Ion – particle interactions during particle formation and growth at a coniferous forest site in central Europe

S. G. Gonser¹, F. Klein¹,*, W. Birmili², J. Größ², M. Kulmala³, H. E. Manninen³, A. Wiedensohler², and A. Held¹

¹University of Bayreuth, BayCEER, Atmospheric Chemistry, 95448 Bayreuth, Germany
²Leibniz Institute for Tropospheric Research, 04318 Leipzig, Germany
³Department of Physics, University of Helsinki, 00014 Helsinki, Finland
*now at: Gasphase and Aerosol Chemistry Group, Paul Scherrer Institute, 5232 Villigen, Switzerland

Received: 13 December 2013 – Accepted: 19 December 2013 – Published: 6 January 2014
Correspondence to: S. G. Gonser (stefan.gonser@uni-bayreuth.de)
Published by Copernicus Publications on behalf of the European Geosciences Union.
Abstract

In this work, we examined the interaction of ions and neutral particles during atmospheric new particle formation (NPF) events. The analysis is based on simultaneous field measurements of atmospheric ions and total particles using a neutral cluster and air ion spectrometer (NAIS) across the diameter range 2–25 nm. The “Waldstein” research site is located in a spruce forest in NE Bavaria, Southern Germany, known for enhanced radon concentrations, presumably leading to elevated ionization rates. Our observations show that the occurrence of the ion nucleation mode preceded that of the total particle nucleation mode during all analysed NPF events. The time difference between the appearance of 2 nm ions and 2 nm total particles was typically about 20 to 30 min. A cross correlation analysis showed a rapid decrease of the time difference between the ion and total modes during the growth process. Eventually, this time delay vanished when both ions and total particles did grow to larger diameters. Considering the growth rates of ions and total particles separately, total particles exhibited enhanced growth rates at diameters below 15 nm. This observation cannot be explained by condensation or coagulation, because these processes would act more efficiently on charged particles compared to neutral particles. To explain our observations, we propose a mechanism including recombination and attachment of continuously present cluster ions with the ion nucleation mode and the neutral nucleation mode, respectively.

1 Introduction

Tropospheric new particle formation (NPF) is a worldwide phenomenon (Kulmala et al., 2004a; Kulmala and Kerminen, 2008) contributing to the global particle number and total amount of cloud condensation nuclei (Makkonen et al., 2012; Merikanto et al., 2009; Spracklen et al., 2006). The first step leading to NPF is thought to be the formation of stable clusters from precursor gas phase components as sulfuric acid, amines, am-
monia and organic vapors (Almeida et al., 2013; Kulmala et al., 2013; Schobesberger et al., 2013). The formation of stable clusters happens in the mobility diameter (D_m) range between 1 to 2 nm. Once formed, the stable clusters are activated and experience rapid growth (Kulmala et al., 2013). Atmospheric ions are very likely to play a considerable role in atmospheric nucleation processes, as ions reduce the critical cluster size and facilitate cluster activation (e.g. Enghoff and Svensmark, 2008; Winkler et al., 2008; Yue and Chan, 1979). In fact, comprehensive field measurements of NPF events at different locations in Europe showed an earlier formation of charged particles compared to total particles (Manninen et al., 2010). Furthermore, the charging state of aerosol particles (i.e. the ratio of the present charged particle fraction to the bipolar charge equilibrium charged fraction (Fuchs, 1963; Wiedensohler, 1988)) during NPF was observed to be frequently overcharged (Gagné et al., 2010; Iida et al., 2006; Laakso et al., 2007).

When ions are involved in the nucleation process, two terms are usually used: ion induced nucleation (IIN: e.g. Manninen et al., 2010) and ion mediated nucleation (IMN; e.g. Yu and Turco, 2000). IIN denotes the formation of particles from small ionic clusters, preserving the charge during growth process. Additionally, when interactions of ions and particles are taken into account the term IMN is used. Hence, IMN includes IIN and does also consider interactions among ions and particles, like recombination and attachment.

Yu (2006) developed a detailed model to simulate the IMN process. Results from this model point towards the dominant role of ions in NPF, especially, when the actual aerosol charged fraction is elevated in comparison to the equilibrium charging state (Yu and Turco, 2011). On the other hand, when comparing formation rates of charged particles to total particle formation rates, only a small fraction (less than 10 %) of the particle formation can be attributed to IIN (Manninen et al., 2009a, 2010). Only recently, Kulmala et al. (2013) published results of field measurements with a sophisticated set of instruments, covering the size range where the very first steps of NPF take place. From
their data and theoretical calculations of ion–ion recombination, Kulmala et al. (2013) concluded that pure neutral nucleation processes dominate over IMN.

Atmospheric ions are generally classified according to their mobility diameter D_m into three classes: (1) small ions or cluster ions ($D_m < 1.6 \text{ nm}$), (2) intermediate ions ($1.6 \text{ nm} < D_m < 7.4 \text{ nm}$) and (3) large ions ($D_m > 7.4 \text{ nm}$) (e.g. Hirsikko et al., 2011). Small atmospheric ions are always present in the atmosphere, being mainly generated by radioactive decay and cosmic radiation. The total concentration of small ions varies spatially and temporally, depending on ion sources and sinks (Hirsikko et al. (2011) and references therein). Intermediate and large ions are usually only present during NPF events, snow fall and rain (Tammet et al., 2009; Virkkula et al., 2007).

Only during the last decade, appropriate instrumentation became available to measure neutral and charged cluster size distributions down to diameters relevant for NPF (Kulmala et al., 2012). One instrument capable of measuring ions down to D_m of about 0.8 nm and neutral particles down to 2 nm is the neutral cluster and air ion spectrometer (NAIS) (Manninen et al., 2009b, 2011; Mirme and Mirme, 2013). In this paper, we present measurements performed with the NAIS during NPF. A new approach to evaluate the data is proposed to elucidate the interactions of ions and neutral particles in the formation and growth of atmospheric particles.

2 Measurements and data analysis

2.1 Measurement setup

New particle formation (NPF) events were observed from 17 June to 18 August 2012 at the “Waldstein” ecosystem research site in the Fichtelgebirge mountain range, NE Bavaria, Southern Germany. The measurements were carried out in a coniferous forest (50°08′35″ N, 11°51′49″ E, 776 m a.s.l.) dominated by Norway spruce. NPF was measured by means of a neutral cluster and air ion spectrometer (S/N NAIS15) (Airel Ltd.,
Tartu, Estonia) and a mobility particle size spectrometer (reference system of TROPOS, Leipzig, Germany; Wiedensohler et al., 2012).

