Dear Dr. Maenhaut,

We kindly thank you for taking our manuscript into consideration. We have prepared a new version of the manuscript and supplement to address the concerns raised by the reviewers. For clarity, a point-by-point response to the reviewers and versions of the manuscript and supplement in which our modifications are visible, are enclosed below.

In addition to the changes discussed in our responses to the reviewers, two additional revisions have been performed:

1. Element concentrations have been recalculated to incorporate an improved correction for the spectrum continuum. All reported values and figures have been updated. These improved values differ from those in the original manuscript by ± 10 % and do not affect any of the major conclusions.

2. Several changes made to streamline the manuscript were discussed in response to Reviewer #2 – Comment #6 and Reviewer #3 – Comment #6. In addition, we have shortened the description of SR-XRF analysis by only briefly summarizing the changes made to the existing technique. The detailed description on p. 15904-15905 of the ACPD manuscript has been moved to the supplement.

Kind regards,

Suzanne Visser and co-authors
Response to Reviewer #2:
We kindly thank the referee for taking our manuscript into consideration and we value the comments raised to improve the manuscript. A point-to-point response to the issues raised is enclosed below.

The manuscript contains results obtained in an extensive study at urban and rural areas in London, UK. The analysis is focused (but no limited) to elemental contents in several fractions of atmospheric particulate matter. Although the general quality of the paper is good, it is necessary to discuss and improve several aspects, which I explain below.

Comment #1:
1. I am concerned about the agreement of the measurements using RDI and PM10 filters, in particular for some elements. The question here is: what are the truly accurate values to be considered in the paper? This problem would not exist if certified reference materials had also been analyzed. Please, do not confuse this accuracy determination with the calibration process, which is thoroughly described in section 2.2.1. The main drawback is that the forthcoming discussions in the manuscript may not have a strong basis.

Response:
The referee refers to the disagreement between measurement techniques in Sect. 3 (Data intercomparison) and specifically Fig. 2, and suggests that this calls into question the experimental results. However, much of this disagreement is expected, resulting from known differences in the measurement techniques (e.g. different size ranges) and thus does not reflect data quality. In addition, we note that this section should be interpreted as a method intercomparison rather than RDI-SR-XRF validation, and that the extent of the agreement is similar to other intercomparison studies of trace element measurement techniques. We have clarified these points by significantly condensing the intercomparison section of the manuscript, with Fig. 2 and the accompanying detailed discussion moved to the Supplement. An overview of the main points is provided below (please note that Cr has been removed from the intercomparison as this element was rejected from the filter analysis during the final quality assurance checks):

1. Most elements (i.e. all except those discussed below) show good agreement between RDI and PM10 filters within ± 50 % with good Pearson’s R of > 0.78.
2. Quantitative agreement between RDI and PM10 filters should not be obtained for elements with significant mass below the RDI small-size cut off of 300 nm. This includes S, K, Sn and Pb. For S, further investigation is possible by adding the mass from the backup filter to the PM10,0.3 mass measured by the RDI. Quantitative agreement with the AMS SO4^2- data is then achieved, suggesting the RDI provides accurate PM10,0.3 values for all these elements.
3. V, Ni and Mo are well-constrained in the RDI-SR-XRF analysis and are well above detection limits, but have low or unknown extraction efficiencies in the PM10 filter-ICP-MS analysis, increasing the uncertainty of the PM10 filter analyses. Further, the RDI measurements of these elements are internally consistent (strong correlations with co-emitted elements). This suggests that the RDI measurements are correct, and the disagreement does not reflect RDI data quality issues.
4. RDI and filter measurements of Na and Mg are strongly correlated but disagree on the absolute magnitude. The RDI relative calibration of these elements is somewhat uncertain (around 13 %), while the filters have unknown extraction efficiency for Na (Mg is well extracted with 90 % efficiency). However, both techniques provide internally consistent results (e.g. correct Na-to-Mg ratios and sensible time series). We also note that Mg lies in an area of the XRF spectrum that is free of overlapping lines, resulting in low fitting errors. Thus, while the absolute concentrations (i.e. the accuracy) differ by a factor of 2.5, relative changes (i.e. the precision) are considered to be robust.

In conclusion, the intercomparison analysis suggests that the RDI provides robust measurements of nearly all trace elements within the PM\textsubscript{10-0.3} size range. The issues that do exist apply to absolute magnitudes, not relative changes. The analysis in this paper (e.g. urban/kerb increments and diurnal/weekly patterns) relies predominantly on these relative changes (precision), and thus neither the analysis nor the main conclusions are undermined by method reliability.

We agree that the use of certified reference materials would, in theory, be helpful (please note that the filter measurements are calibrated with NIST standards). However, these materials are typically available only in concentrations that are orders of magnitude higher than those attained with ambient sampling, as well as being mounted on a different foil or filter substrate. Both issues can significantly perturb XRF measurements, rendering these materials unsuitable for use. Meanwhile, after this manuscript went to press, we were able, for the first time, to obtain a set of certified single element standards in concentrations relevant to the ambient atmosphere on the same 6 µm PP foil used for RDI sampling. XRF measurements were performed in a recent beamtime and are not directly transferable to beamtimes in which the current data samples were analysed (i.e. different geometry and irradiation conditions). Preliminary results indicate agreement within 25 % with no positive or negative bias between RDI results using the multi- and single-element standards for the elements Na, Ca, Fe, Co, Sr and Ba in the area concentration range 3-5 µg cm-2 on the PP foil. The use of these single-element standards will not influence the current comparison between SR-XRF and PM\textsubscript{10} filters since the deviations of XRF to PM\textsubscript{10} filters and to single-element standards go in opposite directions from a 1-to-1 ratio.

Comment #2:

2. Some of the elements affected by the above situation are very important for studies related to elemental concentrations in aerosols. For example, S and K, which are valuable for tracing human activities and/or biomass burning, in page 15907, present doubtful values. Regarding those of Na and Mg, it is not clear to me which values should be taken as more accurate (XRF or ICP).

Response:

We agree with the referee that the precise measurement of S and K is of great help in understanding the distribution of these elements across larger geographical regions. As stated in the response to Comment #1 the quantitative disagreement between RDI and PM\textsubscript{10} filters for S, K, Sn and Pb is expected based on differences in measured size ranges. The size distributions of S and K make it therefore
unsurprising (and not alarming) that previous XRF studies (Bukowieki et al., 2005 and Richard et al., 2010), to which the referee refers at p. 15907, did not achieve good agreement with PM$_{10}$ filter techniques.

To clarify these points in the text we intend to make the following changes.

1. We will change the last sentence of the RDI description in Sect. 2.2.1 beginning at p. 15902 into:

 “This results in sampling of a smaller fraction of PM$_{1.0}$ particles than previously expected and influences those elements that occur predominantly in this size range, notably S, K and Pb.”

2. We include the following sentence in Sect. 4.1 towards the end of the first paragraph to repeat the explanation of the mass underestimation in the results section:

 “According to Supplement A and B, elements with considerable mass in the PM$_{1.0}$ fraction (S, Pb, potentially K, Zn, Br, Sn) may be significantly underestimated due to a higher than expected small-end cut point, relative to analysis methods with a smaller cut point towards 0 nm (290-410 nm, rather than the previously estimated value of 100 nm, Bukowiecki et al., 2009c; Richard et al., 2010).”

The referee also points to the disagreement of Na and Mg between both analyses methods, which differ by a factor of 2.5. This is well outside the estimated uncertainty (~25 %) of the RDI-SR-XRF analysis for these elements (see Comment #7), and the reason for the discrepancy is not clear (see Comment #1). In the absence of additional independent measurements of Na and Mg, it is indeed difficult to determine which method provides accurate absolute values. However, we note that both methods provide internally consistent measurements of these elements as evidenced by Na-to-Mg ratios and sensible time series. The critical criterion for the analysis herein is therefore met, providing precise relative changes for each element.

Comment #3:

3. Although the authors made the evaluation of the concentrations using the DE data as a reference, there may be other procedures that provide information about the origin of the elements. A simple method is the use of the Enrichment Factor (EF). Using the figures given in Table 2, I calculated the EF for the elements Fe and K, usually associated to particles with a geological (soil) origin, using Si as reference element and average Earth crust composition. It is possible to find that in the three sites, the EF for Fe in the coarse fraction is very high (of the order of 10), which may agree with the hypothesis given by the authors relating Fe to brake wear. Moreover, I would expect the contribution of brake wear in the rural site to be very low, approximating EF to unity and suggest a soil origin. Instead, the EF is higher at the DE site than the urban one. The authors should try to explain this. EF for Fe in the finest fraction is closer to 1, associating it to a crustal origin. As for K, for the coarse fractions the EF is almost equal to 1. However, for the finest fraction in the three sites it is higher than unity, in particular for DE, where the value is almost 20, showing it has a different origin than soil. I am including a table with the EF (with the last three columns giving the average EF for each site). It may be advisable to calculate the EF for the other elements, not necessarily to include in the manuscript, but as a guide to better understand the origin of each element.
Response:

We greatly appreciate this extended comment on the Enrichment Factor (EF) and the efforts that went into creating the table in the supplement to this comment. We will incorporate EF analysis into the paper by introducing it in Sect. 4.2.1 ‘Urban increment’. We will compare EF values of several elements that are grouped together in traffic-related and mineral dust groups based on both urban and kerb increment results.

We stress that urban/kerb increment calculations specifically relate concentrations of multiple sites to each other per element, which we believe is very valuable in exploring differences in human exposure at these sites. With EF, each element is related to Si as an indication for anthropogenic or soil origins. A comparison of the EF per element at multiple sites is probably as robust as the current increment calculations, but thus provides different information. The absolute magnitudes of EF are less meaningful since individual element concentrations are biased by the RDI small-size cut off of 300 nm and differences in uncertainties regarding absolute and relative calibrations.

Although we are not able to reproduce the exact EF values as given by the referee, we have calculated the EF for our data based on the upper continental crust composition as given by Wedepohl (1995).

For Fe we obtain EF of close to 40 for the kerbside, 20 for the urban background and 12 for the rural site, independent of size fraction. These results clearly indicate anthropogenic influences of Fe to all sites. The size independency can be understood when realizing that both Si and Fe are reduced by the same factor from the coarse to the fine mode, resulting in the same EF for each size range. The EF of 12 at the rural site is indeed high, but the concentration of Fe has decreased by a factor of 16 compared to 6 for Si between the kerbside and rural site. This strong decrease in Fe relative to Si is in line with an expected strongly reduced anthropogenic influence of mainly traffic at the rural site, and thus a larger soil fraction of Fe.

The EF of K is indeed highest in the fine fraction with values of 14, 26 and 28 at the kerbside, urban background and rural site, respectively, and indicates anthropogenic influence. We group fine fraction K as regionally influenced. The increased EF towards the rural site likely indicates stronger influences of biomass burning relative to the city sites.

Incorporating EF analysis will lead to the following paragraph on p. 15915 of Sect. 4.2.1:

“We group elements together based on similar urban increment values as an indication for co-emission. Mn, Fe, Cu, Zn, Zr, Mo, Sn, Sb and Ba show urban increments on average of 3.5 in the coarse, 3.1 in the intermediate and 2.0 in the fine fraction (Fig. 4). These have been identified as traffic-related elements by e.g. Amato et al., 2011; Bukowiecki et al., 2010; Minguillón et al., 2014; Richard et al., 2011 and Viana et al., 2008. Zr can also have a mineral dust origin (Moreno et al., 2013) as can be seen by the use of Enrichment Factors (EF). EF is a measure of the enrichment of elements relative to the upper continental crust (UCC) and is defined as ppm metal in sample / ppm metal in UCC with Si as reference material (UCC from Wedepohl, 1995). Zr is the only element in this traffic group that is depleted in the atmosphere relative to their UCC concentrations, but with concentrations at NK higher than at DE. Most other elements clearly indicate anthropogenic origin with EF
The urban increments are similar to that of NO\textsubscript{x}, where concentrations at NK were on average a factor 4.9 higher than at DE (mean concentration at NK was 68 ppb, at DE 14 ppb). Black carbon (BC), a marker for both traffic and wood burning emissions, had an urban increment of only 1.1 (concentration at NK 757 ng m-3, at DE 633 ng m-3), likely due to local wood burning emissions around DE (Mohr et al., 2013). Al, Si, Ca, Ti and Sr as markers for mineral dust (e.g. Amato et al., 2009; Lin et al., 2005; Lucarelli et al., 2000) show a factor 2.0 higher concentrations at NK relative to DE in the coarse, 1.9 in the intermediate and 1.6 in the fine fraction (EF < 10). These results indicate that moving from rural to urban backgrounds yield a larger relative increase in traffic than in mineral dust elements. Surprisingly, sea salt elements (Na, Mg, Cl) show higher concentrations at NK than at DE of up to a factor of 2 for the coarse mode, despite the expected dominance of regional over local sources. This highlights the potential importance of sea or road salt resuspension by traffic. Similar urban increment values for traffic-related, resuspension and sea salt elements have been observed by Lee et al. (1994) for particles below a few μm. Theodosi et al. (2011) also found higher increments (> 2) for trace elements in PM\textsubscript{10} aerosol from local anthropogenic sources like fossil fuel combustion (V, Ni, Cd) and traffic (Cu), relative to long range transported Saharan dust (Fe, Mn) with increments close to 1. However, our study suggests that the non-size-resolved increment values reported in the cited studies do not fully capture the urban/rural differences.

Comments #4 and #5:

4. In the conclusions, Fe is initially associated to traffic, then it is excluded from the list of brake wear related elements. In the text, however, it was suggested to be produced by brake wear and even a reference is given. Please clarify this point.

5. In several cases, the association among the elements does not look strongly justified. For example, why V and Ni are related to traffic? In many studies they are related to industrial sources (fuel oil burning and they are strongly correlated to S). Also, Zr is often linked to soil-derived particles in other papers.

Response:

There might be some misunderstanding about the grouping of elements we use in the paper. We note that we empirically group elements according to their similarities in urban/kerb increments and diurnal/weekly cycles, rather than that we associate them to specific emission sources. With other analysis methods, such as the Enrichment Factor (EF) as proposed in Comment #3, it might be possible to find another distinction between groups of elements related to specific emission sources. We agree that the group of elements labelled as traffic-related in the kerb increment analysis contains also elements potentially emitted by other sources, such as V and Ni mainly from industrial sources and heavy-oil combustion. We realize that this label is confusing and will change it into anthropogenically-influenced (ANTH). This label is introduced, together with a source justification of all elements in this group, in Sect. 4.2.2 ‘Kerb increment’ in the 2nd paragraph on p. 15919:

“The second group consists of V, Cr, Mn, Fe, Ni, Zn and Pb with increments of 5.7-8.2 (PM\textsubscript{10-2.5}) in the SW sector (2.6-3.0 for NE) (Fig. 6). V and Ni are typically assigned to industrial sources and heavy-oil combustion (e.g. Mazzei et al., 2007; Viana et al., 2008). Zn is usually associated with tire wear (e.g. Harrison et al., 2012b; Lin et al., 2005), and the other elements are commonly associated with traffic-related emissions (e.g. Amato et al., 2013; Bukowiecki et al., 2009a; Richard et al., 2011). We empirically label this group as anthropogenically-influenced (ANTH). The
EF of V and Ni are much lower than those of the other elements in this group (2 vs. >
10), indicating at least to some extent different source origins. These kerb increments
are similar to the ones for NOx of 8.5 for SW and 2.4 for NE, confirming the
anthropogenic influence (traffic and other sources) on these elements. The high
braking frequency at MR due to congested traffic probably resulted in increased kerb
increments of brake wear relative to ANTH elements that are also influenced by local
traffic and other sources around NK. Increments of these ANTH elements are higher
than previously reported values of 1.8-4.5 for studies with low time resolution and
non-size segregated particles (Boogaard et al., 2011; Janssen et al., 1997). The high
increments presented here might be caused by street canyon effects, trapping
pollutants emitted at street level and preventing dilution to the urban background.
The enhanced kerb increments for brake wear relative to ANTH elements are
apparent in all three size fractions, although increments become more similar
towards smaller sizes with a factor 1.7 between both element groups in the coarse,
1.5 in the intermediate and 1.4 in the fine mode. Both groups show the additional
information gained with size-segregated aerosol, where exposure to trace elements
in the street canyon relative to the urban background increases with particle size,
either caused by increased traffic-related emissions with particle size or by more
efficient transport of submicron particles from street sites to the urban background.
Furthermore, the highly time-resolved element measurements presented here
enabled us to resolve the systematic, wind direction dependent variability in kerb
increments.3

The referee points out that Zr is often linked to soil-derived particles, whereas we
group it with elements typically related to brake wear based on its urban increment.
Both origins have been proposed in previous literature. In line with the response to
Comment #3, Zr shows a different EF than the other elements in this group,
potentially indicating a different source origin.

