for the free troposphere (825–383 hPa) for June, July and August 2006–2010. The numbers of TES are black. The numbers of model are red in the parentheses. The model results are smoothed with the TES averaging kernels.

<table>
<thead>
<tr>
<th>Region</th>
<th>Type</th>
<th>Month</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>MEAN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>dO$_3$/dCO</td>
<td>Jun</td>
<td>0.36 (0.25)</td>
<td>0.17 (−0.06)</td>
<td>0.19 (0.14)</td>
<td>0.14 (0.02)</td>
<td>0.18 (0.29)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jul</td>
<td>0.08 (0.38)</td>
<td>0.29 (0.36)</td>
<td>0.23 (0.34)</td>
<td>0.15 (0.44)</td>
<td>0.38 (0.19)</td>
<td>0.22 (0.25)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aug</td>
<td>0.20 (0.27)</td>
<td>0.22 (0.26)</td>
<td>0.32 (0.20)</td>
<td>0.15 (0.18)</td>
<td>0.29 (0.47)</td>
<td></td>
</tr>
<tr>
<td>Eastern</td>
<td>R</td>
<td>Jun</td>
<td>0.66 (0.39)</td>
<td>0.47 (−0.11)</td>
<td>0.45 (0.30)</td>
<td>0.51 (0.10)</td>
<td>0.70 (0.52)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jul</td>
<td>0.23 (0.61)</td>
<td>0.66 (0.57)</td>
<td>0.49 (0.38)</td>
<td>0.50 (0.57)</td>
<td>0.53 (0.24)</td>
<td>0.50 (0.37)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aug</td>
<td>0.33 (0.38)</td>
<td>0.52 (0.43)</td>
<td>0.54 (0.28)</td>
<td>0.39 (0.22)</td>
<td>0.56 (0.64)</td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>dO$_3$/dCO</td>
<td>Jun</td>
<td>0.32 (0.60)</td>
<td>0.49 (0.43)</td>
<td>0.52 (0.62)</td>
<td>0.59 (0.66)</td>
<td>0.64 (0.76)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jul</td>
<td>0.56 (0.59)</td>
<td>0.50 (0.48)</td>
<td>0.65 (0.83)</td>
<td>0.63 (1.05)</td>
<td>0.75 (1.13)</td>
<td>0.55 (0.70)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aug</td>
<td>0.55 (0.85)</td>
<td>0.32 (0.49)</td>
<td>0.51 (0.61)</td>
<td>0.53 (0.51)</td>
<td>0.67 (0.89)</td>
<td></td>
</tr>
<tr>
<td>Outflow</td>
<td>R</td>
<td>Jun</td>
<td>0.69 (0.57)</td>
<td>0.71 (0.41)</td>
<td>0.76 (0.62)</td>
<td>0.68 (0.35)</td>
<td>0.73 (0.55)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jul</td>
<td>0.73 (0.57)</td>
<td>0.66 (0.47)</td>
<td>0.66 (0.69)</td>
<td>0.59 (0.70)</td>
<td>0.73 (0.78)</td>
<td>0.67 (0.57)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aug</td>
<td>0.68 (0.71)</td>
<td>0.55 (0.46)</td>
<td>0.63 (0.60)</td>
<td>0.58 (0.39)</td>
<td>0.74 (0.75)</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Regional total contributions of anthropogenic and lightning NO$_x$ on free tropospheric (819–396 hPa) O$_3$ over eastern China and the China Outflow region. The value can be explained as the percentage change of regional mean O$_3$ (Eastern China, China Outflow) due to 100 % increase of NO$_x$ in a particular region (China and ROA). The regions of China and ROA are defined in Fig. 3. The perturbation values (Pt) are the relative difference between standard and perturbation simulations.

<table>
<thead>
<tr>
<th>Type</th>
<th>Eastern China</th>
<th>China Outflow</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DJF</td>
<td>MAM</td>
</tr>
<tr>
<td>NO$_x$ Anthro</td>
<td>China</td>
<td>2.68%</td>
</tr>
<tr>
<td></td>
<td>China (Pt)</td>
<td>2.85%</td>
</tr>
<tr>
<td></td>
<td>ROA</td>
<td>1.72%</td>
</tr>
<tr>
<td>NO$_x$ lightning</td>
<td>China</td>
<td>0.18%</td>
</tr>
<tr>
<td></td>
<td>ROA</td>
<td>0.81%</td>
</tr>
</tbody>
</table>
Figure 1. Anthropogenic emission of (a) NO$_x$ and (b) CO in June 2006 as used in GEOS-Chem. The unit is molec cm$^{-2}$ s$^{-1}$. The black box defines the domains studied in this work. The “East China” domain includes the grids of Chinese mainland within the black box. The “China Outflow region” are grids within the black box, excluding the Chinese mainland.
Figure 2. Monthly regional mean O$_3$ and CO concentration at 681 hPa in June, July and August 2006–2010. Red line is GEOS-Chem model simulation with a priori emission inventories and black line is TES measurements. The blue diamonds show the a posteriori model simulation in 2006 with updated NO$_x$ and CO inventories. The posterior model results are smoothed with the TES averaging kernels. The TES ozone data are biased high by 7 ppbv.
Figure 3. (a) Scaling factors of anthropogenic NO\textsubscript{x} for June 2006. (b) Scaling factor of total CO emission (combustion + oxidation from biogenic VOCs) for June 2006.
Figure 4. Contributions of anthropogenic NO\textsubscript{x}, lightning NO\textsubscript{x}, anthropogenic CO, biogenic isoprene on free tropospheric (819–396 hPa) O\textsubscript{3} over eastern China derived from the adjoint of GEOS-Chem. The contributions can be explained as the percentage change of regional mean ozone due to a fractional change in the emissions in a particular grid assuming unchanged chemical environment. The numbers are the total of absolute value of pre-cursor contributions for the whole domain shown in the figures.
Figure 5. Contributions of anthropogenic NO$_x$, lightning NO$_x$, anthropogenic CO, biogenic isoprene on free tropospheric (819–396 hPa) O$_3$ over China Outflow region derived from the adjoint of GEOS-Chem.
Figure 6. Contributions of anthropogenic NO$_x$ and lightning NO$_x$ on free tropospheric (819–396 hPa) O$_3$ over eastern China and China outflow region.