The NAIS is capable of measuring neutral particles in the diameter range from about 2 to 42 nm and atmospheric ions in the range of 0.8 to 42 nm (Manninen et al., 2011). The NAIS is composed of two cylindrical differential mobility analyzers (DMA), each with a sample flow of 30 standard liters per minute (SLM) and a sheath flow of 60 SLM. Each DMA is equipped with 21 electrometers for simultaneous detection of ions. Positive and negative ions are analyzed separately in a positive and a negative DMA, respectively. The NAIS can be used in different operating modes. In the particle mode, clusters are charged by corona discharge prior to the mobility analysis in one of the DMAs. During ion measurement mode the sample is directed to the DMAs without any prior treatment. The offset mode is used for detection of the electrometer background noise level. To do this, charging to opposite polarity and an electric filter is activated inhibiting the introduction of ions to the DMAs. During the whole campaign the NAIS was operated alternatingly with these three modes: offset mode, ion mode and particle mode. The cycle time of the consecutive modes was 200 s, with the particle mode set to 66 s, the ion mode set to 67 s and the offset mode set to 67 s. Therefore, the overall temporal resolution of the NAIS was 200 s.

In particle mode, the recorded data is inverted by the instrument software, assuming the Fuchs-charge equilibrium of the sample prior to charging and that all classified particles are singly charged. However, if the particle population is not in charge equilibrium but either overcharged or undercharged, the NAIS will overestimate or underestimate the total particle concentrations, respectively (Kulmala et al., 2012). Additionally, an overestimation of the total particle concentration by a factor of 2–3 is a general characteristic of NAIS instruments, as was shown by an intercomparison of several NAIS instruments by Gagné et al. (2011). In the ion mode, no charging of the sample is performed and the DMAs sample the naturally charged clusters. The NAIS is described in more detail by Manninen et al. (2009b) and Mirme and Mirme (2013).
The particle number size distributions measured with the mobility particle size spectrometer cover a diameter size range from 10 to 680 nm with a temporal resolution of 5 min. It was operated with a closed loop sheath flow of 5 SLM and a sample flow of 1 SLM. More details about the mobility particle size spectrometer are described in Wiedensohler et al. (2012; cf. Fig. 1). Both instruments were located in a container on a clearing in the forest with the inlets pointing towards east, at a height of 2 m above ground. Additionally, meteorological parameters including ozone concentration, wind speed, wind direction, temperature, relative humidity as well direct and diffuse solar radiation were measured at the forest clearing.

To obtain robust information about the processes governing NPF from measurements at a fixed location, the analyzed nucleation events have to be of regional character, and occur in a generally homogenous air mass. The homogeneity of air masses was assessed by considering the following parameters: Wind direction, wind speed, ozone concentration, relative humidity and particle concentration in the diameter range from 4 to 10 nm. Only when wind speeds varied less than 0.5 ms\(^{-1}\) and wind directions varied less than 60° prior and during NPF, and all other parameters showed a continuous and consistent progression, the air mass was judged to be homogeneous.

The focus of this study is to determine ion interactions during NPF measured with the NAIS. Hence, the data of the mobility particle size spectrometer was mainly considered for calculations of ion and total particle sink rates. For this purpose, the NAIS particle data were merged with this data by means of a linearly weighted merging algorithm in the overlapping region of both instruments between 15 and 27 nm. The mobility particle size spectrometer was measuring with a 5 min temporal resolution and its size bins were different from the NAIS size bins. Both the size bins and the time resolution were interpolated to match the NAIS time resolution and size bins. The resultant particle number size distribution between 2 and 680 nm was used for calculating the sink rates for ions and total particles according to Hörrak et al. (2008), Kulmala et al. (2012) and Tammet and Kulmala (2005).
2.2 Interactions of ions and neutral particles

The major interactions of ions and neutral particles among themselves and with the background aerosol particle population are (1) coagulation of neutral particles, (2) attachment of ions to neutral particles and (3) recombination of ions with ions of opposing polarity. The magnitude of these interactions can be calculated theoretically as corresponding coefficients (see appendix for the formulations).

Coagulation (1) is an important sink for freshly nucleated particles and a factor enhancing the particle growth rate (GR) during NPF events (Kulmala et al., 2004b). To determine the size-dependent coagulation coefficient K_{ij}, an approximation from Tammet and Kulmala (2005) was used (cf. Eqs. A1 and A2). The theoretical approach for K_{ij} is valid for the interaction of neutral particles and clusters of all diameters i and j.

The ion aerosol attachment (2) is described by the attachment coefficient β for the interaction of small air ions with neutral particles. β is commonly assumed constant ($1 \times 10^{-8} \text{ cm}^3 \text{s}^{-1}$) when determining ion formation rates, where the attachment of small ions to neutral particles of a large diameter is considered a source for ions of the same diameter (Hirsikko et al., 2011; Kulmala et al., 2012; Manninen et al., 2010). However, this size-independent approach is only an approximation. In particular, when the diameter i of neutral particles is greater than 10 nm, a constant value is inaccurate (cf. green solid line in Fig. 1). Therefore, when calculating ion sinks, the size dependence of β has to be taken into account. The size dependent β_{ij} varies by three orders of magnitude, when the interactions of small ions of size j with neutral particles of size i are considered (cf. solid green line in Fig. 1; Hoppel and Frick, 1990; Hörrak et al., 2008; Tammet and Kulmala, 2005). For this study, we determined β_{ij} by applying a formulation by Hörrak et al. (2008), which is an approximation of the tabulated results by Hoppel and Frick (1990) (cf. Eqs. A3 and A4). Since intermediate and large ions also have a slightly enhanced attachment probability compared to pure neutral coagulation (cf. Fig. 1, dashed lines), we extrapolated β_{ij} for all measured ion size ranges, still using the formulation by Hörrak et al. (2008).
In principle, the ion–ion recombination (3) can also be described by the attachment coefficient, assuming the interaction of clusters with opposite charges. Usually, the recombination coefficient is denoted as α and assumed to be constant ($1.6 \times 10^{-6} \text{ cm}^3 \text{ s}^{-1}$) when the interaction among small ions is considered (Hoppel and Frick, 1990; Kulmala et al., 2013; Tammet and Kulmala, 2005). Considering the case of cluster ions of diameter j, interacting with oppositely charged clusters of a similar diameter k, β_{jk} should be equal to α (Hoppel and Frick, 1986). In fact, β_{jk} for ions with $j = 1.5 \text{ nm}$ interacting with oppositely charged ions with $k = 1.5 \text{ nm}$, as used in this study, is $1.3 \times 10^{-6} \text{ cm}^3 \text{ s}^{-1}$ (solid orange line in Fig. 1). Therefore, β_{jk} for the interaction of oppositely charged clusters in the sizes class j and k, i.e. the size-dependent recombination coefficient, will be denoted as α_{jk} in the following (Eq. A5).