In the urban increment analysis no distinction was observed for brake wear and other
traffic-related elements, and therefore just formed 1 group. In the analysis of the kerb
increment higher values were observed for brake wear (Cu, Zr, Mo, Sn, Sb and Ba)
than for other traffic-related (V, Cr, Mn, Fe, Ni, Zn and Pb) elements, and were
treated as two different groups. Fe falls in this second category with lower kerb
increment values. Some studies (e.g. Harrison et al., 2012b) assign Fe to brake
wear, but we assign Fe to the traffic-related group purely based on its lower kerb
increment value.

Following the discussion above, we believe the label of the traffic-related group is
confusing and this group of elements will be relabelled as anthropogenically-
influenced (ANTH). The paper will be changed accordingly.

We will rephrase the 2nd paragraph of the Conclusions at p. 15927-15928 according
to the new labelling of the groups:

“Urban and kerb increments were defined as the concentration ratios of urban
background to rural, and kerbside to urban background, respectively, and the kerb
increments were further explored as a function of wind direction. The group with the
largest kerb increments consisted of elements typically associated with brake wear
(Cu, Zr, Mo, Sn, Sb, Ba). The second largest increments were formed by
anthropogenically-influenced elements typically assigned to non-brake wear traffic
emissions (Cr, Mn, Fe, Zn, Pb) but also by elements like V and Ni. This could
indicate either a traffic source for these elements or a similar kerbside-to-urban
emission gradient. Kerb increments were larger for the brake wear group and under
SW winds due to local street canyon effects, with coarse fraction increments between 10.4 and 16.6 for SW winds (3.3-6.9 for NE winds) against increments for the anthropogenically-influenced group between 5.7 and 8.2 for SW winds (2.6-3.0 for NE winds). The kerb increments for all these elements in the PM$_{10-2.5}$ size fraction are roughly 2 times that of the PM$_{1.0-0.3}$ fraction. Urban increments (no distinction between both groups) were around 3.0. In addition to direct emissions, traffic-related processes influence the concentrations of other elements by resuspension, with mineral dust (Al, Si, Ca, Ti, Sr) increments of 1.3-3.3.

Comment #6:
6. The paper is very long, and maybe some parts may be reduced, as the comparison with other techniques.

Response:
We appreciate the referee’s suggestion and have taken the following steps to condense the manuscript:
1. As suggested by the referee, the method intercomparison will be significantly shortened. We will move Fig. 2 and most of the associated discussion to the Supplement. Only a brief summary will remain in the main text.
2. Furthermore, the discussion about the local wind direction influence at kerbside, urban background and rural sites will be condensed. We are convinced that this analysis is interesting and important in understanding wind direction effects on pollution levels at different micro-environments. However, less detail is possible in this part of the paper and some repetition from the urban increment discussion regarding element grouping can be removed.
3. We will condense the discussion about the kerb increment by removing repetition regarding grouping of elements, already discussed in the urban increment and local wind direction influence discussions. We also condense the comparison of increment values to previous studies in this section.
4. We will condense the discussion about the three case studies regarding regional influences by rephrasing this section.
5. Finally, we will condense the discussion regarding daily/weekly cycles, specifically by removing repetition concerning reasons for enhanced element concentrations during rush hour due to increased braking processes.
6. We also note that the Introduction was condensed at the “technical corrections” stage prior to publication in ACPD by reducing the detail in which trace element measurements across Europe are discussed, and by shortening the introduction of the concept of urban micro-environments.

We feel that the remainder of the paper presents our results with an appropriate level of detail and explanation regarding the discussion of concentration levels of 25 elements in 3 size fractions at 3 sites as a function of increments, wind direction and time.

Comment #7:
7. Finally, a major problem in the entire manuscript is that there is no mention to experimental uncertainties, except for a few elements (Na, Mg or Mo), but there is not a careful explanation on how they were estimated. It is mandatory to present uncertainties in every experimental/laboratory work.
Response:

We agree that presenting uncertainties of this type of work is essential. During the "technical corrections" stage we added a paragraph at the end of Section 4.1 'Trace element concentrations,' giving an overview of the main sources of uncertainty in our study. We will extend this in the revised manuscript and add a table to the Supplement reporting element-specific detection limits and size-dependent element uncertainties.

The following text summarizes the major sources of experimental uncertainty:

“The RDI-SR-XRF technique is subject to various sources of uncertainty, which change in importance depending on whether the data are described in terms of absolute/fractional concentrations (as above) or in terms of relative changes/ratios (as in the remainder of the manuscript). A brief overview is presented here:

1. RDI sampling: the fluctuations in the flow rate are negligible within 5% (Richard et al., 2010) and the uncertainties in the size cut off are discussed in Supplement A.

2. SR-XRF accuracy: uncertainties in the absolute and relative calibrations affect absolute/fractional concentrations, but cancel out for relative changes/ratios, because all samples were measured under the same calibration conditions.

3. Issues such as imperfect flatness of the sample foils and detector dead time corrections (Richard et al., 2010) reduce measurement precision but affect all elements with the same scaling factor.

4. SR-XRF measurement precision is affected by sample inhomogeneity and spectral analysis uncertainties. Sample inhomogeneity was assessed by Bukowiecki et al. (2009c) and found to contribute ±20% uncertainty.

For most elements, except Mn, sample inhomogeneity is the largest source of uncertainty. Mn is affected by spectral analysis uncertainties due to peak overlap with Fe, present in much higher concentrations. Therefore, a small change in the energy calibration as function of detector channel leads to a large change in the peak area of Mn. All data points lie well above their element detection limits, resulting in negligible uncertainties from the signal strength. Table S3 in Supplement B provides an estimate of the total uncertainty per size fraction and detection limits for each element. In addition, RDI-SR-XRF measurements (both absolute/fractional and relative/ratio) are affected by atmospheric variability. This variability is likely the predominant source of the data spread evident in Table 2 and the following analyses.”

The following table (in the Supplement) lists estimated total uncertainties per size fraction and detection limits for each element. Note that the sample inhomogeneity dominates the uncertainties for most elements.

Table S3. Estimated total uncertainty (% of measured value) of the calculated element concentrations per size fraction, and detection limits for each element (ng m\(^{-3}\)).

<table>
<thead>
<tr>
<th>Element</th>
<th>PM(_{10-2.5}) (%)</th>
<th>PM(_{2.5-1.0}) (%)</th>
<th>PM(_{1.0-0.3}) (%)</th>
<th>DL (ng m(^{-3}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na(^+)</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>2.552</td>
</tr>
<tr>
<td>Mg</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>0.962</td>
</tr>
<tr>
<td>Al</td>
<td>24</td>
<td>25</td>
<td>25</td>
<td>1.709</td>
</tr>
<tr>
<td>Si</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>0.420</td>
</tr>
<tr>
<td>P</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>0.118</td>
</tr>
<tr>
<td>S</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>0.503</td>
</tr>
<tr>
<td>Cl</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>0.158</td>
</tr>
<tr>
<td>K</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>0.031</td>
</tr>
<tr>
<td>Element</td>
<td>Concentration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>21 21 21 0.267</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti</td>
<td>24 26 27 0.024</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>30 30 24 0.008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td>27 27 26 0.015</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>83 69 46 0.042</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>21 21 21 0.033</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>22 22 21 0.005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>21 21 21 0.028</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>21 21 21 0.058</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Br</td>
<td>21 21 21 0.117</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sr</td>
<td>21 21 21 0.036</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zr</td>
<td>21 21 21 0.036</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mo</td>
<td>21 21 21 0.037</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sn</td>
<td>21 21 21 0.061</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sb</td>
<td>21 21 21 0.052</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ba</td>
<td>21 21 21 0.254</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>21 21 21 0.137</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Combination of uncertainties regarding sample inhomogeneity (20%), RDI flow rate (5%), absolute and relative calibration (Na-K 13%, Ca-Pb 2%) and spectral analysis specific per element and size fraction (median uncertainties for all data points).

b As 3x the standard deviation of the spectra signals used for continuum corrections.

c Na uncertainties might be underestimated due to the overlap with the L lines of Ni, Cu and Zn. In the current analysis the ratio of the Lα to Kα lines are determined empirically, and quantification of the associated uncertainties is under investigation.

In the Supplement regarding the data intercomparison the first paragraph will introduce the intercomparison and this table, together with a more detailed explanation of the sources of uncertainty in this study. The table will serve as a guide to interpret the comparison between RDI and PM$_{10}$ filter data, as described in the rest of this Supplement.

References

Response to Reviewer #3:

We kindly thank the referee for taking our manuscript into consideration and we appreciate the comments raised on the manuscript. The referee’s main concerns regard the reliability of the measurement technique and the novelty of the results, which we address in detail below.

The manuscript reports on a study on the aerosol composition in three sites in the London area by DRUM impactor & SXRF analysis. The text is extremely long and full of details, however I have major and basics concerns so that I cannot recommend it for publication.

The manuscript can be divided roughly in two parts: 1) technologies and methods, 2) results and discussion

Comment #1:

Part 1: this is potentially the more interesting part of the paper and actually it could/should re-arranged in a separate technical note (or similar...it is now 10-page long) since most of the details now given are likely not necessary in regular article focused on the experimental results (I mean: the joint use of DRUM & SXRF has been already introduced in previous papers).

Response:

We appreciate the referee’s suggestion and we agree that some of the technical aspects in this paper are not directly needed to understand the results sections. We have considered submitting a separate technical note including the technical advancements regarding SR-XRF analysis (Sect. 2.2.1, points 1-4 on p. 15904-15906) and the data intercomparison between RDI and PM\textsubscript{10} filters (Sect. 3, p. 15907-15910). However, as the referee points out, the current analysis is built on previous papers following a similar methodology (Bukowiecki et al., 2005, 2008, 2009c and Richard et al., 2010). Therefore, we believe that the advancements described in this paper represent an incremental improvement on an existing technique, rather than a reinvention of the method, and are thus best treated within the current paper. However, as noted in the response to Comment #2, the Methods section has been significantly shortened by moving the detailed discussion of the method intercomparison to the Supplement.

Comment #2:

On the other hand, this long discussion fails, in my opinion, in demonstrating the reliability of the adopted methodology and poses the discussion of the experimental results on a "icy ground" (the comparison vs. other techniques show a quite poor agreement).

Response:

The referee refers to the disagreement between measurement techniques in Section 3 (Data intercomparison) and specifically Fig. 2, and suggests that this calls into question the experimental results. However, much of this disagreement is expected, resulting from known differences in the measurement techniques (e.g. different size ranges) and thus does not reflect data quality. In addition, we note that this section
should be interpreted as a method intercomparison rather than RDI-SR-XRF validation, and that the extent of the agreement is similar to other intercomparison studies of trace element measurement techniques. We have clarified these points by significantly condensing the intercomparison section of the manuscript, with Fig. 2 and the accompanying detailed discussion moved to the Supplement. An overview of the main points is provided below (please note that Cr has been removed from the intercomparison as this element was rejected from the filter analysis during the final quality assurance checks):

1. Most elements (i.e. all except those discussed below) show good agreement between RDI and PM\textsubscript{10} filters within ± 50 % with good Pearson’s R of > 0.78.

2. Quantitative agreement between RDI and PM\textsubscript{10} filters should not be obtained for elements with significant mass below the RDI small-size cut off of 300 nm. This includes S, K, Sn and Pb. For S, further investigation is possible by adding the mass from the backup filter to the PM\textsubscript{1.0-0.3} mass measured by the RDI. Quantitative agreement with the AMS SO\textsubscript{4} data is then achieved, suggesting the RDI provides accurate PM\textsubscript{1.0-0.3} values for all these elements.

3. V, Ni and Mo are well-constrained in the RDI-SR-XRF analysis and are well above detection limits, but have low or unknown extraction efficiencies in the PM\textsubscript{10} filter-ICP-MS analysis, increasing the uncertainty of the PM\textsubscript{10} filters. Further, the RDI measurements of these elements are internally consistent (strong correlations with co-emitted elements). This suggests that the RDI measurements are correct, and the disagreement does not reflect RDI data quality issues.

4. RDI and filter measurements of Na and Mg are strongly correlated but disagree on the absolute magnitude. The RDI relative calibration of these elements is somewhat uncertain (around 13 %), while the filters have unknown extraction efficiency for Na (Mg is well extracted with 90 % efficiency). However, both techniques provide internally consistent results (e.g. correct Na-to-Mg ratios and sensible time series). Thus, while the absolute concentrations can be questioned, relative changes should be considered robust.

In conclusion, the intercomparison analysis suggests that the RDI provides robust measurements of nearly all trace elements within the PM\textsubscript{10-0.3} size range. The issues that do exist apply to absolute magnitudes, not relative changes. The analysis in this paper (e.g. urban/kerb increments and diurnal/weekly patterns) relies predominantly on these relative changes, and thus neither the analysis nor the main conclusions are undermined by method reliability.

Comment #3:

I have also to note that, despite of the length, two times the reader is forwarded to future papers which should complete the methodological section: this could be accepted in a letter but not in this case.

Response:

In addressing the comments #1 and #7 of Referee #2, we have included sufficient information on the analysis method for the reader to grasp the relevant issues. These references are thus no longer needed and have been removed.
Comment #4:

Neglecting the concerns at point 1), the section "results" is a extremely detailed list of "raw" data which are extremely valuable at local level but, in my view, not of general interest since they do not improve our knowledge of atmospheric aerosols.

Response:

We believe that the results sections in this paper are very valuable for the following reasons:

1. The dataset is unique: to our knowledge, no previous study achieves size-resolved measurements of trace elements with fast 2 h time resolution at kerbside, urban background, and rural sites simultaneously. We would in general like to make the remark that there are too few increment studies published for various pollutants. Such combined measurements allow a better assessment which components of the pollution are rather driven by regional, urban or very local pollution.

2. Trace element measurements are directly relevant to human health, both in terms of quantifying exposure to toxic metals and as chemical tracers for exposure to other emission sources. Real-world human exposure depends on the temporal characteristics of size-dependent particle concentrations in specific micro-environments. Accurate exposure assessments therefore require measurements of the unique type performed herein.

3. The present study in London can be conceived as a model study for the assessment of micro-environment (kerbside, urban background, rural) effects on trace element concentrations in cities around the world. This is poorly constrained in most locations, although existing results in Europe suggest important differences can exist depending on the local or regional environment. Such investigations are urgently needed for assessing public health risks and evaluating pollution mitigation strategies.

Comment #5:

A real Source Apportionment study is missing and the added-value of the very demanding DRUM+SXRF analysis remains only partially demonstrated (i.e. the possibility to catch transients and episodes with a high-resolution sampling has been introduced and discussed several times in previous papers on DRUM and other high-resolution samplers/impactors).

Response:

A source apportionment study on this data set is definitely interesting, and will be the subject of a future paper. The source apportionment analysis is complex by itself, as we basically deal with 9 datasets (3 sites and 3 size ranges). The inclusion of the source apportionment would definitely overload the paper. In the current study, we do by far not only demonstrate the possibility to catch transients, but we go much further. The present focus is on exploiting the measurement time resolution to investigate the detailed issues governing local trace element concentrations (e.g. wind direction, street canyons, regional air masses). These are only in a broad sense source-dependent; we feel it is an advantage to investigate these issues without the statistical blurring that inevitably occurs within factor analysis.
Comment #6:

I really don’t find “the message” (or better the information) in this 18-page long text, which could and should be considered as a technical report in preparation of an article with a real and full source apportionment exercise.

Response:

In addressing this comment and the comment #6 of Referee #2 we have taken the following steps to condense the manuscript, mainly by rephrasing and repetition removing:

1. In line with the response to comment #2, the method intercomparison will be significantly shortened. We will move Fig. 2 and most of the associated discussion to the Supplement. Only a brief summery will remain in the main text.

2. Furthermore, the discussion about the local wind direction influence at kerbside, urban background and rural sites will be condensed. We are convinced that this analysis is interesting and important in understanding wind direction effects on pollution levels at different micro-environments. However, less detail is possible in this part of the paper and some repetition from the urban increment discussion regarding element grouping can be removed.