The theory for ion attachment and recombination was developed to calculate the attachment of small ions to larger particles or ions, in order to theoretically assess the particle charge distribution in a bipolar ion environment (Hoppel and Frick, 1986, 1990; Reischl et al., 1996). The interaction of intermediate and large ions with even larger neutral or charged particles was not the aim of these studies. Nevertheless, the sinks and sources for all ion sizes have to be taken into account when analyzing ion interactions in NPF. Therefore, we chose to use the approximated theory from Hõrrak et al. (2008) to obtain a first order approximation of the coefficients governing the behavior of larger ions, and to apply the calculations also for larger diameters. A validation of this approach is given by comparing the size dependence of β and α to K. In Fig. 1, all three coefficients are depicted for aerosols of two different diameters (1.5 and 10 nm). As electrical effects will enhance the probability of an encounter of two particles, K is the lower limit for the three considered interactions. When small ions (1.5 nm) and small neutral particles interact with each other (green solid line in Fig. 1), the electrical effect can enhance the collision probability by more than one order of magnitude. Considering the interaction of oppositely charged ions, the enhancement can be greater than three orders of magnitude (orange solid line in Fig. 1). The largest differences are found for interactions of small particles or ions. However, when small
ions interact with larger particles or ions, α and β approach K, indicating a smaller influence of the charge on the collision probability. A similar pattern can be seen when considering the interaction of large ions with larger aerosol particles (dashed lines in Fig. 1). For the interaction of particles or ions with a diameter of 10 nm, α and β decrease about 1–2 orders of magnitude while K is not that strongly affected. The difference among the three coefficients is less pronounced, pointing towards a smaller influence of the charge on collision probabilities when larger ions and particles are considered.

2.3 Ion–ion recombination

Knowing the recombination coefficient α_{jk} and the number concentration of ions of both polarities, a theoretical number size distribution of neutral particles from ion–ion recombination can be deduced. Kontkanen et al. (2013) and Kulmala et al. (2013) propose a method to calculate the number size distribution resulting from recombination. Both authors used a constant value of 1.6×10^{-6} cm3 s$^{-1}$ for α. This is justified since only recombination of charged clusters below 2.1 nm in diameter was considered. However, we use the size-dependent α_{jk} for our approach as the recombination of charged clusters up to 42 nm is considered. Furthermore, Kulmala et al. (2013) used a very simple balance equation, by assuming recombination as the only source of neutral clusters and coagulations as the only sink. Similar to Kontkanen et al. (2013), our analysis includes additional sinks and source terms. The sources are given by the recombination of positive and negative ions contributing to size class i as well as the growth of recombined neutral particles into size class i. The sinks include (1) the coagulation sink (CoagS_i; cf. Eq. A6) describing the loss of the recombined neutral particles to the background neutral particles, (2) the charging sink ($\text{CharS}_{\pm i}$; cf. Eq. A7) defining the number of recombined neutral particles in size i being charged either positively or negatively by the present ions (Hõrrak et al., 2008), and (3) the growth sink, describing the growth of recombined neutral particles out of the size class i. The balance equation for
Recombination is therefore:

\[
\frac{dN_i^{\text{rec}}}{dt} = \sum_{jk} r_{jk} \alpha_{jk} N_j^+ N_k^- + N_i^{\text{rec}} \frac{GR_{i-1}}{\Delta Dp} - N_i^{\text{rec}} \left(\text{CoagS}_i + \text{CharS}_i^+ + \text{CharS}_i^- + \frac{GR_i}{\Delta Dp} \right),
\]

(1)

where, \(N_i^{\text{rec}}\) is the number concentration of recombined neutral particles in size class \(i\) and \(r_{jk}\) is a coefficient allocating the recombined neutral particles to size class \(i\). \(\frac{GR_i}{\Delta Dp}\) is the neutral growth rate normalized by the size bin width and \(N_j^+\) and \(N_k^-\) are the positive and negative ion number concentrations, respectively. Assuming steady state conditions, Eq. (1) provides the number of recombined neutral particles for each size class \(i\). Breakup of the formed clusters as proposed by Kontkanen et al. (2013) and Kulmala et al. (2013) is not taken into account in our formulation. Since the concentration of recombination products did never reach the measured neutral cluster concentration, making the determination of a breakup term impossible.

The key parameter governing the concentration of small ions in the atmosphere is the ionization rate \(Q\). For our site, \(Q\) was calculated by means of a simplified ion equilibrium equation (Hoppel and Frick, 1986). This equation assumes the ion production rate to be a function of two ion sink terms only, the recombination and the attachment of ions to the present background aerosol (cf. Eq. A8).

2.4 Formation- and growth rate

The formation rate \(J\) describes the flux of particles or ions into a defined size interval. \(J\) was calculated for every size class using Eqs. 9 and 10 from Kulmala et al. (2012).

The growth rates were also deduced for every size class, this was done separately for total particles (\(GR_t\)) as well as positive (\(GR_{\text{pos}}\)) and negative ions (\(GR_{\text{neg}}\)). Growth rates were determined using the maximum concentration method described in detail in Sect. 6A by Kulmala et al. (2012). In order to determine the point in time of the maximum concentration (black filled circles in Fig. 2), we applied a least square polynomial smoothing filter (Savitzky and Golay, 1964) to each of the NAIS size classes. Further
smoothing of the determined maxima resulted in smooth size dependent growth rates (black curves in Fig. 2). The determination of the growth rates with this method is surely associated with uncertainties (Yli-Juuti et al., 2011). Besides, as the probability of particles carrying multiple charges in the NAIS increases with particle diameter, the measured number size distribution for larger sizes is less reliable. However, the growth rates for particles smaller than 20 nm in diameter give reasonable results. For ion/particle diameters above 20 nm, the applied method results in an overestimation of the growth rates (cf. Fig. 2). By comparing concentrations as well as growth rates of total particles (Fig. 2a) and neutral particles (Fig. 2b), it becomes evident that neutral and total particles exhibit equivalent values. Therefore, data from the NAIS’s total particle measurements are used to describe neutral particle characteristics in the following. As the same procedure was applied to all ion and particle measurements, the determined growth rates are well comparable. Further, a correction for self-coagulation of the growing mode was applied to obtain the rates for pure condensational growth (Leppä et al., 2011).