3. We will condense the discussion about the kerb increment by removing repetition regarding grouping of elements, already discussed in the urban increment and local wind direction influence discussions. We also condense the comparison of increment values to previous studies in this section.

4. We will condense the discussion about the three case studies regarding regional influences by rephrasing this section.

5. Finally, we will condense the discussion regarding daily/weekly cycles, specifically by removing repetition concerning reasons for enhanced element concentrations during rush hour due to increased braking processes.

We feel that the remainder of the results sections provide a clear overview of urban/kerb increments and diurnal/weekly cycles for the broad range of trace elements, which are needed to understand human exposure levels at multiple micro-environments as a function of size and time. We show strongly enhanced element concentrations at the kerbside, especially for coarse fraction particles up to a factor of 17 relative to urban background levels and being heavily affected by wind direction. All elements influenced by traffic, either by wearing processes or by resuspension exhibit elevated concentrations during rush hours and on weekdays compared to weekends. These occur predominantly at the kerbside but are also clearly observed at the urban background site, indicating largely enhanced health risks during these periods throughout a city.

References

Bukowiecki, N., Richard, A., Furger, M., Weingartner, E., Aguirre, M., Huthwelker, T.,
Lienemann, P., Gehrig, R., and Baltensperger, U.: Deposition uniformity and particle size
distribution of ambient aerosol collected with a rotating drum impactor, Aerosol Sci. Technol.,
43, 891-901, 2009c.
Richard, A., Bukowiecki, N., Lienemann, P., Furger, M., Fierz, M., Minguillon, M. C., Weideli,
sampling and analysis of trace elements in atmospheric aerosols: impactor characterization
Kerb and urban increment of highly time-resolved trace elements in PM$_{10}$, PM$_{2.5}$ and PM$_{1.0}$ winter aerosol in London during ClearfLo 2012

[1] {Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland}
[2] {Laboratory of Radiochemistry and Environmental Chemistry, Paul Scherrer Institute, Villigen, Switzerland}
[3] {Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland}
[4] {HASYLAB, DESY Photon Science, Hamburg, Germany}
[5] {School of Biomedical and Health Sciences, King’s College London, London, UK}
[6] {School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester, UK}
[7] {National Centre for Atmospheric Science, UK}
[8] {Aerodyne Research, Inc., Billerica, MA, USA}
[9] {Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA}
[10] {School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA}
[11] {School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA}
[12] {Centre for Ecology and Hydrology, Penicuik, Midlothian, Scotland}
[13] {Department of Meteorology, University of Reading, Reading, UK}
[14] {Department of Chemistry, University of Leicester, Leicester, UK}
[*] {now at: European XFEL, Hamburg, Germany}
Correspondence to: M. Furger (markus.furger@psi.ch)

Abstract

Ambient concentrations of trace elements with 2 h time resolution were measured in PM$_{10-2.5}$, PM$_{2.5-1.0}$ and PM$_{1.0-0.3}$ size ranges at kerbside, urban background and rural sites in London during winter 2012. Samples were collected using rotating drum impactors (RDIs) and subsequently analysed with synchrotron radiation-induced X-ray fluorescence spectrometry (SR-XRF). Quantification of kerb and urban increments (defined as kerb-to-urban and urban-to-rural concentration ratios, respectively), and assessment of diurnal and weekly variability provided insight into sources governing urban air quality and the effects of urban micro-environments on human exposure. Traffic-related elements yielded the highest kerb increments, with values in the range of 11.6 to 18.5 for SW winds (3.6 to 9.4 for NE) observed for elements influenced by brake wear (e.g. Cu, Sb, Ba) and 5.6 to 9.0 for SW (2.6 to 6.5 for NE) for other traffic-related processes (e.g. Cr, Fe, Zn). Kerb increments for these elements were highest in the PM$_{10-2.5}$ mass fraction, roughly 3 times that of the PM$_{1.0-0.3}$ fraction. These elements also showed the highest urban increments (~3.0), although no difference was observed between brake wear and other traffic-related elements. All elements influenced by traffic-related elements exhibited higher concentrations during morning and evening rush hour, and on weekdays compared to weekends, with the strongest trends observed at the kerbside site, and additionally enhanced by winds coming directly from the road, consistent with street canyon effects. Elements related to mineral dust (e.g. Al, Si, Ca, Sr) showed significant influences from traffic-induced resuspension, as evidenced by moderate kerb (2.0 to 4.1 for SW, 1.4 to 2.1 for NE) and urban (1.7 to 2.3) increments and increased concentrations during peak traffic flow. Elements related to regional transport showed no significant enhancement at kerb or urban sites, with the exception of PM$_{10-2.5}$ sea salt (factor of 1.5 to 2.0), which may be influenced by traffic-induced resuspension of sea and/or road salt. Heavy duty vehicles appeared to have a larger effect than passenger vehicles on the concentrations of all elements influenced by resuspension (including sea salt) and wearing processes. Trace element concentrations in London were influenced by both local and regional sources, with coarse and intermediate fractions dominated by traffic-induced resuspension and wearing processes and fine particles influenced by regional transport.
1 Introduction

Ambient particulate matter (PM) has long been recognized to have a detrimental effect on public health in urban areas (e.g. Dockery and Pope, 1994). Of particular interest are particles with an aerodynamic diameter less than 10 μm (PM$_{10}$) as these particles can penetrate deeply into the lungs (Franklin et al., 2008; Zhou et al., 2011). Reche et al. (2012) showed reported even higher toxicity to human cells for the PM$_{2.5-1.0}$ than for the PM$_{10-2.5}$ fraction. Particle toxicity is known to vary significantly with PM composition and emission sources (Kelly and Fussell, 2012), with identified toxic constituents including soluble secondary inorganic particles, elemental and organic carbon, and especially metals. Effective mitigation strategies therefore require detailed, size-dependent characterization of particle composition and emission sources.

In addition to their direct effects on human health, metals and trace elements are of importance because their high source specificity and atmospheric stability make them effective tracers for source apportionment. In Europe, four main source types in PM$_{10}$ are commonly identified: vehicles (with tracers including e.g. Fe, Ba, Zn, Cu), crustal materials (e.g. Al, Si, Ca, Fe), sea salt (mainly Na, Cl, Mg) and mixed industrial/fuel-oil combustion (mainly V, Ni, S) and secondary aerosol (mainly S) (Putaud et al., 2010; Viana et al., 2008). The contribution of mineral dust and sea salt in most urban areas is larger in PM$_{10}$ than in PM$_{2.5}$ (Harrison et al., 2001; Weijers et al., 2011). Emissions from vehicle exhaust, industry and secondary aerosol are predominantly emitted and formed as PM$_{1.0}$ or in PM$_{2.5}$ (Bukowiecki et al., 2010; Harrison et al., 2011; Richard et al., 2011). Several of these sources have been directly linked to adverse health effects. For example, the largest aerosol source of human toxicity in Barcelona was attributed to traffic activities (encompassing vehicle emissions, road dust and secondary nitrate), with fuel oil combustion and industrial emissions also contributing to increased cancer risk (Reche et al., 2012). Turoczi et al. (2012) observed higher toxicity from direct emissions (e.g. from traffic) than from photochemically processed aerosol.

The Clean Air for London project (ClearfLo; www.clearflo.ac.uk) is a multinational effort to elucidate the processes driving poor air quality in London, implemented through comprehensive measurements of particle- and gas-phase composition, as well as meteorological parameters (Bohnenstengel et al., 2014). ClearfLo builds upon recent modelling and monitoring studies in London (Arnold et al., 2004; Bohnenstengel et al., 2011; Bohnenstengel et al., 2013b; Harrison et al., 2012a; Mavrogianni et al., 2011). Despite improved air quality, PM$_{10}$ concentrations are not falling decreasing, resulting in frequent exceedances of the daily PM$_{10}$ limit (Harrison
et al., 2008). Such exceedances are caused by complex interactions of regional and local emission sources, together with meteorological factors such as wind speed, air mass origin, and daily cycles of the atmospheric boundary layer (Charron and Harrison, 2005; Harrison and Jones, 2005; Jones et al., 2010). Currently, emissions by industrial sources and stationary combustion are modest, however, traffic is thought to contribute up to 80% of the total PM$_{10}$ in London, compared to less than 20% for the entire UK, according to emission inventories between 1970 and 2001 (Dore et al., 2003).

The spatial density of emission sources found in typical urban environments leads to elevated particle concentrations compared to nearby rural locations. As an example, buildings, e.g., may influence local meteorology by restricting air circulation (street canyon effect), producing human exposures that are orders of magnitude higher than those predicted by regional dispersion models (Zhou and Levy, 2008). This provides both acute exposure risk and increased long-term exposure for those passing through regularly, thereby producing a non-negligible impact on public health. To assess the impact of such micro-environments, we here investigate London trace element concentrations in terms of increments, defined as the concentration ratios between an environment of interest and a reference site (e.g. Charron et al., 2007).

Only a few studies have investigated trace elements through simultaneous measurements at urban background and rural or kerbsidemultiple sites. Harrison et al. (2012b) reported increments of kerbside to urban background sites in London for non-size segregated aerosol with a time resolution of 1 to 4 days in London. Theodosi et al. (2011) found that at urban and suburban sites in Athens and a regional site in Finokalia, Greece crustal elements dominate the coarse mode-coarse particles (PM$_{10-2.5}$), whereas anthropogenic sources such as fossil fuel combustion were confined in the fine mode to fine particles (V, Ni and Pb have > 70% of their mass in PM$_{1.0}$). Bukowiecki et al. (2009a) and Bukowiecki et al. (2010) examined trace elements in PM$_{10-2.5}$, PM$_{2.5-1.0}$ and PM$_{1-0.1}$ aerosol at street canyon and urban background sites in Zürich, Switzerland, and showed increasing increments (note: 1 means no increment) with particle size from about 1.2 (fine mode) to 2.4 (coarse mode) (averaged over all elements). All these studies report increments close to 1 for elements originating from regional sources such as sea salt and Saharan dust, while local, especially traffic-related sources yield increments around 2 for resuspension-related elements and between 3 and 5 for traffic-related elements. Additionally, the 1 h time resolution used by Bukowiecki et al. (2009a) and Bukowiecki et al. (2010) enabled identification of enhanced increments for resuspension and wearing related elements like Si and Sb during peak traffic flows.
There is a need for more high time-resolved size segregated increment analyses to assess the exposure to trace elements from emission sources within urban areas under varying meteorological conditions. Here we present size segregated (PM$_{10-2.5}$, PM$_{2.5-1.0}$, and PM$_{1.0-0.3}$) measurements of aerosol trace elements with 2 h time resolution performed simultaneously at kerbside and urban background sites in London, and at a rural site outside London during the winter intensive field campaign of ClearfLo. We assess the effects of urban micro-environments on human exposure to particulate pollutants through the quantification of urban and kerb increments. These exposures are further investigated in terms of contributing emission sources, diurnal and weekly variability, local wind patterns, and regional transport effects.

2 Methods

2.1 Measurement campaigns

The ClearfLo project was a measurement program in and around London lasting two years (2011-2012) and including two month-long Intensive Observation Periods (IOPs) in 2012 (Bohnenstengel et al., 2013a, Bohnenstengel et al., 2014). This paper focuses on the winter IOP lasting from 6 January to 11 February 2012. Measurements took place at three sampling sites located at or near permanent air quality measurement stations in the Automatic Urban and Rural Network (AURN): a kerbside site close to a very busy road, an urban background site in a residential area, and a rural background site away from direct emission sources (see Fig. 1).

The urban background sampling site was at the grounds of the Sion Manning Secondary School in North Kensington (NK, lat 51°31'21''N, lon 0°12'49''W). NK is situated within a highly trafficked suburban area of London (Bigi and Harrison, 2010; Harrison et al., 2012a). During the ClearfLo IOPs this site served as the main measurement site and was upgraded with a full suite of particle- and gas-phase instruments, as well as and instruments to measure meteorological parameters (Bohnenstengel et al., 2013a). The kerbside site was located at Marylebone Road (MR, lat 51°31'21''N, lon 0°09'17''W) about 4.1 km to the east of NK (Charron and Harrison, 2005; Harrison et al., 2011). This site is located at the southern side of a street canyon, with an axis running approximately 260° to 80°. Measurements took place at 1 m from a busy six-lane road with a traffic flow of approximately 73 000 vehicles per day of which 15 % consists of heavy duty vehicles (trucks and buses). Braking and stationary vehicle queues are frequent at the site due to a heavily used pedestrian light-controlled crossing (65 m west of MR) and a signal-controlled...
junction (200 m west of MR). The rural site at the Kent Showgrounds at Detling (DE, lat 51°18′07″N, lon 0°35′22″E) was situated approximately 45 km to the southeast of London downtown on a plateau at 200 m a.s.l. surrounded by fields and villages, and is close to the permanent measurement station of Kent and Medway Air Quality Monitoring Network. The site provides excellent opportunities to compare the urban and kerbside air pollution with the rural background pollution levels (Bohnenstengel et al., 2013a; Bohnenstengel et al., 2014; Mohr et al., 2013). A busy road with ~ 160 000 vehicles per day (traffic fleet composition unknown) is located runs approximately 150 m south of DE. Meteorological parameters were measured at DE and at the British Telecom (BT) Tower (lat 51°31′17″N, lon 0°08′20″W), ~ 0.5 km east of MR (Harrison et al., 2012a).

2.2 Instrumentation

2.2.1 RDI-SR-XRF

Rotating drum impactors

Rotating drum impactors (RDIs) were deployed at MR, NK and DE with a 2 h time resolution (see Table 1 for details). A detailed description of the RDI can be found in Bukowiecki et al. (2005), Bukowiecki et al. (2009c) and Richard et al. (2010). In short, aerosols are sampled through an inlet that removes all particles with aerodynamic diameter $d > 10 \mu m$ at a flow rate of $1 \text{ m}^3 \text{ h}^{-1}$. The particles are size segregated in three size ranges based on aerodynamic diameter d (PM$_{10-2.5}$ (coarse), PM$_{2.5-1.0}$ (intermediate) and PM$_{1.0-0.3}$ (fine)) by passing sequentially through three rectangular nozzles of decreasing size (width 1.52, 0.68 and 0.3 mm, length 10 mm). Particle deposition occurs via impaction on a 6 μm thick polypropylene (PP) foils mounted on aluminium wheels and coated with Apiezon to minimize particle bouncing effects. After the last impaction stage a backup filter samples all remaining particles before the air passes through a pump. After each 2 h sampling interval the three wheels rotate stepwise to a blank section of the foil before a new sampling interval takes place. The small-size collection limit of the fine fraction was previously estimated at 100 nm (Bukowiecki et al., 2009c; Richard et al., 2010). However, new laboratory measurements of the RDI collection efficiency indicate an instrument-dependent (i.e. based on the machining of the specific nozzle) small-end cut point of approximately 290-410 nm (see Supplement A for details). This results in sampling of a smaller size range (PM$_{1.0-0.3}$) than the PM$_{1.0-0.1}$ range reported in previous studies, and influences...
the measured concentrations of elements with significant mass near this cut point—an underestimation of the total mass of trace elements that occur predominantly in the \(\text{PM}_{1.0} \) fraction, notably (S, K and Pb).

SR-XRF analysis

Trace element analysis on the RDI samples was performed with synchrotron radiation-induced X-ray fluorescence spectrometry (SR-XRF) at the X05DA beamline (Flechsig et al., 2009) at the Swiss Light Source (SLS) at Paul Scherrer Institute (PSI), Villigen PSI, Switzerland and at Beamline L at Hamburger Synchrotronstrahlungslabor (HASYLAB) at Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany (beamline dismantled November 2012). The RDI samples with the deposited particles were placed directly into the X-ray beam. Irradiation of the samples took place at a 45° angle for 30 s. The light spot of the incoming beam was \(\sim 140 \) by 70 µm at SLS (monochromatic excitation at 10.5 keV, in vacuum) and \(\sim 80 \) by 150 µm at HASYLAB (polychromatic excitation, in air). Fluorescence light produced by the elements in the samples was detected by energy-dispersive detectors (silicon drift detector at SLS, nitrogen cooled Si(Li)-detector at HASYLAB) at a 90° angle relative to the incoming beam. At SLS Kα lines of the elements with atomic number \(Z = 11-30 \) (Na-Zn) were measured, and at HASYLAB Kα lines of the elements with \(Z = 22-56 \) (Ti-Ba) and Lα lines of \(Z = 82 \) (Pb).

The fluorescence counts per element were calibrated to the element mass concentration using multi-element standards, where each standard consisted of a set of preselected elements in 5 different concentrations ranging between 0.05 and 0.4 \(\mu \text{g cm}^{-2} \). The absolute element concentrations in these standards were determined with inductively coupled plasma-optical emission spectroscopy (ICP-OES). The absolute calibration factor for the SR-XRF system was referenced to Fe and determined from the linear relation between the SR-XRF response and the ICP-OES measurements. Because the fluorescence yield increases with atomic number \(Z \), a relative calibration curve was constructed as follows: for each element present in the standards and having a detectable Kα line, an absolute calibration factor was determined as for Fe, and a dimensionless relative response factor was calculated as the ratio of this absolute factor to that of Fe. These relative response factors were plotted as a function of line energy and the a polynomial curve was fit by a custom function that smoothly blends exponential (low energy) and sigmoidal (high energy)
functions. The response curve was interpolated to obtain response factors by interpolation for elements not present in the standard. In total 25 elements were quantified (Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br, Sr, Zr, Mo, Sn, Sb, Ba, Pb). Details of the methodology can be found elsewhere (Bukowiecki et al., 2005; Bukowiecki et al., 2008; Richard et al., 2010), with the following significant changes (see Supplement B for further details):

1. At SLS, we used an e2v SiriusSD detector (SiriusSD-30133LE-IS) and in-house built vacuum chamber to extend the measured range of elements down to Na and Mg.

2. Reference standards for calibration of element fluorescence counts to mass concentrations were produced on the same 6 µm PP substrate as used for RDI sampling allowing the use of identical geometry and irradiation time for RDI samples and reference standards, thereby reducing uncertainties in absolute and relative calibrations.

3. Data were processed with the Spectral Analysis for Multiple Instruments – toolkit for XRF (SAMI-XRF) developed in-house within the IGOR Pro software environment (Wavemetrics, Inc., Portland, OR, USA). SAMI handles spectral fitting, quantification of associated uncertainties, and calculation and application of calibration parameters.

1. At SLS, we replaced the silicon drift detector (Roentec Xflash 2001 type 1102, Bruker AXS) with an e2v SiriusSD detector (SiriusSD-30133LE-IS). This detector is equipped with a thin polymer window resulting in a wider energy range down to about 300 eV and a better energy resolution of 133 eV (Mn Kα at 5.9 keV). In addition, the setup accepts a higher throughput resulting in negligible dead time effects. We also replaced the helium chamber with an in-house built vacuum chamber (sample exposure system for micro-X-ray fluorescence measurements, SESmiX) which reaches about 10⁻⁶ bar. This extended the measured range of elements down to Na and Mg.

2. Reference standards for calibration of element fluorescence counts to mass concentrations were produced on the same 6 µm PP substrate as used for RDI sampling, in contrast to the previous standard where a much thicker 25 µm PP foil was used. Two standards suitable for measurements at both SLS and HASYLAB contained elements in equal concentrations, and have a similar mix of elements as the standard previously used. Two additional standards containing only specifically selected light elements were produced. One standard contained Na, Al, P and Ca;
the other Mg, Si, S, K and Ca. The concentrations of these elements were increased by a factor 3.8 relative to the other two standards to improve signal-to-noise ratios in the SR-XRF calibration. Co was added to these additional standards, but in the same concentration as in the other two foils and was used as a quality check of the fabrication procedure of the four standards. The concentration difference of the light elements was taken into account before applying the relative calibration of the sample elements. The new reference standards allowed the use of identical geometry and irradiation time for RDI samples and reference standards, meaning that all SR-XRF measurements exhibit the same scattering and secondary fluorescence excitation. This reduced uncertainties in both the absolute and relative calibration of the samples.

Previously, spectra were fitted with the WinAxil software package (Canberra Inc; Van Espen et al., 1986). This rather old spectral fitting package allows little flexibility in spectrum continuum correction and peak fitting. PyMCA (Sole et al., 2007) on the other hand, is more flexible, but lacks the possibility to save uncertainty calculations in batch mode. In this study, spectra were fitted with an in-house developed software package called Spectral Analysis for Multiple Instruments—toolkit for XRF (SAMI-XRF) using the IGOR Pro software environment (Wavemetrics, Inc., Portland, OR, USA) to evaluate the data and create custom interfaces to accomplish specialized tasks. SAMI will be described in detail in a future manuscript. Briefly, SAMI sequentially determines (1) energy calibration of the X-ray line as a function of detector channel; (2) spectrum continuum correction; (3) peak-width calibration as a function of energy (assuming Gaussian peak shape and a general square root law of the full-width-half-maximum (FWHM) energy relation); and (4) peak fitting of the entire spectrum, at which stage only peak heights are fitted as a free parameter and all other parameters are fixed. Steps (1) and (3) are performed with user-selected reference peaks, and incorporates fitting of complex (multi-Gaussian) peak shapes caused by nearly complete overlapping Kα₁ and Kα₂ lines. Step (2) utilizes collected spectra of a blank foil as a reference for the continuum shape, and scales this reference to user-selected element-free regions of the processed spectra. Step (4) allows lines to be fitted freely or fixed to another line, e.g. to the strongest line in a shell. For example, the Kα₂ and Kβ lines are fixed to the Kα₁ line according to the relative intensities given by Bearden (1967). In this study, all lines within an electron shell were fitted fixed to the strongest line in that shell. Additionally, Ni, Cu and Zn Lα₁,2 lines were fixed to the Kα₁ line to reduce the influence of peak overlap with Na. The ratios of Lα₁,2 to Kα₁ for Ni, Cu and Zn were determined by fitting calibration
standards having these elements but low Na. Final fits were then obtained using the acquired relations, thereby reducing uncertainties in the Na concentrations due to peak overlap and improving Na quantification.

2.2.2 Other measurements

Here a short description is given of measurements from additional relevant particle- and gas-phase instruments deployed at MR, NK and DE during the winter IOP discussed in this paper are described here. Daily PM$_{10}$ filter samples (midnight to midnight) were collected at MR and NK using Partisol 2025 samplers (Thermo Scientific, Inc.). The filters were digested in a 1:2 mixture of perchloric and hydrofluoric acid, and subsequently analysed by inductively coupled plasma ICP-mass spectrometry (ICP-MS, calibration with NIST standards) for the determination of Na, Al, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Sr, Mo, Sb, Ba and Pb. Additionally, Mg, K and Sn were available at NK. High-resolution time-of-flight aerosol mass spectrometers (HR-TOF-AMS, Aerodyne Research, Inc., Billerica, MA, USA) were deployed at MR (with a 5 min time resolution), at MR, NK (a 5 min resolution every 30 min at NK), and DE a 2 min resolution to characterise the non-refractory submicron aerosol components (DeCarlo et al., 2006). PM$_{10}$ mass concentrations were measured at all three sites with FDMS-TEOM (Filter Dynamics Measurement System Tapered Element Oscillating Microbalances (FDMS-TEOM; Thermo Scientific, Inc.) with a 1 h time resolution. NO$_x$ measurements at MR and NK were performed with a NO$_x$ chemiluminescent analyser with a single chamber and a single detector (API, A Series, model M200A; 15 min resolution) with a 15-min time resolution. At DE NO was collected determined with a Thermo Scientific 42i analyser and NO$_2$ with an Aerodyne CAPS-NO$_2$ (SN 1002) and an Aerodyne QCL-76-D. These NO and NO$_2$ measurements were summed together to obtain NO$_x$ with a 1 min time resolution. Black carbon (BC) was measured with a 2-wavelength Aethalometer ($\lambda = 370$ and 880 nm, model AE22, Magee Scientific) at MR and a 7-wavelength Aethalometer ($\lambda = 370$-950 nm, model AE31, Magee Scientific) at NK and DE (5 min, all three with a time resolution of 5 min), with a 2.5 µm cyclone at MR and DE and a 3.5 µm cyclone at NK. Traffic counts by vehicle group at MR from road sensors (number of vehicles per 15 min) were available as well. Wind direction and wind speed data for MR and NK were taken from the BT Tower (30 min resolution) where anemometers were placed to the top of an open lattice scaffolding tower of 18 m height on top of the main structure (190.8 m a.g.l.; Wood et al., 2010), whereas local data were used at DE (1 min resolution). Air mass origins were
analysed with back trajectory simulations using the UK Met Office’s Numerical Atmospheric Modelling Environment (NAME) dispersion model (Jones et al., 2007).

3 Data intercomparison and uncertainty

Here we compare RDI-SR-XRF data with independent filter data (24 h PM$_{10}$ trace element data analysed with ICP-MS; roughly 9% uncertainty at a 95% confidence interval) for 18 elements collected at MR and NK (no filter data was available at DE). For this comparison, the three size ranges of the RDI were summed up to total PM$_{10}$ and averaged to the filter collection period. Details of the intercomparison results can be found in Supplement C. In short, the majority of the elements (Al, Ca, Ti, Mn, Fe, Cu, Zn, Sr, Sb, Ba) agree within approximately ± 50% with Pearson’s $R > 0.78$. Fit coefficients deviate more for the other elements due to low filter sample extraction efficiencies (V, Ni, Mo), uncertainties in the XRF relative calibration (Na, Mg) and differences in the particle size range sampled by the two (K, Sn, Pb). Thus, for the measured size range, the intercomparison calls into question only the absolute magnitudes of Na and Mg concentrations determined by the XRF. However, these elements are retained in the ensuing analysis as (1) they are well correlated with the filters (Pearson’s $R > 0.89$); (2) they yield internally consistent results (e.g. appropriate ratio for sea salt), as described in the following sections; (3) the ensuing analysis relies on relative changes/ratios per element across sites and is therefore not affected by a systematic bias in absolute magnitude.

The agreement between XRF and filter measurements in the present study compares favourably with that obtained in previous intercomparisons of trace element measurement techniques. Previously, Comparison of RDI-SR-XRF performance was analysed by Bukowiecki et al. (2005) and Richard et al. (2010). Both studies compared RDI-SR-XRF element concentrations with daily element concentrations from a high volume sampler followed by subsequent analysis by using laboratory-based wavelength dispersive XRF (Bukowiecki et al., 2005) and by ICP-OES and ICP-MS (Richard et al., 2010). Most elements showed yielded slopes between 0.7 and 1.6, {except for S and K}$_{tr}$, with Pearson’s $R > 0.5$. The spread/biases in these intercomparisons are not necessarily due to SR-XRF issues, as can be seen by-from a comparison by Salcedo et al. (2012) of ICP with proton-induced X-ray emission (PIXE) and AMS trace element measurements. Agreement between ICP and PIXE data was in the same range as between either method with and the AMS data, with slopes ranging between 0.06 and 0.93 with Pearson’s R.

These studies show the challenges in the quantification of trace elements with different analysis techniques. Estimated uncertainties (per size fraction) and detection limits for each measured element are given in Supplement Table S3. A brief overview is presented here:

1. RDI sampling: the fluctuations in the flow rate are negligible within 5% (Richard et al., 2010) and the uncertainties in the size cut off are discussed in Supplement A.

2. SR-XRF accuracy: uncertainties in the absolute and relative calibrations affect absolute/fractional concentrations, but cancel out for relative changes/ratios, because all samples were measured under the same calibration conditions.

3. Issues such as imperfect flatness of the sample foils and detector dead time corrections (Richard et al., 2010) reduce measurement precision but affect all elements with the same scaling factor.

4. SR-XRF measurement precision is affected by sample inhomogeneity and spectral analysis uncertainties. Sample inhomogeneity was assessed by Bukowiecki et al. (2009c) and found to contribute ± 20% uncertainty.

For most elements, except Mn, sample inhomogeneity is the largest source of uncertainty. Mn is affected by spectral analysis uncertainties due to peak overlap with Fe, present in much higher concentrations. Therefore, a small change in the energy calibration as function of detector channel leads to a large change in the peak area of Mn. All data points lie well above their element detection limits, resulting in negligible uncertainties from the signal strength. In addition, RDI-SR-XRF measurements (both absolute/fractional and relative/ratio) are affected by atmospheric variability. This variability is likely the predominant source of the data spread evident in Table 2 and the following analyses.

Here we compare RDI-SR-XRF data with independent filter data (24-hr PM\textsubscript{10}-trace element data analysed with ICP-MS; roughly 9% uncertainty at a 95% confidence interval) for 19 elements collected at MR and NK (no filter data was available at DE). For this comparison, the three size ranges of the RDI were summed up to total PM\textsubscript{10} and averaged to the filter collection period. The intercomparison results are shown in Figure 2, and are divided into four groups to facilitate discussion. Fit coefficients and Pearson's R values for the intercomparison are shown in Table S2. Elements shown in Figure 2a (Al, Ca, Ti, Mn, Fe, Cu, Zn, Sr, Sb, Ba) agree within approximately +/- 50% with good correlations (R > 0.74). In Figure 2b-d, we show elements for which
the intercomparison shows significant biases and/or no significant correlation between RDI and filters. Note that the elements exhibiting good agreement in Figure 2a span orders of magnitude difference in concentration (and fluorescence counts), suggesting that there are no global or concentration-dependent biases in the RDI-SR-XRF data. This leaves the element relative calibration (i.e., element fluorescence yield as a function of line energy), spectral peak fitting, and instrument size cut points as issues to address.

Figure 2b shows good correlations for Mo ($R = 0.86$), but the RDI measures a factor 3 higher concentrations than found on the filters. Visual inspection of the spectrum indicates that significant interferences between lines are unlikely, and this is confirmed by peak-fitting sensitivity tests investigating the response of the calculated concentrations to uncertainties in line energy calibration (i.e., energy as a function of detector channel), the continuum, and calculated peak width. We estimate a 3% uncertainty in the measurement of Mo due to spectral analysis. Strong correlations between filter and RDI time series also suggest that spectral fitting errors are not the cause of the discrepancy. Mo falls in a well-constrained region of the calibration curve (although is not directly measured on calibration foils), so relative calibration errors would require a systematic bias across this entire region of the calibration curve. While there are not enough jointly measured elements within the intercomparison to evaluate this possibility, good agreement between RDI and filter measurements is obtained through Sr ($\text{K}_\alpha = 14.1\text{ keV}$) and at Sb ($\text{K}_\alpha = 26.4\text{ keV}$) (Mo K_α lines fall at 17.5 keV), suggesting such a bias is unlikely. For ICP-OES the extraction efficiency was unknown for Mo, potentially indicating that the filter data might be underestimated. The other elements (V, Cr, Ni) in Figure 2b show no significant correlation between RDI and filters. Similar to the discussion of Mo, we do not expect significant spectral interferences for these elements, and this is confirmed by the uncertainty analysis described above, which yielded around 20% uncertainty for V, Cr and Ni. Unlike Mo, the relative calibration is well-constrained both in terms of elements directly measured on calibration foils and in terms of intercomparison with nearby elements in the XRF calibration curve, where V and Cr fall just above Ca and Ti and just below Mn and Fe, and Ni just above Mn and Fe and just below Cu and Zn. RDI and filter measurements are shown to be in good agreement for these six elements in Figure 2a. However, the ICP-OES had an extraction efficiency for Ni of 66%, whereas for V and Cr this was unknown, leading to increased uncertainties of these elements relative to others. Further, as shown in the following sections, the RDI time series of V, Cr and Ni (including both urban/kerb increments and
(diurnal/weekly cycles) are consistent with those of elements expected to be co-emitted by the same sources. We therefore assume the RDI-V, Cr and Ni measurements to be valid, even though they are close to the minimum detection limits of SR-XRF.

Figure 2c shows good correlations for Na and Mg (R > 0.87), but the RDI concentrations are a factor 2 higher than the filters. The two measurement techniques each provide internally consistent results, with the Mg to Na ratio for the filter data at NK and the RDI data at NK and MR of approximately 0.13, which is close to the theoretical sea salt ratio of 0.12. The XRF relative calibration curve for Na and Mg is difficult to constrain due to the low response of these elements, but only led to an uncertainty of 10%. The extraction efficiency for Mg in ICP-OES was 90%, but was unknown for Na. However, it remains unclear why the results of both methods differ for these elements.