3 Results

3.1 General event characteristics

Simultaneous measurements of neutral and charged clusters and particles at the “Waldstein” ecosystem research site from 17 June to 18 August 2012 showed a frequent occurrence of new particle formation events. Typically, the events occurred during sunny morning hours while wind directions from the east prevailed. However, several events did also occur in the afternoons and when wind directions were not from the east. A total number of 17 NPF events (28% of measurement period) were observed, while 29 days (47%) could not be defined as clear events but did still show particle formation. Non-event days were less frequent with only 15 out of 61 days. Since the measurements were taken at a fixed location, a reliable evaluation of the pat-
terns governing the formation and growth of particles were only possible in homogeneous air masses. After careful evaluation for homogeneous air masses as described above, a total of 8 events were chosen for detailed analysis. Figure 2 shows a typical NPF event. Growth rates of those 8 days compare well to prior observations, reporting growth rates in the range from 2.2 to 5.7 nm h$^{-1}$ at the same location (Held et al., 2004). For particles in diameter range 2–3 nm median total particle growth rates (GR_t), negative (GR_{neg}) and positive growth rates (GR_{pos}) were found to be 4.1 nm h$^{-1}$, 2.4 nm h$^{-1}$ and 2.8 nm h$^{-1}$, respectively. Median formation rates \dot{J} for 2–3 nm particles were in the order of 3.5 cm$^{-3}$ s$^{-1}$, 0.015 cm$^{-3}$ s$^{-1}$ and 0.02 cm$^{-3}$ s$^{-1}$ for total, negative and positive particles, respectively.

3.2 Ion concentrations and ionization rates at “Waldstein”

The “Waldstein” site is located in the Fichtelgebirge mountain range, NE Bavaria, which is known for its enhanced background radioactive radiation levels. In particular, radon concentrations are elevated reaching soil gas concentrations of up to 4000 kBq m$^{-3}$ (Kemski et al., 2001; Lüers et al., 2007). As the primary sources for atmospheric ions are radon decay, gamma radiation and cosmic radiation (Hirsikko et al., 2011), ion concentrations and ionization rates Q are expected to be elevated at the “Waldstein” site. The measurements with the NAIS in summer 2012 showed median concentrations of positive and negative cluster ions on NPF event days of 339 and 148 cm$^{-3}$, respectively (cf. Table 1). The cluster ion concentrations show a clear diurnal variation both on NPF event days and non-event days (Fig. 3). Lüers et al. (2007) conducted radon measurements at the “Waldstein” site and found similar diurnal patterns, hinting towards radon as the major ionization source. Furthermore, our measurements show that cluster ion concentrations are slightly enhanced on NPF events days (Table 1). Nevertheless, the concentrations seem quite low compared to values measured at various locations around the world. Ion concentrations measured at 2 m above ground are typically in the range of 500 to 1000 cm$^{-3}$ (Hirsikko et al., 2011). In summer 2013, mea-
measurements with an air ion spectrometer (AIS) were performed at the same clearing at the “Waldstein” site. The AIS is very similar to the NAIS, except that it is not equipped with a corona charger for charging the neutral particles. Measurements with the AIS resulted in typical positive and negative cluster ion concentrations of 600 and 900 cm$^{-3}$, respectively. These values compare much better with the concentrations published by Hirsikko et al. (2011), and range close to the upper end of typical values. The obvious discrepancy between the AIS and NAIS may be explained by different inlets of the two instruments. The inlet of the NAIS was 1.8 m long and was bended by 180°, while the AIS inlet was about 1 m long and had a bending of only 90°. An enhanced ion loss in the NAIS inlet due to diffusion is probable, as the penetration for cluster ions through the NAIS inlet is only about half of the penetration through the AIS inlet. Further, electrostatic losses for the NAIS measurements could give an explanation for the generally lower concentrations of negative ions in compare to positive ions. Negative ions have a higher electrical mobility and are therefore preferentially lost due to a present electrostatic field. Considering the much higher ion concentrations and the optimized inlet of the AIS, absolute ion concentrations measured with the NAIS in 2012 are probably underestimated. The underestimation of the absolute concentration does not affect the determination of the growth rates with the maximum concentration method.

The median ionization rates Q determined with the NAIS during NPF events are 0.8 and 0.9 cm$^{-3}$ s$^{-1}$ for negative and positive cluster ions, respectively (cf. Table 2). The calculated Qs are most probably underestimated since Q depends directly on ion concentrations, which are underestimated by the NAIS. Furthermore, the simplified balance equation for determining Q does not consider all active ion sinks, resulting in a general underestimation of about a factor of 2 (Hõrrak et al., 2008). Considering these facts, Q was probably well above 3 ion pairs cm$^{-3}$ s$^{-1}$ during summer 2012 at “Waldstein”.

3.3 Time difference

In all 8 evaluated NPF events, 2 nm ions (NAIS size bin limits were 1.8–2.1 nm) showed a concentration increase before the concentrations of total particles of the same size increased. Figure 4a shows the course of concentration for 2 nm total particles and ions for an exemplary NPF event on 12 August 2012. The occurrence of an earlier ion formation prior to total particle formation seems to be a typical pattern during NPF. Manninen et al. (2010) report of NAIS measurements during NPF at several locations in Europe. They also observed the earlier formation of 2 nm ions prior to 2 nm total particle formation in different environments. However, this behavior was not investigated in more detail in other studies. When considering the concentrations of larger particles and ions, the time gap between the appearance of charged and total particles becomes smaller with increasing particle size (Fig. 4b–e). This behavior was observed throughout all NPF events considered in our study. In order to determine the time difference Δt between the appearance of ions and total particles, a cross-correlation analysis was performed individually for each size class. Cross-correlation analysis is a standard procedure to analyze time shifts in two time series. The result of the cross-correlation analysis can be seen in Fig. 5. For small particles, Δt is largest and sharply decreases as the particle diameter increases, eventually reaching $\Delta t = 0$ for diameters of about 20 nm. Therefore, the total particles seem to grow faster than ions after the onset of a NPF event, as Δt becomes smaller during the growth process.

3.4 Growth rates

Due to the decrease of Δt during NPF, GR_t is expected to differ from GR_{neg} and GR_{pos}, especially when considering small particle diameters. In fact, our analysis yields an increased GR_t compared to GR_{neg} and GR_{pos}. At this point, it should be mentioned once more that the growth rates above an ion/particle diameter of 20 nm are most probably overestimated by the maximum concentration method. Figure 6a shows the growth rates for the NPF event on 4 July 2012. GR_{neg} and GR_{pos} are similar to each
other, while the total particles grow faster. Figure 6b shows the median growth rates of all 8 regional NPF events. A clearly enhanced GR_t is evident in the median values. The observation of enhanced GR_t compared to charged particle growth rates stands in contrast to growth theories, wherein the presence of a charge enhances the growth rates of small and intermediate ions (e.g. Yu and Turco, 2000; Yue and Chan, 1979).