The elements K, Sn and Pb in Figure 2d show reasonable to good correlations between RDI and filter measurements (R > 0.53) but the RDI data is only about half the filter data (filter measurements of K and Sn only at NK). Pb has a significant fraction of the mass in the fine fraction (see Figure 3). Underestimation by the RDI is explained by an unexpectedly high small-end cut point of 290-410 nm (compared to 100 nm), as discussed below. K and Sn also have a significant fraction of their mass in the fine fraction, and might be affected by the cut off similarly to Pb.

S is a useful element for evaluation of the small-end cut off, as it is dominant in the fine fraction and measurable by several techniques. Therefore, we compared S data obtained with the RDI to simultaneous S mass calculated from sulphate (SO$_4^{2-}$) measured by an AMS at MR, NK, and DE. The results in Supplement A show that the S mass in the RDI is on average about three times lower than that measured by the AMS. This is consistent with the discrepancy between RDI and filter measurements for fine fraction dominated elements. The RDI backup filter, which collects particles too small to impact at the PM$_{1.0}$ stage, was analysed for SO$_4^{2-}$ using ion chromatography (Supplement A). Adding the S from this analysis to the S collected at the RDI PM$_{1.0}$ stage yielded mass closure with the S from AMS measurements within 20% at all three sites. This suggests that elements with considerable mass in the small end of the PM$_{1.0}$ size range may be significantly underestimated. This affects S and Pb, and potentially also K, Zn, Br and Sn. To further investigate this underestimation, new RDI collection efficiency measurements for the PM$_{1.0}$ deposition stage were performed (Supplement A). The actual small-end cut off was determined to be 290-410 nm, rather than the previously measured value of 100 nm.
Bukowiecki et al., 2009c; Richard et al., 2010), and found to be very sensitive to the machining tolerances of the PM$_{10}$ nozzle.

Only a small fraction of the measured elements are affected by this cut-off issue. Further, because the analysis presented in the following sections depends on site-to-site ratios (for the same element) and relative concentration changes, potential biases are reduced by the similar (though not identical, see Fig. S2) cut-offs of the different RDI units. The conclusions presented herein are thus not significantly affected by this artefact.

4 Results and discussion

4.1 Trace element concentrations

During the ClearfLo winter IOP total mass concentrations of the analysed trace elements ranged from less than 0.01 µg m$^{-3}$ to \sim14.20 µg m$^{-3}$. Typically, concentrations were highest at MR and lower at NK and DE, and decreased with particle size. Total trace element concentration in the coarse mode ranged on average from 0.8 to 3.7 µg m$^{-3}$. Intermediate mode concentrations ranged from 0.6 to 1.3 µg m$^{-3}$, whereas fine mode values varied between 0.5 and 0.6 µg m$^{-3}$. An overview of the obtained trace element concentrations as a function of size and site is given in Table 2. Note that S is not a trace element, but is commonly reported in trace element studies and is a good tracer for regional transport. Among the analysed trace elements, highest concentrations at MR were found for Na (2637 %), Cl (2319 %) and Fe (187 %), followed by Si (7 %), S (6 %) and Ca (5 %). At NK, this was the case for highest concentrations were found for Na (3547 %), Cl (2619 %) and Fe (97 %), followed by S (8 %), Mg (5 %) and Si (5 %). At DE, highest concentrations were found for Na (3549 %), ClS (2411 %) and SMg (147 %), followed by Mg (6 %), Si (5 %) and Fe (4 %). Bukowiecki et al., 2009c; Richard et al., 2010—Total analysed mass measured by the RDI-SR-XRF (trace elements + S) contributed on average 1821 % to the total PM$_{10}$ mass (from FDMS-TEOM) of 32 (5-74) µg m$^{-3}$ at MR (not extrapolated to the corresponding oxides), 4417 % to the mass of 23 (1.4-63) µg m$^{-3}$ at NK and 4214 % to the mass of 17 (0.5-58) µg m$^{-3}$ at DE.

A comparison between the contributions of coarse, intermediate and fine fractions to the total PM$_{10}$ mass of each trace element is shown in Fig. 2 for MR, NK and DE the three sites. The figure shows that MR trace elements at MR are dominated by the coarse fraction. Analysis in the following sections and previous measurements at this
site (Charron and Harrison, 2005) suggest this is caused by large contributions of resuspension and traffic-related mechanical abrasion processes, which primarily contribute to the coarse fraction. For all elements at this site, except S, Br and Pb, the coarse fraction contributes more than 50 %. Mass fractions of intermediate mode elements to total PM$_{10}$ are rather constant with contributions ranging from 1413 to 2827 %. The fine fraction contributes up to 50 % of total mass for S, K, Zn, Br and Pb; for other elements fine contributions are less than 4720 %. S, K, Zn, Br and Pb are typically dominated by the fine fraction with known sources including heavy oil combustion (S, K, Zn; Lucarelli et al., 2000), traffic exhaust (Br, Pb; Formenti et al., 1996), industrial processes (Zn, Pb; Moffet et al., 2008), and secondary sulphate and wood combustion (S, K, Pb; Richard et al., 2011).

For most elements, particle mass contributions of the smaller size fractions are more important as one moves from kerbside to urban background to rural sites (Fig. 2). The relatively large fine fraction contribution at DE is probably caused by the absence of local traffic which results in lower contributions of resuspension and traffic-related processes to total element concentrations, as discussed in the following sections. A different behaviour is observed for Cr, Ni and Mo with on average 80 % of their mass at DE in the coarse fraction, compared to 7073 % at MR and 5060 % at NK. The time series of these coarse mode species are very spiky. Cr and Mo are very spiky, correlate strongly with Ni, and are slightly enhanced with SW winds—neither correlated to wind direction nor to wind speed, nor but are not—collocated with measurements of BC and AMS species, suggesting emissions from a local industrial source, potentially from stainless steel production (Querol et al., 2007; Witt et al., 2010) near DE rather than regional transport.

Comparing the contributions of groups of elements to total trace element concentrations at the sites provides an overview of local and regional sources affecting London; a detailed source apportionment study will be the subject of a future manuscript. Na, Mg and Cl are typical Sea salt elements and (Na, Mg, Cl) contribute around 6065 % to the total PM$_{10}$ trace element mass at all three sites, indicating that the air pollutant levels caused by elements are dominated by natural emission sources being transported to London. Note, however, that the absolute mass concentrations of these elements at MR are approximately 1.5 times higher than at NK and 2-3 times higher than at DE. This indicates the important role of anthropogenic activities (e.g. traffic) in the resuspension of these natural particles, but possibly also the application of road salt in winter (e.g. Lee et al., 1994). Mineral dust elements (Al, Si, Ca, Ti) mainly brought into the air via resuspension contribute
on average 14% at MR, NK and DE-17% to the total elemental mass at MR, 13% at NK and 12% at DE. For some typical specific brake wear elements (Cu, Sb, Ba) these contributions are 4.11, 0.60 and 0.3% at MR, NK and DE, respectively. Although these metals contribute a small fraction of total PM\textsubscript{10} mass concentrations, they induce adverse health effects. Xiao et al. (2013) e.g. found that Zn, Fe, Pb and Mn were the major elements responsible for plasmid DNA damage, whereas Kelly and Fussell (2012) found that increases in PM\textsubscript{10} as a result of increased Ni, V, Zn and Cu contributions showed highest mortality risks, as opposed to increased Al and Si.

The RDI-SR-XRF technique is subject to various sources of uncertainty, which change in importance depending on whether the data are described in terms of absolute/fractional concentrations (as above) or in terms of relative changes/ratios (as in the remainder of the manuscript). A brief overview is presented here:

1. RDI sampling: the fluctuations in the flow rate are negligible within 5% (Richard et al., 2010) and the uncertainties in the size cut off are discussed in Section 3;

2. SR-XRF accuracy: uncertainties in the absolute and relative calibrations affect absolute/fractional concentrations, but cancel out for relative changes/ratios, because all samples were measured under the same calibration conditions.

3. Issues such as imperfect flatness of the sample foils and detector dead time corrections reduce measurement precision but affect all elements with the same scaling factor.

4. SR-XRF measurement precision is affected by sample inhomogeneity and spectral analysis uncertainties. Sample inhomogeneity was assessed by Bukowiecki et al. (2009c) and found to contribute ±20% uncertainty. A comprehensive assessment of spectral analysis uncertainties is beyond the scope of the current work, but will be discussed in a future manuscript. The results of this analysis were discussed for selected elements in Section 3.

In addition, RDI-SR-XRF measurements (both absolute/fractional and relative/ratio) are affected by atmospheric variability. This variability is likely the predominant source of the data spread evident in Table 2 and the following analyses.
4.2 Urban and kerb increment

4.2.1 Urban increment

The urban increment compares the trace element concentrations per trace element at the urban background site to the concentrations at the rural site, and is calculated here as the ratio of concentrations at NK to DE. Figure 3 shows the mean, median and 25-75th percentile urban increment ratios for the coarse, intermediate and fine fractions per element. Most elements, (except Cl, Ni, and coarse mode Cr and Mo) are enriched at the urban background site by factors between 1.0 and 4.76 (median ratios). Increments decrease towards smaller sizes. The coarse and intermediate fractions show highest increment factors, while the fine fraction shows lower increments. Ni and coarse mode Cr show higher concentrations at DE relative to NK, as does the mean value of coarse Mo. Especially at DE Cr and Ni show strong correlations with Pearson’s R of 0.85. As discussed in the previous section, enhanced coarse mode Cr, Ni and Mo may indicate a stainless steel production or other an industrial source near the rural site DE. These elements show strong correlations with Pearson’s R of ~0.88 at DE vs ~0.57 at NK.

Coarse mode Zr exhibits low concentrations at DE, where the median value actually falls below detection limit, though discrete events above detection limit also exist. For this reason, the median-based urban increment is not plotted, while the mean ratio is driven by several large concentration peaks at NK, resulting in a large mean ratio of 9.521. In the case of Cl, a large spread in the urban increment values is seen for all three size ranges. Cl is likely depleted relative to other sea salt elements like Na and Mg (throughout the campaign Cl concentrations fall to 0, whereas Na and Mg concentrations remain positive) due to replacement by nitrate, and the extent of such depletion is greater in small particles (Nolte et al., 2008). At DE, Cl depletion seems apparent at all size ranges, whereas at MR depletion only mainly takes place in the PM$_{1.0-0.3}$ fraction. NK shows Cl depletion especially in the PM$_{1.0-0.3}$ fraction, but to some extent also in intermediate mode particles.

For ease of discussion, we empirically group elements based on similar urban increment values. Mn, Fe, Cu, Zn, Zr, Mo, Sn, Sb and Ba show urban increments on average of 3.5 in the coarse, 3.1 in the intermediate and 2.0 in the fine fraction (Fig. 3). These have been identified as Typical traffic related elements by (Mn, Fe, Cu, Zn, Zr, Mo, Sn, Sb, Ba; see e.g. Amato et al., 2011; Bukowiecki et al., 2010; Minguillón et al., 2014; Richard et al., 2011 and Viana et al., 2008. Zr has also been linked to mineral dust (Moreno et al., 2013). We can understand that from analysing
the Enrichment Factors of these elements (EF). EF is a measure of the enrichment of elements relative to the upper continental crust (UCC) and is defined as: ppm metal \(\text{EF} = \frac{\text{ppm metal in sample}}{\text{ppm metal in UCC}} \) with Si as reference material (UCC from Wedepohl, 1995). Zr is the only element in this traffic group that is depleted in the atmosphere relative to their UCC concentrations, but with concentrations at NK higher than at DE. Most other elements clearly indicate anthropogenic origin with EF > 10. Dependent on the method, Zr can be either grouped with traffic-related elements or with dust elements. show Urban increments on average of 3.0 in the coarse, 3.5 in the intermediate and 2.5 in the fine fraction (Figure 4). These urban increments are similar to that of NO\(_x\), where concentrations at NK were on average a factor 4.9 higher than at DE (the mean concentration at NK was 68 ppb, at DE 14 ppb). However, black carbon (BC), a marker for both traffic and wood burning emissions, had an urban increment of only 1.1 (concentration at NK 757 ng m\(^{-3}\), at DE 633 ng m\(^{-3}\)), likely due to local wood burning emissions around DE (Mohr et al., 2013). Al, Si, Ca, Ti and Sr as markers for mineral dust (e.g. Amato et al., 2009; Lin et al., 2005; Lucarelli et al., 2000) show a factor 2.0 higher concentrations at NK relative to DE in the coarse, 1.9 in the intermediate and 1.6 in the fine fraction (EF < 10). Mineral dust elements (Al, Si, Ca, Ti, Sr; see) show a factor 2.3 higher concentrations at NK relative to DE in the coarse, 2.2 in the intermediate and 1.7 in the fine fraction. These results indicate that moving from rural to urban backgrounds yields a larger relative increase in traffic than in mineral dust elements. Surprisingly, sea salt elements (Na, Mg, Cl) show higher concentrations at NK than at DE of up to a factor of 2 for the coarse mode, despite the expected dominance of regional over local sources. This highlights the potential importance of sea or road salt resuspension by traffic. Similar urban increment values for traffic-related, resuspension and sea salt elements have been observed by Lee et al. (1994) for particles below a few \(\mu \)m. Theodosi et al. (2011) also found higher increments (> 2) for trace elements in PM\(_{10}\) aerosol from local anthropogenic sources like fossil fuel combustion (V, Ni, Cd) and traffic (Cu), relative to long-range transported Saharan dust (Fe, Mn) with increments close to 1. However, our study suggests that the non-size-resolved increment values for increments reported in the cited studies do not fully capture the urban/rural differences.

The influence of regional transport by anthropogenically produced elements in our study (Fig. 3Figure 4) is seen by the low urban increments between 1.21.1 and 2.01.8 for P, S, K, Zn, Br, Sn and Pb in PM\(_{1.0-0.3}\) (EF > 25) and of 1.6 for total PM\(_{10}\) mass (concentration at NK 23 \(\mu \)g m\(^{-3}\), at DE 17 \(\mu \)g m\(^{-3}\)). The concentrations of the
main components in PM$_{10}$ (sulphate, nitrate and secondary organic compounds) within an urban area are mostly influenced by regional transport, as found in London during the REPARTEE project (Harrison et al., 2012a) and in Paris during the MEGAPOLI project (Crippa et al., 2013; Freutel et al., 2013), resulting in low increments for total PM$_{10}$ mass. Similar urban increment values (1.3 to 1.8) for 1 and 24 h total PM$_{2.5}$ mass concentrations were reported across many sites in the UK (Harrison et al., 2012c).

4.2.2 Kerb increment

While the urban increment investigates the effect of diffuse emission sources on particle concentrations, the kerb increment investigates an urban micro-environment, specifically the local effects of roadside emissions and activities. Here, the kerb increment is calculated as the ratio of concentrations at MR to NK. However, observed concentrations at MR strongly depend on wind direction, because the road runs from approximately 260° to 80° and the street canyon with the surrounding buildings and intersections creates a complex wind circulation system (Balogun et al., 2010). Since the measurement station is located at the southern side of the canyon, measurements during time periods with winds from the south are influenced by on-road emissions on top of the urban background pollution. Higher concentrations were observed with SSE winds, i.e. perpendicular to the direction of the road. The influence of wind direction on the air pollutant concentrations in the street canyon at MR was identified by e.g. Balogun et al. (2010), Charron and Harrison (2005) and Harrison et al. (2012b), with higher concentrations corresponding with SSE winds, i.e. perpendicular to the direction of the road. Since the measurement station is located at the southern side of the canyon, measurements during time periods with winds from the south are influenced by on-road emissions on top of the urban background pollution. In this study we have averaged the 30-min wind direction data collected at the elevated BT Tower to the RDI 2-hr time resolution at MR and NK, and the 1-min wind direction data collected at DE to the RDI 2-hr time resolution at the same site. In this study, the RDI-SR-XRF data was split into four equally spaced wind direction sectors based on wind direction data: N (315 - 45°), E (45 - 135°), S (135 - 225°) and W (225 - 315°). Figure 4 shows size-resolved trace element concentrations per wind sector normalized to the global median concentration for each element at MR. As expected, winds from the south yield the highest concentrations, whereas
northern winds yield the lowest, independent of size fraction. West and east winds are parallel to the street canyon and yield intermediate concentrations, consistent with e.g., Charron and Harrison (2005) and Harrison and Jones (2005). Similar behaviour is observed for NOx, and no directional biases for high wind speeds are observed (Fig. S6). Traffic-related and some other anthropogenically-related elements (V, Cr, Mn, Fe, Ni, Cu, Zn, Zr, Mo, Sn, Sb, Ba) show the strongest wind direction dependency with up to a factor of 2-3 higher concentrations during S relative to N winds for the three size fractions (Fig. 4). A factor of 1.5-2 is obtained for resuspended dust elements. Harrison et al. (2012b) found a ratio of 2 for Fe (as tracer for brake wear) and 1.2 for Al (as tracer for mineral dust) for SW versus NE winds for particles between 2 and 3 μm. However, they were limited by their time resolution of several days, resulting in potentially substantial wind direction variations during each measurement, which would blur the different conditions and yield reduced ratios.

Figure 5 shows that typical traffic-related elements from exhaust emissions and brake and tire wear (V, Cr, Mn, Fe, Ni, Cu, Zn, Zr, Mo, Sn, Sb, Ba) are about a factor 3 higher during S compared to N winds for the coarse fraction, and a factor of 2 for the intermediate and fine fractions. Although some studies have assigned V and Ni to industrial sources (Mazzei et al., 2007) and Zr to soil-related particles (Moreno et al., 2013), here they are empirically grouped with traffic elements due to their similar kerb increments and diurnal/weekly cycles (Section 4.3). This does not rule out effects from other sources (e.g., industrial influences on Ni can be observed at the low-traffic rural site), but suggest that traffic is the dominant emission source at the kerbside site. The attribution of e.g., Zr to traffic is consistent with previous studies (Amato et al., 2011; Bukowiecki et al., 2009b; Bukowiecki et al., 2010). Resuspended mineral dust elements (Al, Si, Ca, Ti, Sr) show smaller enrichments than elements related to wearing and exhaust emissions, with concentration ratios for S to N wind conditions of approximately 2 for the coarse fraction, and 1.5 for intermediate and fine fractions. Harrison et al. (2012b) found a ratio of 2 for Fe (as tracer for brake wear) and 1.2 for Al (as tracer for mineral dust) for SW versus NE winds for particles between 2 and 3 μm. However, they were limited by their time resolution of several days, needed to sample enough PM to be quantitative, which resulted in potentially substantial wind direction variations during each measurement and possibly in reduced ratios.
Other elements in the coarse and intermediate mode, Na, Mg, S, Cl, K and Br show only minor correlations with wind direction (Fig. 4), indicating more influence from regional transport indicating that these elements are influenced more by regional transport, instead of being locally emitted and affected by traffic. Only in the fine mode, Na and Mg also show little wind direction influence, whereas S, K and Br seem to be enriched with winds from the east, potentially related to long-range transport from the European continent. Cl is highly variable in all four wind sectors, and, as discussed previously, is likely depleted throughout the campaign by nitrate chemistry.

Local wind direction has a greatly reduced effect at urban background and rural sites. At NK, the element concentrations are only subject to high concentration outliers for E winds (Supplement Fig. S4), potentially At NK, the element concentrations are less influenced by wind direction (Figure S3), but subject to high concentration outliers for E winds. This could be caused by the transport of pollutants from emission sources in downtown London, or by lower wind speeds occurring with E winds resulting in reduced dilution and increased concentrations of traffic pollutants (e.g. NOx) throughout the city (Supplement S6 Figure S5). The rural site hardly also shows a slight wind direction dependent concentrationcy (Supplement Fig. S5-6 Figure S4). Interpretation of data from the E sector is unclear due to the low number of data points (45 out of 318 data points). Here, winds from N and E sectors result in enhanced concentrations relative to S and W sectors, especially in the fine mode. Interpretation of data from the E sector is unclear due to the low number of data points (45 out of 323 data points). These wind directions were accompanied by low wind speeds (Figure S5), reducing dilution and leading to the accumulation of pollutants emitted from villages and towns in the surrounding area (Mohr et al., 2013). Only data from the N sector show enhanced concentrations for several elements correlating with correspond to higher wind speeds and back trajectories consistent with transport from continental Europe.

To simplify reporting of the kerb increment and facilitate comparison with previous studies (e.g. Harrison et al., 2012b), we combined the south/west sectors and the north/east sectors into SW (135-315°) and NE (315-135°) sectors. To eliminate meteorological and/or regional transport effects, this segregation is performed at both MR and NK. The kerb increment is then calculated as the ratio of MR to NK and shown in Fig. 5 (Supplement Fig. S7 Figure S6 shows the increments for the 4 individual sectors). As with the urban increment, we focus on the ratio of the medians at MR and NK to reduce the effects of outliers. Two features become
directly visible; the kerb increment is much higher for coarse than for intermediate and fine particles, and kerb increments are much higher for SW than for NE wind conditions. Even for NE conditions, kerb increments are on average 3.3, 2.7, 1.6 and 1.7 for coarse, intermediate and fine mode particles, respectively. This significant enhancement is likely due to recirculation of particles within the street canyon following their resuspension and/or emission by traffic. However, these increments are much smaller than those observed in the SW sector, where enhancements relative to NK of 7.2, 6.7, 3.3 and 3.1, respectively, are observed. These results indicate the existence of micro-environments within the street canyon dependent on wind direction.

Several As in the previous discussion, we again group elements according to their similarity by kerb increments (Fig. 5). The first group consists of Cu, Zr, Mo, Sn, Sb and Ba and yields the highest increments in the coarse mode ranging from 11.6 to 18.5 in the SW sector (3.6-9.4 for NE). These elements are typically associated with brake wear (e.g. Bukowiecki et al., 2009b; Harrison et al., 2012b), and are much higher than the increments of 4.1 to 4.4 reported by Harrison et al. (2012b) at the same sites for particles <2.1 μm. They assigned Fe, Cu, Sb and Ba to brake wear, but in the current study Fe has a significantly lower kerb increment than other brake wear tracers, suggesting a significant alternative source (Fe, Cu, Sb and Ba were assigned to brake wear). However, when combining all size fractions and ignoring wind direction influences, increments in this study are about 5.1, and more similar to previous studies. The discrepancies between the kerb increments obtained using these two calculation strategies highlights the difficulties in characterizing human exposure to locally generated pollutants in urban environments, as the detailed topography and microscale meteorology greatly alter particle concentrations, and the effects are size-dependent. Amato et al. (2011) calculated road side increments in Barcelona for trace elements in PM\textsubscript{10} with a 1 h time resolution and found increments for brake wear elements of only 1.7 (based on Fe, Cu, Sb, Cr, Sn as tracers for brake wear). These low increments are probably due to the reduced dispersion in Barcelona caused by a complex topography, resulting in high urban background levels.

The second group consists of V, Cr, Mn, Fe, Ni, Zn and Pb elements with increments of 5.7-8.2 (PM\textsubscript{10-2.5}) in the SW sector (2.6-3.0 for NE) that might be affected by other traffic-related processes than brake wear (V, Cr, Mn, Fe, Ni, Zn, Pb) with increments
of 5.6 to 8.0 in the SW sector (2.6-6.5 for NE) (Fig. 5). V and Ni are typically assigned to industrial sources and heavy-oil combustion (e.g. Mazzei et al., 2007; Viana et al., 2008), Zn is usually associated with tire wear (e.g. Harrison et al., 2012b; Lin et al., 2005), and the other elements are commonly associated with traffic-related emissions (e.g. Amato et al., 2013; Bukowiecki et al., 2009a; Richard et al., 2011). We label this group as anthropogenically-influenced (ANTH). The EF of V and Ni are much lower than those of the other elements in this group (2 vs. > 10), indicating at least to some extent different source origins. These kerb increments are similar to the ones for NOx of 8.5 for SW and 2.4 for NE, confirming the anthropogenic influence (traffic and other sources) of traffic on these elements. The high braking frequency at MR due to congested traffic probably resulted in increased kerb increments of brake wear relative to other traffic-related ANTH elements that are also emitted-influenced by local traffic and other sources around NK. Similar to the brake wear elements, combining all size fractions and ignoring wind direction influences yield kerb increments of about 3.1 (4.8, 2.3 and 2.1 for coarse, intermediate and fine mode, respectively), which mask the systematically higher values recorded for specific locations/meteorological conditions in the micro-environment. Increments of these ANTH elements are higher than previously reported values of 1.8-4.5 for studies with low time resolution and non-size segregated particles. These averaged values are however similar to the 2.8 for PM10 trace elements (time resolution of 42 hrs per week) reported in the Netherlands (Boogaard et al., 2011; Janssen et al., 1997), and to the 4.5 and 3.2 for Fe in PM10 and PM2.5, respectively (daily measurements) also found in the Netherlands (Janssen et al., 1997). However, reported increments for V, Mn and Zn are below 1.8 and much smaller than found at MR relative to NK. The high increments presented here might be caused by street canyon effects, trapping pollutants emitted at street level and preventing dilution to the urban background. In more open street sites pollutants are diluted more easily, resulting in reduced concentration differences between street and urban background sites. The enhanced kerb increments for brake wear relative to other traffic-related ANTH elements are apparent in all three size fractions, although increments become more similar towards smaller sizes with a factor 1.91.7 between both element groups in the coarse, 1.5 in the intermediate and 1.21.4 in the fine mode. Both traffic-related groups show the additional information gained with size-segregated aerosol, where exposure to trace elements in the street canyon relative to the urban background increases with particle size, either caused by increased traffic-related emissions with particle size or by more efficient transport of submicron particles from street sites to the urban background. Furthermore, the
highly time-resolved element measurements presented here enabled us to resolve
the systematic, wind direction dependent variability in the kerb increments.

The third group is associated with mineral dust (Al, Si, Ca, Ti, Sr) and coarse
mode kerb increments of 3.4–5.4 for the SW sector yield winds of 3.3 to 5.24 (1.7–2.34.8–
2.4 for NE) (Fig. 5 Figure 6). These elements are brought into the air both by traffic-
induced resuspension and transport from other locations. This second process
increases both urban background and kerbside concentrations, and thus reduces
kerb increments relative to direct traffic-related elements. Lower kerb increments for
mineral dust than traffic-related elements are generally observed in kerb increment
studies (Amato et al., 2011; Boogaard et al., 2011; Bukowiecki et al., 2009b; Harrison
et al., 2012b), although the dust increments found in this study are larger than most
reported increments (typically 1–2 between 1 and 2). As in the traffic-related groups,
increments increase with particle size, indicating that enhanced human exposure at
the street side is enhanced for of particles above 1 µm.

Na, Mg and Cl (sea salt—Na, Mg, Cl) forms the fourth group and yields kerb
increments of 1.0 to 2.02, independent of size fraction but with slightly enhanced
ratios with SW compared to NE winds (Fig. 5 Figure 6). Similar increments were
observed for total PM$_{10}$ mass. As discussed for urban increments, even though these
elements have regional sources, they are influenced by resuspension processes
within the urban area which are enhanced at kerbside sites.

The remaining elements (P, S, K, Br) can be grouped together. In the coarse mode,
these elements yield increments similar to the mineral dust group, indicating that this
group is influenced by resuspension processes in the street canyon (Fig. 5 Figure 6).
However, especially in the fine mode increments around 1 were found, consistent
with regional transport dominating over local emission sources.

4.3 Temporal trends in trace element concentrations

In contrast to traditional trace element measurements, the RDI-SR-XRF enables
measurement of element concentrations with high time resolution (2 h in this work).
This enables investigation of diurnal cycles, which are useful both for source
discrimination and in determining the processes contributing to elevated PM levels.

We also discuss weekly cycles, which can be useful in distinguishing emissions from
heavy duty and passenger vehicles (HDV and LDV); HDV heavy duty vehicle
numbers typically diminish during the weekend. Back trajectory analysis aids source
discrimination by understanding regional transport influences by different air mass origin. Here we discuss the temporal trends of trace elements in five groups based on expected sources and the increment analyses in Sect. 4.2, in order of increasing local influence: regional background, sea salt, mineral dust, traffic-related and brake wear.

Figures 6 and 7, Figure 8, and Figure 9 show size-segregated median diurnal and weekly cycles, respectively, for 5 elements representative of the classes mentioned above: Na (sea salt), Si (mineral dust), S (regional background), Fe (traffic-related) and Sb (brake wear) at the three sites MR, NK and DE. Because of the wind direction effect evident at MR, diurnal cycles at all three sites are shown for SW and NE winds. Wind direction analyses are not incorporated into the weekly cycles because the month-long campaign provided insufficient data points for meaningful division. This also means that weekly cycles are subject to influences by mesoscale events. For example, sea salt shows no clear weekly cycle, except for a peak on Fridays in intermediate and fine fractions coinciding with westerly winds, which coincidentally occurred more frequently on Fridays than on other days. Except for such events, regionally dominated elements tend to display flat, featureless diurnal/weekly cycles, while elements dominated by recurring local processes (e.g. traffic patterns) show interpretable features. Diurnal and weekly cycles of all other elements can be found in Supplement Fig. S8-9, Figure S7, and Figure S8. For comparison, diurnal and weekly cycles of NO\textsubscript{x} and total PM\textsubscript{10} mass at all sites, and of traffic flow at MR are shown in Fig. 8, Figure 9. The time series of these species were averaged to the RDI collection times before obtaining the cycles. BC diurnal and weekly cycles (not shown) are very similar to those of NO\textsubscript{x}.

4.3.1 Regional influences

Elements dominated by regional sources (P, S, K, Br) occur mainly in the fine fraction and are similar to total PM\textsubscript{10} mass in showing no obvious diurnal and weekly patterns. This interpretation is consistent with the urban/kerb increment analysis discussed in Sect. 4.2. Weekly patterns suggest fine Zn and Pb are also dominated by regional transport (Supplement Fig. S9, Figure S8). P, S and K have been identified as tracers for mixed wood combustion and secondary sulphate (Amato et al., 2011; Richard et al., 2011), whereas Hammond et al. (2008) have identified S, K and Pb from mixed secondary sulphate and coal combustion. Br is usually associated with sea salt (Lee et al., 1994; Mazzei et al., 2007) or traffic emissions (Gotschi et al.,
2005; Lee et al., 1994), but Maenhaut (1996) has also found Br, together with S, K, Pb and other elements in biomass burning. In this study, the diurnal cycle of fine Br is different from the Na, Mg and Cl cycles, but more similar to K. Br is thus more likely more associated with wood burning than with other sources.

The time series of this group of elements (fine S, K, Zn, Pb) at NK (very similar at MR and DE) is explored in relation to total PM$_{10}$ mass, wind direction at the BT Tower and air mass origin, and compared to representative elements from the other emission groups (coarse Na, Si, S, Sb; Fig. 9). Air mass origin was studied with back trajectories simulated for three case study periods (marine, European mainland and locally influenced) using the NAME model (Jones et al., 2007).

Particles are released into the model atmosphere from the measurement location and their origin is tracked using meteorological fields from the Unified Model, a numerical weather prediction model. Each particle carries mass of one or more pollutant species and evolves by various physical and chemical processes during 24 h preceding arrival at NK. Potential emission source regions can be highlighted along the pathway to the measurement site at 0-100 m above ground. The time series of these fine mode elements at MR and DE (not shown) are very similar to NK, consistent with the absence of an increment and thus the predominance of regional sources for these elements.

Under marine air mass origin (case A, 18-24 January, Fig. 9) with strong W winds the concentrations of the fine mode elements are fairly low, whereas sea salt concentrations are enhanced (see Na in Fig. 9). Although the air mass has also passed over Ireland and the Midlands, the influence of these rather sparsely populated regions on pollution levels seems small. This is confirmed by low total PM$_{10}$ mass and NO$_x$ concentrations. Enhanced fine fraction and total PM$_{10}$ mass concentrations (latter not shown) occur during north easterlies with high wind speeds from the European mainland (case B) bringing in pollutants through regional transport.