To further support our observations at the “Waldstein” site, we analyzed additional data recorded with a NAIS instrument during summer 2008 at the “Melpitz” field site in NW Saxony, Germany. In these data, the same patterns are found: Δt decreases during the growth process and total particles show an enhanced growth rate compared to ions. As the determination of the growth rates is always connected to some error, the enhancement of GR_t over to GR_neg and GR_pos cannot be regarded as significant, but still it is considered to be plausible.

3.5 Recombination

The number size distributions deduced from ion–ion recombination as described by Eq. (1) are generally comparable to the measured total particle distributions. However, the resulting absolute concentrations of particles from ion–ion recombination are one to three orders of magnitude smaller than the observed total particle distributions. Particularly, when diameters below 10 nm are considered, recombination cannot explain the abundance of total particles (cf. Fig. 2). This may be partly due to the performance of the NAIS, as it generally underestimates the ion concentrations and overestimates the total particle concentrations. Therefore, the absolute values are not taken into consideration for our study. Nevertheless, the recombination gives valuable information regarding the growth behavior of neutral particles. A measure which can still be used for our analysis is the growth rate of the recombination products (GR_rec). As mentioned above, GR_t is elevated at small particle diameters compared to GR_neg and GR_pos. GR_rec seems to behave similar to GR_t as can be seen in Figs. 2 and 6. For most of the NPF events considered in our study, GR_rec is well above GR_neg and GR_pos (Fig. 6b) and sometimes matches GR_t quite well (Fig. 6a).
4 Discussion

The 8 particle formation events at the “Waldstein” site considered in this study can be separated into two distinct stages. The formation of the first stable clusters and particles seem to happen in the ion fraction. Later, the ion formation step is followed by a very intense formation and growth of neutral clusters and particles. The initial ion induced nucleation (IIN) typically happens about 20–30 min before the first appearance of neutral particles (Fig. 5c and d; Table 2) at “Waldstein”. This observation can most likely be explained by the higher stability of charged clusters over neutral ones at a certain precursor gas saturation ratio (Enghoff and Svensmark, 2008; Yue and Chan, 1979). Furthermore, charged clusters clearly activate more easily and grow more quickly (e.g. Lushnikov and Kulmala, 2004; Winkler et al., 2008; Yu and Turco, 2000). Keeping this in mind and neglecting any ion–ion and ion–particle interactions, the temporal advanced of the ion fraction during the growth process should increase or remain constant. However, our measurements show a contrary behavior: once formed, the neutral particles grow considerably faster than the ion fraction, and eventually, the earlier occurrence of the ions vanishes completely. As this behavior can most likely not be explained by pure condensational growth, ion–ion and ion–particle interactions are thought to play a key role in the growth behavior of charged and neutral particles.

Neutral particles and ions are related due to two different types of interaction. Either ions carrying opposite charges recombine to form a somewhat greater neutral particle, or an existing neutral particle grows and becomes charged by the attachment of an ion. Considering these ion–particle interactions by applying theoretical parameterizations of the attachment and recombination processes to the combined NAIS and mobility particle size spectrometer measurements, we obtained the ion-mediated or -recombined fraction of neutral particles. As the NAIS number concentration measurements are subject to uncertainties both for ions and total particles (Asmi et al., 2009; Gagné et al., 2011), the absolute concentrations of the recombination products are not considered in our work. However, particle mobility measurements and particle sizing with the NAIS...
are more accurate (Gagné et al., 2011). The growth rate analyses are not influenced by the uncertainties in NAIS number concentrations as it is based on locating the peak of each size fraction. Therefore, we chose GR$_{\text{rec}}$ deduced from the calculated recombination number size distribution as a measure for the influence of ions on neutral particle formation. Considering the growth rates in Fig. 6b, GR$_t$ is generally elevated, while median GR$_{\text{neg}}$ and GR$_{\text{pos}}$ are very similar to each other. Recombined particles have a median GR$_{\text{rec}}$ somewhere between ions and neutral particles. During some of the NPF events, GR$_{\text{rec}}$ was very close to GR$_t$ while GR$_{\text{neg}}$ and GR$_{\text{pos}}$ were lower (Fig. 6a; Table 2).

In general, our analyses show an earlier formation of charged particles compared to total particles (Fig. 5). When looking more closely at the time difference of appearance (Δt) of ions and total particles, the 8 considered NPF events can be divided in two classes: (1) initial Δt is larger than 20 min (Fig. 7) and (2) initial Δt is smaller than 20 min (Fig. 8).

Median values of four NPF events (4 July; 23 July; 24 July; 12 August 2012; cf. Table 2) with $\Delta t > 20$ min are shown in Fig. 7. The large differences in the growth rates for ions and total particles (Fig. 7a) are remarkable. While GR$_{\text{neg}}$ and GR$_{\text{pos}}$ are as expected for small diameters, GR$_t$ for small total particles is strongly elevated (cf. Table 2). This strong growth is maintained until a sharp drop for diameters above 10 nm is evident. The unusual sharpness of the decrease can most likely be attributed to limitations of the maximum concentration method and the inversion routine of the NAIS. Nevertheless, qualitatively the decrease in GR$_t$ is considered real, indicating a change in the prevailing growth conditions. Figure 7b shows the time evolution of the growing mode’s diameter of maximum concentration (Dp_{max}) for both ion polarities as well as for total particles. More specifically, Dp_{max} is the result of the maximum concentration method for the determination of the growth rates (cf. black lines in Fig. 2). The origin of the horizontal axis (time = 0) indicates the first appearance of the total particle growing mode. The time of initial ion appearance is offset by the median of Δt at 2 nm for positive and negative ions, respectively (cf. Fig. 7c and d). The initial offset of the ion
growing mode is about 60 min. As total particles exhibit a higher GR_t, their growing mode finally reaches the same DP_{max} as the ion modes, about 40 to 60 min after the first appearance of total particles.

Figure 7c and d show the temporal advance (Δt) of ions compared to total particles. Δt exhibits a rapid decrease as the particles grow. Eventually, for particle diameters above 10 nm, the advance of ions is fairly small and continues to decreases at a slower rate, to approach $\Delta t = 0$ at about 20 nm. Additionally, Fig. 7c and d show the independently derived time difference between the negative and positive DP_{max} to the total one (cf. Fig. 7c and d as black dotted lines). Basically, this is a comparison of Δt derived from the cross-correlation method with the time difference derived from the maximum concentration method. The general patterns of these time differences are very similar: the rapid decrease of Δt is clearly evident until particle diameters of about 10 nm are reached. For greater particle diameters the time differences of DP_{max} become negative, indicating a persistently enhanced growth rate of the total particle growing mode. However, our data do not show a temporal advance of the total growing mode compared to the ion modes (cf. Figs. 4, 5 and 7c, d). This discrepancy may be explained by the increasing uncertainty associated with the growth rate determination for larger diameters. As discussed above, growth rates for diameters up to 20 nm are considered reliable, while growth rates for larger diameters are considered unreliable.

Median values for four NPF events with $\Delta t < 20$ min (17 June; 19 June; 13 August; 17 August 2012; cf. Table 2) are shown in Fig. 8. The median growth rates for these events (Fig. 8a) are significantly lower compared to the high growth rates presented in Fig. 7. Additionally, there is no visible difference in GR_{neg}, GR_{pos} and GR_t. They exhibit similar values throughout the whole growth process (cf. Table 2). Typically, 2 nm positive and negative ions show an earlier appearance (Δt) of about 15 and 10 min, respectively (Fig. 8c and d). The decrease of Δt during the growth process is relatively slow. Nevertheless, the diameter at which Δt approaches zero is still at about 20 nm. The time needed for the total particle mode to grow to this size is approximately 200 min (Fig. 8b). The time difference deduced from DP_{max} becomes negative at a diameter of
about 20 nm, supporting the assumption that growth rates above this diameter are overestimated. As Δt shows a slow decrease during the growth process, GR$_t$ should be slightly enhanced compared to GR$_{neg}$ and GR$_{pos}$. This is not visible in our data. Presumably, the accuracy of the applied growth rate determination is not sufficient to resolve such slight differences.

As the absolute contribution of ion–ion recombination and ion–particle attachment to NPF is not quantitatively assessed in this work we propose a conceptual mechanism governing our observations. Figure 9 shows the conceptual model for interactions of positive cluster ions (red) with the negative growing ion mode (blue), the neutral background particles and the neutral growing mode (both black). For illustrational purposes, we will focus on the ion attachment (green dashed lines) and the recombination of cluster ions with the growing ion mode (yellow dashed lines) and neglect the recombination of cluster ions with each other.

At the onset of NPF (Fig. 9a), first particles are formed in the ion fraction, exhibiting concentrations in the order of 10^1 cm^{-3}. Ion–ion recombination occurs among cluster ions and the freshly nucleated ion mode (yellow dashed line). Additionally, the background aerosol particles, exhibiting concentrations in the order of 10^3 cm^{-3}, are available for the attachment of cluster ions (green dashed line). Considering the recombination coefficient α at 2 nm and the attachment coefficient β at 100 nm (cf. Fig. 1, yellow and green solid lines), the probabilities for cluster ions to interact with the growing ion mode and with the neutral background particles are approximately the same. As the background aerosol is more numerous than the freshly nucleated ion mode, attachment to the background particles dominates over recombination. Hence, only a very small number of neutral particles are formed by recombination.

Once precursor gas phase components are available in a sufficient quantity for neutral nucleation (cf. Almeida et al., 2013; Kulmala et al., 2013; Schobesberger et al., 2013), a strong nucleation burst of neutral particles occurs (Fig. 9b). The freshly nucleated neutral mode has a very small mean diameter (e.g. 1.5–2 nm) and shows typical concentrations in the order of 10^3 cm^{-3}. The background particle number size distri-
bution stays mostly unchanged ($D_p > 100 \text{ nm}; 10^3 \text{ cm}^{-3}$). Now, the neutral nucleation mode and the background particles are available for the attachment of cluster ions. Meanwhile, the ion mode has grown to a greater diameter (e.g. 4 nm), exhibiting only a slightly enhanced number concentration still in the order of 10^1 cm^{-3}. β for cluster ion attachment to the background particles is elevated by 2 orders of magnitude compared to the neutral nucleation mode (cf. Fig. 1). Therefore, cluster ion attachment to the background particles dominates over the attachment to the neutral nucleation mode, as both modes have similar concentrations. On the other hand, α for cluster ions with the growing ion mode is elevated by 2 orders of magnitude compared to β for the neutral growing mode. As the neutral mode exhibits approximately 2 orders of magnitude more particles, the absolute number of cluster ions recombining with the ion mode is comparable to the number of ions attaching to the neutral mode. In other words, background particles are charged strongly (bold red arrow), the neutral nucleation mode experiences moderate charging (red arrow) and the formation of neutral particles by recombination is also moderate (black arrow). This moderate formation of somewhat greater neutral particles from recombination contributes to the growth of the neutral mode and slightly reduces the growth of the ion mode. On the other hand, the ions formed by attachment to the neutral mode are somewhat smaller than the mean ion mode diameter, and contribute to a slower growth of the ion mode. The absolute production of neutral and charged particles by this mechanism depends on the concentration of cluster ions as well as on the concentration of the growing ion- and neutral modes, and is thought to be in the order of $0.01 \text{ cm}^{-3} \text{ s}^{-1}$.

As the growth continues, the neutral particle mode reaches a number concentration peak (order of 10^4 cm^{-3}) at diameters of approximately 4–5 nm (Fig. 9c). Due to the high concentration, the attachment probability of cluster ions to the neutral nucleation mode and the background particles is similar (green dashed lines). Meanwhile, the ion mode has grown further (e.g. 6 nm diameter), and is slightly more numerous but still in the order of 10^1 cm^{-3}. Therefore, recombination is somewhat enhanced compared to stage (b). Nevertheless, the neutral nucleation mode experiences a stronger loss of
particles due to attachment of cluster ions. As a result, the concentration of the growing ion mode is further enhanced by the addition of somewhat smaller charged particles. Again, the loss of ions (due to recombination) and the addition of newly formed smaller ions (due to attachment) results in an apparent growth rate reduction of the ion mode. On the other hand, the concentration of the neutral mode is constantly reduced, while its growth rate stays elevated.

Finally, the diameters of the neutral and ion growing modes approach each other (Fig. 9d). By this time the concentration of the ion mode is further enhanced (10^2 cm^{-3}) and the neutral mode concentration has decreased to about 10^3 cm^{-3}. The converging concentrations and similar diameters result in a comparable magnitude of attachment and recombination to the ion and neutral growing modes. As the neutral particles (formed from recombination) and the charged particles (formed from attachment) have approximately the same diameter, an enhancement or slowing of the growth rates is not expected. This results in an equilibrium state where ions and neutral particles grow at similar rates.