Case A in Figure 10 is at the end of a period with predominantly westerly winds (18-24 Jan) and a marine air mass origin associated with high wind speeds (air has travelled a long distance in 24 hrs). Although the air mass has also passed over Ireland and the Midlands, the influence of these rather sparsely populated regions on pollution levels is small. Under these conditions concentrations of fine S, K, Zn and Pb are fairly low. In comparison, sea salt elements (see coarse Na in Figure 10) are enhanced during this period. Total PM$_{10}$ mass and NO$_x$ (not shown) concentrations are low as well, showing that with strong westerlies pollution levels at NK are low and
not strongly influenced by traffic. In case B (right in the middle of a 3-day episode), north-easterlies (with high wind speeds) from the European continent bring in pollutants through regional transport leading to a large regional pollution episode characterised by elevated concentrations of fine S, K, Zn and Pb. Total PM$_{10}$ mass showed strongly enhanced concentrations as well. During this episode, both the urban background and rural site observed the highest concentrations for these trace elements of the entire campaign. Traffic influenced species were not enhanced during this pollution episode. However, mineral dust and traffic-related elements, as well as NO$_x$, were not enhanced at the urban background in case B. Elevated concentrations of all trace elements, NO$_x$ and PM$_{10}$ mass occurred only during a local pollution episode of roughly 3 days caused by local air mass stagnation over London and the south-eastern UK (case C). Wind direction in case C is variable, but the NAME footprint shows local air mass stagnation over London and the southeast of the UK accompanied by low wind speeds. This local pollution episode of roughly 3 days resulted in elevated concentrations of all trace elements, NO$_x$ and total PM$_{10}$ mass (NK no data, MR and DE elevated concentrations), independent of emission source. The very high concentrations observed in case B through regional transport from the European mainland were identified as the main reason for PM$_{10}$ limit exceedances at urban background sites in London by Charron et al. (2007), while exceedances were much less frequent under marine influenced air as represented by case A in this study.

4.3.2 Sea salt

The sea salt group (Na, Mg, Cl) yields comparable, rather flat diurnal cycles for fine and intermediate mode Na, Mg and Cl, and coarse mode Na and Cl (Na in Fig. 6; others in Supplement Fig. S8), and no obvious weekly patterns (Na in Fig. 7; others in Supplement Fig. S9). This indicates that the regional transport of sea salt is probably the main source of Na, Mg and Cl, as seen in case A in Fig. 9.

Interestingly, although coarse mode sea salt exhibits no obvious temporal trend, the urban and kerb increments indicate additional source contributions besides regional transported sea salt. The urban increment might be caused by the natural sea salt gradient observed in the UK, with reducing concentrations from west to east (Fowler and Smith, 2000), while the kerb increment could be the result of road salt resuspension in addition to sea salt resuspension. The effects of road salt are
supported by enhanced kerb increments (~2.0) with respect to the ClearLo summer IOP (~1.4; not published). Coarse mode Mg originates probably both from mineral dust and sea salt, because at MR with SW winds Mg correlates with Al and Si temporal trends, while with NE winds Mg correlates better with Na and Cl.

4.3.3 Mineral dust and traffic

Both mineral dust and traffic-related elements are strongly influenced by traffic patterns at MR, which are shown in Fig. 8 as the number of vehicles per 2 h split in light (passengerLDV) and heavy dutyHDV vehicles (shorter/longer than 5.2 m). Heavy duty vehicle HDV numbers peak in the morning, whereas LDVpassenger vehicle numbers peak in the evening when the flow of traffic leaves the urban area, consistent with Harrison et al. (2012b). A single peak during midday in the weekend compared to a double peak at weekdays is observed for LDVlight duty vehicles. HDVHeavy duty vehicle numbers show a similar pattern during weekdays (morning maximum), but with a reduced maximum on Saturday and a small maximum that is shifted towards midday on Sunday. Charron and Harrison (2005) reported similar traffic patterns during two years of traffic counts, and stated very small week-to-week variability, except during holidays.

The element diurnal (Fig. 6 for Si, Fe and Sb; Figure Supplement Fig. S8 for others) and weekly (Fig. 7 for Si, Fe and Sb; Figure Supplement Fig. S9 for others) cycles yield highest concentrations at MR and lower concentrations at NK and DE, consistent with observed urban and kerb increments. More importantly, and only retrievable with high time-resolved data, C concentrations are higher during the day than at night, with night time concentrations at MR and NK similar to median urban background and rural concentrations, respectively, demonstrating the effects of local traffic and enhanced human exposure during daytime. Weekdays yield stronger increments than weekends and closely follow NOx and HDVHeavy duty vehicle traffic patterns (Fig. 8), indicating the strong influence of these vehicles on element concentrations. This is consistent with observations by Charron et al. (2007), who stated that PM10 limit exceedances at MR are more likely to occur on weekdays, in combination with large regional contributions from the European mainland with easterly winds. Similarly, Barmpadimos et al. (2011) found strong weekly cycles for PM10-2.5 and PM2.5 mass concentrations in Switzerland over a 7-12 year period, with higher concentrations on weekdays and lowest on Sundays.
At MR in the street canyon with SW winds, all coarse mode elements (including dust elements) except Na and Cl exhibit a double peak in the diurnal cycles, closely following the flow of traffic and confirming that traffic-related processes such as braking and resuspension dominate the concentration of most elements. That element concentrations in the street canyon are mainly driven by traffic instead of mesoscale meteorological processes (see Charron et al., 2007). Especially during rush hour, most braking and stationary queues occur due to the heavily used pedestrian traffic light-controlled crossing and the signal-controlled junction in close proximity to the measurement site, leading to enhanced concentrations of brake wear elements and possibly also to increased resuspension, especially induced by heavy duty vehicles (Bukowiecki et al., 2009a). With NE winds, source discrimination based on diurnal patterns is possible between mineral dust (e.g., Si in Fig. 6) and traffic-related elements (e.g., Fe and Sb in Fig. 6). Mineral dust yields a strong maximum between 8:00 and 14:00 LT, and continued high concentrations throughout the day, while the traffic-related group yields a reduced double peak relative to SW winds. The increase in mineral dust concentrations coincides with the start of traffic flows at 6:00 LT, resulting in resuspension of particles within the street canyon. However, concentrations decrease before traffic flows reduce, possibly as a result of increased mixing and dilution during the day with growth of the mixing boundary layer growth. At NK diurnal and weekly patterns of the dust and traffic groups mineral dust and traffic-related elements yield similar variability but reduced concentrations relative to MR, which suggests increased human exposure during day time and weekdays and confirms that traffic dominates urban background element concentrations in London (see Dore et al., 2003). At DE, freshly emitted pollutants from London and other cities in the south eastern UK have been diluted and mixed with other pollutants during their transport to the rural background, resulting in no obvious diurnal and weekly patterns independent of size range.

The kerb increments at MR under SW winds were divided into two traffic-related groups: brake wear (Cu, Zr, Mo, Sn, Sb, Ba) and other traffic-related (V, Cr, Mn, Fe, Ni, Zn, Pb) elements. However, the diurnal and weekly cycles of all these elements correlate well and no obvious split into two groups is seen. Apparently, both groups are co-emitted as a single group under comparable vehicle fleet and/or set of driving conditions, at least on a 2 h time scale, but in different ratios at MR and NK. The ratio of these two element classes for SW to NE wind sectors at MR is almost 2.5, with the lack of difference between these classes supporting co-emission. In a future manuscript we will further explore the diurnal variability of emission sources at both
sites with statistical analyses based on the Multilinear Engine (Canonaco et al., 2013; Paatero, 1999).

5 Conclusions

Aerosol trace element composition was measured at kerbside, urban background and rural sites in the European megacity of London during winter 2012. Sampling with rotating drum impactors (RDI) and subsequent measurements with synchrotron radiation-induced X-ray fluorescence spectrometry (SR-XRF) yielded trace element mass concentrations in $\text{PM}_{10-2.5}$, $\text{PM}_{2.5-1.0}$ and $\text{PM}_{1.0-0.3}$ aerosol with a 2 h time resolution. Total median element mass concentrations of $4.65.4 \mu g \cdot m^{-3}$, $2.42.9 \mu g \cdot m^{-3}$ and $1.01.1 \mu g \cdot m^{-3}$ were found at kerbside, urban background and rural sites, respectively, which constitutes 4214 to 1821% to total PM_{10} mass (highest at kerbside; lowest at rural site), neglecting the corresponding oxides. The contribution of emission sources to coarse fraction elements was on average largest at kerbside (63 %) and reduced for urban background (4750 %) and rural sites (4447 %).

Urban and kerb increments were defined as the concentration ratios of urban background to rural, and kerbside to urban background, respectively, and the kerb increments were further explored as a function of wind direction. The group with the largest kerb increments consisted of elements typically associated with brake wear (Cu, Zr, Mo, Sn, Sb, Ba). The second largest kerb increments were observed for anthropogenically-influenced elements typically assigned to non-brake wear traffic emissions (Cr, Mn, Fe, Zn, Pb) but also V and Ni. This could indicate either a traffic source for these elements or a similar kerbside-to-urban emission gradient. Kerb increments were larger for the brake wear group and under SW winds due to local street canyon effects, with coarse fraction increments between 10.4 and 16.6 for SW winds (3.3-6.9 for NE winds) against increments for the anthropogenically-influenced group between 5.7 and 8.2 for SW winds (2.6-3.0 for NE winds). Traffic-related elements (Mn, Fe, Cu, Zn, Zr, Mo, Sn, Sb, Ba) yielded largest kerb and urban increments, with kerb increment values ranging between 5.8 and 18.5 for SW winds (2.6-9.4 for NE winds) and urban increments of around 3.0. Traffic-related kerb increments could be further divided into elements from brake wear and other traffic-related processes. Brake wear elements (Cu, Zr, Mo, Sn, Sb, Ba) showed a factor 2 larger increments than other traffic-related elements (11.6-18.5 vs. 5.6-8.0 in coarse mode with SW winds). The kerb increments for these traffic-related elements in the $\text{PM}_{10-2.5}$ size fraction are roughly 3 times that of the $\text{PM}_{1.0-0.3}$.
fraction, and are also highest for SW winds due to local street canyon effects. Urban increments (no distinction between both groups) were around 3.0. In addition to direct emissions, traffic-related processes influence the concentrations of other elements by resuspension, with mineral dust increments (Al, Si, Ca, Ti, Sr) increments of 1.7-4.1-3.3.

The highly time-resolved data enabled studying diurnal patterns. Diurnal cycles of mineral dust elements and coarse Na, Mg and Cl both indicate major concentration enhancements during periods of heavy traffic, whereas regionally-influenced elements (PM$_{1.0-0.3}$ fine P, S, K, Zn, Br, Pb) showed no enhancements. All traffic-related elements at the kerbside site yielded temporal patterns similar to variations in heavy duty vehicle numbers as opposed to total vehicle numbers, and resulted in enhanced exposure to elements during day time and weekdays. Traffic-related processes therefore exhibit a dominant influence on air quality at the kerbside and urban background sites, and should be the main focus of health effect studies and mitigation strategies. With technological improvements for the reduction of traffic exhaust emissions, the traffic contribution to coarse PM is becoming more important as shown by decreasing PM$_{2.5}$ mass trends with no significant changes of coarse PM (Barmpadimos et al., 2012).

Trace element and total PM$_{10}$ mass concentrations are also affected by mesoscale meteorology, increasing with the transport of air masses from the European mainland. Under these conditions, coarse and intermediate fraction trace elements are hardly affected, but fine fraction elements (P, S, K, Zn, Br, Pb) showed elevated concentrations. Trace element concentrations in London are therefore influenced by both local and regional sources, with coarse and intermediate fractions dominated by anthropogenic activities (particularly traffic-induced resuspension and wearing processes), whereas fine fractions are significantly influenced by regional processes.

These observations highlight both the strong influence of regional factors on overall air quality, as well as the need for detailed characterization of urban micro-environments for accurate assessment of human exposure to airborne particulates and the associated health risks.

Acknowledgements
This research, which was conducted in the context of the ClearfLo project, is mainly financed by the Swiss National Science Foundation (SNF/SNSF grant 200021_132467/1), the ClearfLo project (NERC grant NE/H00324X/1) and the
European Community’s Seventh Framework Programme (FP/2007-2013, grant number 312284). The Detling site was supported by the US Department of Energy Atmospheric Systems Research Program (DOE Award No. DE-SC0006002). J.G. Slowik acknowledges support from the SNSF through the Ambizione program (grant PX00P2_13673). Filter digestions were carried out by the wet geochemistry laboratory at Royal Holloway, University of London. EMPA loaned us a RDI during the ClearfLo project. Parts of the work were carried out at the Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland. We thank Andreas Jaggi for technical support at the beamline X05DA. Parts were performed at the light source facility DORIS III at HASYLAB/DESY. DESY is a member of the Helmholtz Association (HGF). We thank Christophe Frieh for excellent support in acquiring and testing the detector, and we thank Peter Lienemann and Sylvia Köchli for valuable input for the production of calibration standards.

References

Barmepadimos, I., Keller, J., Oderbolz, D., Hueglin, C., and Prévôt, A. S. H.: One decade of parallel fine (PM2.5) and coarse (PM10–PM2.5) particulate matter

Charron, A., Harrison, R. M., and Quincey, P.: What are the sources and conditions responsible for exceedences of the 24 h PM10 limit value (50 μg m−3) at a heavily trafficked London site?, Atmos. Env., 41, 1960-1975, 2007.

Table 1. Measurement campaign details.

<table>
<thead>
<tr>
<th>Site</th>
<th>Start/End date</th>
<th>Site type</th>
<th>Sampling time</th>
<th>Inlet height</th>
<th>Sampling platform</th>
</tr>
</thead>
<tbody>
<tr>
<td>MR</td>
<td>11 Jan – 14 Feb 2012</td>
<td>kerbside</td>
<td>2 h</td>
<td>4 m</td>
<td>container at 1 m from road</td>
</tr>
<tr>
<td>NK</td>
<td>11 Jan – 9 Feb 2012</td>
<td>urban background</td>
<td>2 h</td>
<td>4 m</td>
<td>container</td>
</tr>
<tr>
<td>DE</td>
<td>17 Jan – 13 Feb 2012</td>
<td>rural</td>
<td>2 h</td>
<td>1.5 m</td>
<td>grass field</td>
</tr>
</tbody>
</table>
Table 2. Mean, median and 25-75th percentile trace element concentrations (ng m$^{-3}$) for PM$_{10-2.5}$, PM$_{2.5-1.0}$ and PM$_{1.0-0.3}$ at MR, NK and DE.