5 Conclusions

Data from 8 NPF events measured with the NAIS at the “Waldstein” site clearly showed an earlier appearance of the ion modes in the beginning of NPF and a higher initial growth rate of the “delayed” total particle mode in comparison to the ion modes. The enhanced growth of the total particle mode does eventually result in the disappearance of the ion’s temporal advance. To our knowledge, such differences of ion and total growth rates in the initial stages of cluster growth have not been presented before. Therefore, it is an interesting yet open question if these observations are just a special feature of the “Waldstein” site, or if they can also be found elsewhere. An earlier appearance of the ion mode is plausible, as ions reduce the critical cluster size and facilitate the cluster activation (e.g. Lushnikov and Kulmala, 2004; Winkler et al., 2008; Yu and Turco, 2000; Yue and Chan, 1979). To explain the difference in the growth rates...
we have proposed a mechanism including ion–ion recombination and ion–particle attachment (cf. Fig. 9).

Due to limitations of our measurement equipment (detection limit for neutral particles ~ 2 nm), no direct conclusions on the influence of ions on neutral particle nucleation can be deduced at the size range where the onset of NPF occurs. As stated by Kontkanen et al. (2013) and Kulmala et al. (2013), pure cluster ion recombination is not thought to be of sufficient magnitude to explain the intense neutral nucleation bursts. Further, Manninen et al. (2010) reported that ion induced nucleation does only contribute about 10–13% to NPF. Nevertheless, ion interactions may play an important role in NPF by simultaneously enhancing the neutral particle growth rate and reducing the ion growth rate. However, the proposed mechanism is only valid in environments where the ionization rate (Q) is strong enough to provide sufficient cluster ions for recombination and attachment.

Appendix A

According to Tammet and Kulmala (2005), the size dependent coagulation coefficient K_{ij} is defined as

$$K_{ij} = \frac{2\pi kT (B_i + B_j) (D_i + D_j + 2h)}{1 + \gamma - \frac{0.299\gamma}{\gamma^{1.1} + 0.64} + \gamma^{1-p}} ,$$

(A1)

where

$$\gamma = 2 \frac{B_i + B_j}{D_i + D_j + 2h} \sqrt{\frac{2\pi kT m_i m_j}{m_i + m_j}} .$$

(A2)
Here, k is the Boltzmann constant, T is the absolute temperature, B is the particle’s mechanic mobility, D is the particle diameter, h is the van der Waals interaction distance, p is the sticking probability and m is the mass of an individual particle.

An approximation for the size dependent attachment coefficient β_{ij} is given by Hõrrak et al. (2008):

$$\beta_{ij} = \frac{2\pi D_i kT Z_j}{e} \frac{x}{\exp(x) - 1} \sqrt{1 - \frac{2}{2 + n(n-1) + D_i/(10\text{nm})}},$$

(A3)

where,

$$x = \frac{ne^2}{2\pi D_i \varepsilon_0 kT}.$$

(A4)

Here, Z is the electric mobility of the ion, e is the elementary electric charge, n is the number of elementary charges carried by a charged particle, and ε_0 is the electric constant.

For the interaction of two oppositely charged ions of size j and k, the size dependent recombination coefficient α_{jk} can be described by the attachment coefficient β_{jk} (Hoppel and Frick, 1986):

$$\alpha_{jk} = \beta_{jk}.$$

(A5)

The coagulation sink is calculated according to Kulmala et al. (2012):

$$\text{CoagS}_i = \sum_{l=i}^{l=\text{max}} K_{ij} N_l,$$

(A6)

where N_l is the number concentration of the background aerosol in the size class l.

The calculation of the charging sink follows Eq. (3) from Hõrrak et al. (2008):

$$\text{CharS}^{\pm}_i = p_i \sum_j \beta_{ij} N_j^{\pm},$$

(A7)
where, \(p_i \) is the probability of a neutral particle in size class \(i \) to carry one elementary charge and \(N_j^\pm \) is the number concentration of positive or negative ions in size class \(j \).

Hoppel and Frick (1986) proposed a simplified balance equation for the cluster ion production rate. For our work, we use a slightly altered version, not assuming symmetric concentrations of positive and negative small ions and considering size-dependent attachment and recombination coefficients. In equilibrium state, the ionization rate is defined as:

\[
Q^\pm = \sum_{jk} \alpha_{jk} N_j^+ N_k^- + \sum_{ij} \beta_{ij} p_i N_i N_j^\pm, \tag{A8}
\]

where size classes \(j \) and \(k < 1.6 \text{ nm} \), \(N_j^+ \) and \(N_k^- \) are positive and negative ion concentrations in size class \(j \) and \(k \), and \(N_i \) is the concentration of neutral particles in size class \(i \).

Acknowledgements. This work was funded by the German Research Foundation grant DFG HE5214/3–1. The authors gratefully acknowledge Xuemeng Chen, Stephanie Gagné and Sander Mirme for helpful advice and discussions.

References

Ion – particle interactions during particle formation and growth

S. G. Gonser et al.

Ion – particle interactions during particle formation and growth

S. G. Gonser et al.

Table 1. Median, 25th and 75th percentile of cluster ion concentrations [cm$^{-3}$] (diameter < 1.6 nm) during 8 selected NPF event and 13 non-event days, measured with the NAIS during summer 2012 at the “Waldstein” site.

<table>
<thead>
<tr>
<th></th>
<th>Median</th>
<th>25th</th>
<th>75th</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-event negative</td>
<td>129</td>
<td>101</td>
<td>186</td>
</tr>
<tr>
<td>NPF-event negative</td>
<td>148</td>
<td>126</td>
<td>176</td>
</tr>
<tr>
<td>Non-event positive</td>
<td>314</td>
<td>252</td>
<td>422</td>
</tr>
<tr>
<td>NPF-event positive</td>
<td>339</td>
<td>285</td>
<td>395</td>
</tr>
</tbody>
</table>
Table 2. Event features of all 8 selected NPF events used for this study. Shown are: NPF event start time (CET), prevailing wind direction, time difference Δt of 2–3 nm ions [min.], growth rates GR of 2–3 nm total particles and ions [nm h$^{-1}$], formation rates J of 2–3 nm total particles and ions [cm$^{-3}$ s$^{-1}$] and ionization rates Q for cluster ions [cm$^{-3}$ s$^{-1}$]. Values for Q_{neg}, Q_{pos}, J_{neg} and J_{pos} are probably underestimated, please refer to Sect. 3.2 for detail.

<table>
<thead>
<tr>
<th>Date</th>
<th>Start</th>
<th>Wind sector</th>
<th>Δt_{neg}</th>
<th>Δt_{pos}</th>
<th>GR_{t}</th>
<th>GR_{neg}</th>
<th>GR_{pos}</th>
<th>J_{t}</th>
<th>J_{neg}</th>
<th>J_{pos}</th>
<th>Q_{neg}</th>
<th>Q_{pos}</th>
</tr>
</thead>
<tbody>
<tr>
<td>17 Jun 2012</td>
<td>13:00 LT</td>
<td>W</td>
<td>20</td>
<td>5</td>
<td>2.8</td>
<td>6.3</td>
<td>3.2</td>
<td>0.4</td>
<td>0.02</td>
<td>0.02</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>19 Jun 2012</td>
<td>12:00 LT</td>
<td>E</td>
<td>–62</td>
<td>0</td>
<td>1.5</td>
<td>2</td>
<td>1.9</td>
<td>0.4</td>
<td>0.002</td>
<td>0.006</td>
<td>0.5</td>
<td>0.7</td>
</tr>
<tr>
<td>4 Jul 2012</td>
<td>09:30 LT</td>
<td>E</td>
<td>33</td>
<td>22</td>
<td>2.9</td>
<td>2.4</td>
<td>2.3</td>
<td>0.5</td>
<td>0.006</td>
<td>0.007</td>
<td>0.7</td>
<td>0.9</td>
</tr>
<tr>
<td>23 Jul 2012</td>
<td>07:30 LT</td>
<td>E</td>
<td>102</td>
<td>97</td>
<td>5.3</td>
<td>1.5</td>
<td>1.4</td>
<td>5</td>
<td>0.02</td>
<td>0.02</td>
<td>0.9</td>
<td>1</td>
</tr>
<tr>
<td>24 Jul 2012</td>
<td>08:30 LT</td>
<td>E</td>
<td>67</td>
<td>42</td>
<td>9</td>
<td>2.4</td>
<td>3.7</td>
<td>2.3</td>
<td>0.004</td>
<td>0.01</td>
<td>0.8</td>
<td>0.9</td>
</tr>
<tr>
<td>12 Aug 2012</td>
<td>08:30 LT</td>
<td>E</td>
<td>53</td>
<td>38</td>
<td>6.9</td>
<td>3.2</td>
<td>3.8</td>
<td>4.7</td>
<td>0.02</td>
<td>0.04</td>
<td>1.1</td>
<td>1.2</td>
</tr>
<tr>
<td>13 Aug 2012</td>
<td>07:30 LT</td>
<td>E</td>
<td>17</td>
<td>13</td>
<td>6</td>
<td>3.5</td>
<td>4.4</td>
<td>5.2</td>
<td>0.02</td>
<td>0.05</td>
<td>1.3</td>
<td>1.6</td>
</tr>
<tr>
<td>17 Aug 2012</td>
<td>08:30 LT</td>
<td>E</td>
<td>10</td>
<td>5</td>
<td>1.6</td>
<td>1.6</td>
<td>1.8</td>
<td>5.2</td>
<td>0.01</td>
<td>0.02</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>Median</td>
<td>–</td>
<td>–</td>
<td>26.5</td>
<td>17.5</td>
<td>4.1</td>
<td>2.4</td>
<td>2.75</td>
<td>3.5</td>
<td>0.015</td>
<td>0.02</td>
<td>0.8</td>
<td>0.9</td>
</tr>
</tbody>
</table>
Fig. 1. Coagulation coefficient K, attachment coefficient β and recombination coefficient α [cm3 s$^{-1}$] for small cluster ions and particles (1.5 nm, solid lines) and large ions and particles (10 nm, dashed lines) as function of ions and particles of diameter D_p.
Fig. 2. NPF event of 12 August 2012 as measured with the NAIS. Shown are (a) total particles, (b) neutral particles, (c) positive ions, (d) negative ions and (e) calculated neutral particles from ion–ion recombination. Black filled circles denote the concentration maxima for each size class, while black lines are smoothed fits in order to obtain continuous growth rates.
Fig. 3. Median diurnal variation of cluster ion concentrations (diameter < 1.6 nm) during 8 selected NPF event days (a, c) and 13 non-event days (b, d), as measured with the NAIS during summer 2012 at the “Waldstein” site. The shaded areas denote the 25th and 75th percentile.
Fig. 4. Temporal evolution of total particle concentrations as well as positive and negative ion concentrations in diameter ranges of (a) 1.8–2.1 nm, (b) 3.7–4.3 nm, (c) 7.6–8.8 nm, (d) 13.6–15.7 nm and (e) 21.1–24.5 nm. The data originates from single NAIS size channels, measured during the NPF event on 12 August 2012 at “Waldstein”. Ion concentrations increase during the growth process, while total particle concentrations increase rapidly at the beginning of NPF but begin to decrease at diameters above 8 nm. Note that the ion concentrations (right axes) are always smaller than the particle concentrations (left axes). Data was smoothed for illustrational purpose.
Fig. 5. Results from the cross-correlation study showing the size-dependence of the time difference (Δt). Appearance of (a) positive and (b) negative ions compared to total particles measured with NAIS on 12 August 2012, and median values of Δt for all 8 selected NPF event days for (c) positive and (d) negative ions. Shaded area denote the 25th and 75th percentile.
Fig. 6. Growth rates of negative ions, positive ions and total particles determined from NAIS measurements, (a) for a single event on 4 July 2012 and (b) median values for all 8 selected NPF events used for this study. Hatched areas denote the 25th and 75th percentile. Additionally, GR_{rec} deduced from ion–ion recombination is shown in orange. Dashed segments of the curves denote inaccurate growth rates.
Fig. 7. Median evolution of ions and particles for four NPF events with $\Delta t > 20$ min. (a) GR for total, positive, negative and recombined particles. (b) Time evolution of the growing modes (Dp_{max}) of negative, positive and total particles, respectively. Hatched areas denote the 25th and 75th percentiles. (c), (d) Time difference (Δt) for negative and positive ions, respectively. Dotted black lines are time differences calculated from the negative and positive growing mode to the total one, in principle this is the difference between the three Dp_{max}-values from section (b).
Fig. 8. Same as Fig. 7 but for four NPF events with $\Delta t < 20$ min.
Fig. 9. Conceptual model of the influence of cluster ion recombination and attachment at different stages of particle nucleation and growth (a–d). Permanently available positive cluster ions are denoted in red, the negative growing mode in blue and neutral particle modes in black. The black and red arrows denote the generation of neutral and charged particles, respectively. The size of the arrows and dashed lines denotes the prevailing mechanism. Numerals indicate the orders of magnitude of the number concentrations of the respective modes.