Marylebone Road

<table>
<thead>
<tr>
<th>Element</th>
<th>PM$_{10-2.5}$</th>
<th></th>
<th></th>
<th>PM$_{2.5-1.0}$</th>
<th></th>
<th></th>
<th>PM$_{1.0-0.3}$</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mean</td>
<td>median</td>
<td>25th perc</td>
<td>75th perc</td>
<td>mean</td>
<td>median</td>
<td>25th perc</td>
<td>75th perc</td>
<td>mean</td>
</tr>
<tr>
<td>Na</td>
<td>1760.6</td>
<td>1645.8</td>
<td>862.9</td>
<td>2507.8</td>
<td>402.5</td>
<td>282.2</td>
<td>177.5</td>
<td>527.0</td>
<td>122.7</td>
</tr>
<tr>
<td>Mg</td>
<td>189.7</td>
<td>173.5</td>
<td>119.1</td>
<td>245.7</td>
<td>66.1</td>
<td>51.3</td>
<td>35.2</td>
<td>89.4</td>
<td>26.2</td>
</tr>
<tr>
<td>Al</td>
<td>134.8</td>
<td>108.8</td>
<td>73.4</td>
<td>168.1</td>
<td>48.1</td>
<td>43.0</td>
<td>32.0</td>
<td>58.9</td>
<td>13.6</td>
</tr>
<tr>
<td>Si</td>
<td>295.1</td>
<td>228.2</td>
<td>139.5</td>
<td>379.3</td>
<td>99.8</td>
<td>79.5</td>
<td>46.1</td>
<td>128.8</td>
<td>29.4</td>
</tr>
<tr>
<td>P</td>
<td>16.3</td>
<td>14.5</td>
<td>9.9</td>
<td>20.8</td>
<td>6.7</td>
<td>6.0</td>
<td>3.9</td>
<td>8.9</td>
<td>4.8</td>
</tr>
<tr>
<td>S</td>
<td>125.1</td>
<td>110.9</td>
<td>78.8</td>
<td>154.4</td>
<td>64.3</td>
<td>53.7</td>
<td>38.4</td>
<td>81.2</td>
<td>196.1</td>
</tr>
<tr>
<td>Cl</td>
<td>989.5</td>
<td>862.8</td>
<td>366.4</td>
<td>1457.3</td>
<td>296.2</td>
<td>149.9</td>
<td>41.7</td>
<td>448.3</td>
<td>115.0</td>
</tr>
<tr>
<td>K</td>
<td>42.9</td>
<td>38.4</td>
<td>27.4</td>
<td>52.1</td>
<td>16.3</td>
<td>14.0</td>
<td>9.4</td>
<td>21.5</td>
<td>17.8</td>
</tr>
<tr>
<td>Ca</td>
<td>233.4</td>
<td>176.2</td>
<td>108.2</td>
<td>307.0</td>
<td>74.2</td>
<td>52.5</td>
<td>31.9</td>
<td>94.9</td>
<td>20.3</td>
</tr>
<tr>
<td>Ti</td>
<td>7.5</td>
<td>5.9</td>
<td>3.4</td>
<td>10.0</td>
<td>2.6</td>
<td>2.0</td>
<td>1.2</td>
<td>3.6</td>
<td>0.8</td>
</tr>
<tr>
<td>V</td>
<td>2.2</td>
<td>1.9</td>
<td>1.1</td>
<td>2.9</td>
<td>0.9</td>
<td>0.8</td>
<td>0.4</td>
<td>1.1</td>
<td>0.4</td>
</tr>
<tr>
<td>Cr</td>
<td>6.3</td>
<td>3.6</td>
<td>2.0</td>
<td>6.0</td>
<td>1.7</td>
<td>1.4</td>
<td>0.9</td>
<td>2.4</td>
<td>0.6</td>
</tr>
<tr>
<td>Mn</td>
<td>9.4</td>
<td>7.7</td>
<td>4.6</td>
<td>12.2</td>
<td>3.4</td>
<td>2.9</td>
<td>2.0</td>
<td>4.4</td>
<td>1.4</td>
</tr>
<tr>
<td>Fe</td>
<td>693.1</td>
<td>601.7</td>
<td>347.0</td>
<td>929.9</td>
<td>259.9</td>
<td>226.8</td>
<td>136.4</td>
<td>348.6</td>
<td>90.4</td>
</tr>
<tr>
<td>Ni</td>
<td>2.1</td>
<td>0.6</td>
<td>0.4</td>
<td>1.0</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>Cu</td>
<td>26.0</td>
<td>22.9</td>
<td>12.6</td>
<td>33.3</td>
<td>9.5</td>
<td>8.2</td>
<td>4.6</td>
<td>12.5</td>
<td>3.3</td>
</tr>
<tr>
<td>Zn</td>
<td>10.9</td>
<td>8.9</td>
<td>5.2</td>
<td>14.1</td>
<td>4.3</td>
<td>3.6</td>
<td>2.0</td>
<td>5.6</td>
<td>4.6</td>
</tr>
<tr>
<td>Br</td>
<td>2.3</td>
<td>1.8</td>
<td>1.0</td>
<td>3.0</td>
<td>0.8</td>
<td>0.6</td>
<td>0.4</td>
<td>1.0</td>
<td>1.7</td>
</tr>
<tr>
<td>Sr</td>
<td>1.1</td>
<td>0.9</td>
<td>0.7</td>
<td>1.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.2</td>
<td>0.6</td>
<td>0.2</td>
</tr>
<tr>
<td>Zr</td>
<td>2.5</td>
<td>1.8</td>
<td>0.9</td>
<td>3.3</td>
<td>1.1</td>
<td>0.8</td>
<td>0.4</td>
<td>1.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Mo</td>
<td>3.1</td>
<td>2.2</td>
<td>1.1</td>
<td>3.9</td>
<td>1.3</td>
<td>1.0</td>
<td>0.6</td>
<td>1.6</td>
<td>0.5</td>
</tr>
<tr>
<td>Sn</td>
<td>4.1</td>
<td>3.3</td>
<td>1.9</td>
<td>5.5</td>
<td>1.7</td>
<td>1.5</td>
<td>0.8</td>
<td>2.3</td>
<td>0.7</td>
</tr>
<tr>
<td>Sb</td>
<td>3.3</td>
<td>2.5</td>
<td>1.3</td>
<td>4.4</td>
<td>1.3</td>
<td>1.0</td>
<td>0.6</td>
<td>1.8</td>
<td>0.5</td>
</tr>
<tr>
<td>Ba</td>
<td>18.3</td>
<td>14.5</td>
<td>8.3</td>
<td>24.7</td>
<td>7.6</td>
<td>6.5</td>
<td>3.9</td>
<td>10.3</td>
<td>2.7</td>
</tr>
<tr>
<td>Pb</td>
<td>1.6</td>
<td>0.9</td>
<td>0.6</td>
<td>1.7</td>
<td>0.7</td>
<td>0.5</td>
<td>0.3</td>
<td>0.9</td>
<td>1.6</td>
</tr>
</tbody>
</table>

North Kensington

<table>
<thead>
<tr>
<th>Element</th>
<th>PM$_{10-2.5}$</th>
<th></th>
<th></th>
<th>PM$_{2.5-1.0}$</th>
<th></th>
<th></th>
<th>PM$_{1.0-0.3}$</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mean</td>
<td>median</td>
<td>25th perc</td>
<td>75th perc</td>
<td>mean</td>
<td>median</td>
<td>25th perc</td>
<td>75th perc</td>
<td>mean</td>
</tr>
<tr>
<td>Na</td>
<td>1146.7</td>
<td>985.7</td>
<td>519.5</td>
<td>1730.1</td>
<td>408.9</td>
<td>288.4</td>
<td>186.8</td>
<td>542.0</td>
<td>127.9</td>
</tr>
<tr>
<td>Mg</td>
<td>103.8</td>
<td>90.6</td>
<td>54.9</td>
<td>152.2</td>
<td>60.1</td>
<td>46.8</td>
<td>33.1</td>
<td>80.5</td>
<td>22.3</td>
</tr>
<tr>
<td>Al</td>
<td>50.4</td>
<td>42.5</td>
<td>26.6</td>
<td>66.8</td>
<td>35.6</td>
<td>32.3</td>
<td>21.3</td>
<td>43.0</td>
<td>10.3</td>
</tr>
<tr>
<td>Si</td>
<td>97.9</td>
<td>79.5</td>
<td>39.8</td>
<td>122.1</td>
<td>60.3</td>
<td>48.2</td>
<td>26.8</td>
<td>82.0</td>
<td>16.3</td>
</tr>
<tr>
<td>Element</td>
<td>Fe</td>
<td>Mn</td>
<td>V</td>
<td>Ca</td>
<td>Cl</td>
<td>S</td>
<td>Al</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>----</td>
<td>----</td>
<td>---</td>
<td>----</td>
<td>----</td>
<td>---</td>
<td>----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detling</td>
<td>6.5</td>
<td>5.6</td>
<td>3.3</td>
<td>9.0</td>
<td>4.2</td>
<td>3.7</td>
<td>2.3</td>
<td>5.3</td>
<td>3.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Detling</th>
<th>Cu</th>
<th>Mn</th>
<th>Cr</th>
<th>K</th>
<th>Cl</th>
<th>S</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean</td>
<td>237.3</td>
<td>523.9</td>
<td>163.8</td>
<td>22.3</td>
<td>15.4</td>
<td>130.2</td>
<td>271.3</td>
</tr>
<tr>
<td>perc</td>
<td>174.8</td>
<td>82.0</td>
<td>37.9</td>
<td>211.5</td>
<td>90.2</td>
<td>5.5</td>
<td>94.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Detling</th>
<th>Ti</th>
<th>V</th>
<th>Cr</th>
<th>Mn</th>
<th>Fe</th>
<th>Ni</th>
<th>Cu</th>
<th>Zn</th>
<th>Br</th>
<th>Sr</th>
<th>Zr</th>
<th>Mo</th>
<th>Sn</th>
<th>Sb</th>
<th>Ba</th>
<th>Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean</td>
<td>2.7</td>
<td>0.6</td>
<td>1.2</td>
<td>2.4</td>
<td>163.8</td>
<td>0.4</td>
<td>4.9</td>
<td>2.9</td>
<td>1.3</td>
<td>0.5</td>
<td>0.5</td>
<td>0.8</td>
<td>0.7</td>
<td>4.3</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>perc</td>
<td>1.6</td>
<td>0.4</td>
<td>0.6</td>
<td>1.7</td>
<td>98.8</td>
<td>0.1</td>
<td>3.7</td>
<td>2.1</td>
<td>0.7</td>
<td>0.3</td>
<td>0.2</td>
<td>0.2</td>
<td>0.1</td>
<td>1.6</td>
<td>0.1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Element</th>
<th>Detling</th>
<th>PM_{10-2.5}</th>
<th>PM_{2.5-1.0}</th>
<th>PM_{1.0-0.3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean</td>
<td>median</td>
<td>25th perc</td>
<td>75th perc</td>
<td>mean</td>
</tr>
<tr>
<td>Na</td>
<td>523.9</td>
<td>375.2</td>
<td>33.1</td>
<td>842.0</td>
</tr>
<tr>
<td>Mg</td>
<td>49.9</td>
<td>37.8</td>
<td>9.4</td>
<td>72.4</td>
</tr>
<tr>
<td>Al</td>
<td>25.6</td>
<td>23.6</td>
<td>12.1</td>
<td>35.1</td>
</tr>
<tr>
<td>Si</td>
<td>50.4</td>
<td>40.8</td>
<td>21.4</td>
<td>64.5</td>
</tr>
<tr>
<td>P</td>
<td>3.1</td>
<td>2.5</td>
<td>1.1</td>
<td>4.2</td>
</tr>
<tr>
<td>S</td>
<td>36.2</td>
<td>31.7</td>
<td>6.8</td>
<td>48.0</td>
</tr>
<tr>
<td>Cl</td>
<td>237.3</td>
<td>50.8</td>
<td>3.6</td>
<td>380.1</td>
</tr>
<tr>
<td>K</td>
<td>13.8</td>
<td>11.8</td>
<td>3.5</td>
<td>17.7</td>
</tr>
<tr>
<td>Ca</td>
<td>37.5</td>
<td>28.8</td>
<td>11.1</td>
<td>46.6</td>
</tr>
<tr>
<td>Ti</td>
<td>1.0</td>
<td>0.6</td>
<td>0.3</td>
<td>1.3</td>
</tr>
<tr>
<td>V</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>Cr</td>
<td>4.0</td>
<td>0.9</td>
<td>0.3</td>
<td>2.9</td>
</tr>
<tr>
<td>Mn</td>
<td>1.8</td>
<td>0.6</td>
<td>0.3</td>
<td>1.3</td>
</tr>
<tr>
<td>Fe</td>
<td>55.2</td>
<td>36.8</td>
<td>19.9</td>
<td>66.2</td>
</tr>
<tr>
<td>Element</td>
<td>4.3</td>
<td>0.7</td>
<td>0.2</td>
<td>2.6</td>
</tr>
<tr>
<td>---------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Ni</td>
<td>1.4</td>
<td>0.8</td>
<td>0.4</td>
<td>1.8</td>
</tr>
<tr>
<td>Cu</td>
<td>3.4</td>
<td>0.9</td>
<td>0.4</td>
<td>1.8</td>
</tr>
<tr>
<td>Zn</td>
<td>1.1</td>
<td>0.4</td>
<td>0.1</td>
<td>1.3</td>
</tr>
<tr>
<td>Br</td>
<td>0.2</td>
<td>0.2</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>Zr</td>
<td>0.0</td>
<td>0.0</td>
<td>-0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Mo</td>
<td>1.9</td>
<td>0.1</td>
<td>0.1</td>
<td>0.7</td>
</tr>
<tr>
<td>Sn</td>
<td>0.3</td>
<td>0.1</td>
<td>0.0</td>
<td>0.2</td>
</tr>
<tr>
<td>Sb</td>
<td>0.2</td>
<td>0.1</td>
<td>0.0</td>
<td>0.2</td>
</tr>
<tr>
<td>Ba</td>
<td>1.0</td>
<td>0.4</td>
<td>0.2</td>
<td>0.8</td>
</tr>
<tr>
<td>Pb</td>
<td>0.3</td>
<td>0.1</td>
<td>0.0</td>
<td>0.3</td>
</tr>
</tbody>
</table>

1
2

59
Figure captions

Figure 1. Map of south eastern UK. Indicated are the sampling sites MR (kerbside site Marylebone Road), NK (urban background site North Kensington), DE (rural site Detling), and the elevated BT Tower site for meteorological measurements (adapted from Google Maps).

Figure 2. Total PM$_{10}$ element mass concentrations measured by the RDI (sum of PM$_{10-2.5}$, PM$_{2.5-1.0}$ and PM$_{1.0-0.3}$ fractions) at MR and NK averaged to 24 hrs versus 24-hr PM$_{10}$ filter measurements of elements for (a) elements that agree within +/- 50%, (b) elements with poor correlations, (c) elements with good correlations but a factor 2 higher with RDI, (d) other elements. The one-to-one line is added in black. See Table S2 for fit coefficients and Pearson’s R values. Note that many elements are scaled to improve visualization.

Figure 3. Relative contribution for trace elements in PM$_{10-2.5}$, PM$_{2.5-1.0}$ and PM$_{1.0-0.3}$ to total PM$_{10}$ mean concentration per element at MR (top), NK (middle) and DE (bottom). Absolute mean total PM$_{10}$ element concentrations are shown above each bar.

Figure 4. Mean, median and 25-75th percentile urban increment values for trace elements at NK relative to DE for PM$_{10-2.5}$ (top), PM$_{2.5-1.0}$ (middle) and PM$_{1.0-0.3}$ (bottom). Note that the median of Zr in PM$_{10-2.5}$ is below detection limit.

Figure 5. Mean, median and 25-75th percentile trace element concentrations at MR split in four wind direction sectors (N, E, S, W) normalized to the global median concentration per element for PM$_{10-2.5}$ (top), PM$_{2.5-1.0}$ (middle) and PM$_{1.0-0.3}$ (bottom). See Sect. 4.2.2 for the definition of the wind direction sectors.

Figure 6. Mean, median and 25-75th percentile kerb increment values for trace elements at MR relative to NK for PM$_{10-2.5}$ (top), PM$_{2.5-1.0}$ (middle) and PM$_{1.0-0.3}$ (bottom) split in SW and NE wind sectors. See Sect. 4.2.2 for the definition of the wind direction sectors.

Figure 7. Diurnal cycles of 2 h median concentrations of Na, Si, S, Fe and Sb for PM$_{10-2.5}$ (left), PM$_{2.5-1.0}$ (middle) and PM$_{1.0-0.3}$ (right) at MR, NK, DE split in SW
and NE wind sectors. See Sect. 4.2.2 for the definition of the wind direction sectors.

Hour of day is start of 2 h sampling period, so 00:00 LT means sampling from 00:00
to 02:00 LT.

Figure 7. Weekly cycles of 2 h median concentrations of Na, Si, S, Fe and Sb for PM$_{10-2.5}$ (left), PM$_{2.5-1.0}$ (middle) and PM$_{1.0-0.3}$ (right) at MR, NK, DE.

Figure 8. (top) Diurnal (left) and weekly (right) cycles of traffic flow at MR, (middle and bottom left) diurnal cycles of 2 h median NO$_x$ and total PM$_{10}$ mass concentrations at MR, NK and DE split in SW and NE wind sectors, and (middle and bottom right) weekly cycles of 2 h median NO$_x$ and total PM$_{10}$ mass concentrations at MR, NK and DE. See Sect. 4.2.2 for the definition of the wind direction sectors. Time stamp is start of 2 h averaging period, so 00:00 LT means averaging between 00:00 and 02:00 LT.

Figure 9. (top panel) Time series of (top left axis) PM$_{1.0-0.3}$ S, K, Zn and Pb concentrations at NK and (top right axis) wind direction from BT Tower, time series of (bottom left axis) PM$_{10-2.5}$ Na, Si, S and Sb concentrations at NK and (bottom right axis) total PM$_{10}$ mass concentration at NK; (bottom panel) three NK footprints simulated with the NAME model corresponding to the vertical lines (A, B, C) indicated in the top panel. Trajectories are simulated for particles released from NK and followed back at 0-100 m a.g.l. for the previous 24 h at: (A) 23 January 2012 09:00 LT, (B) 31 January 2012 21:00 LT, (C) 6 February 2012 18:00 LT; particle concentrations increase from blue to red.
Figure 1. Map of south eastern UK. Indicated are the sampling sites MR (kerbside site Marylebone Road), NK (urban background site North Kensington), DE (rural site Detling), and the elevated BT Tower site for meteorological measurements (adapted from Google Maps).
Relative contribution for trace elements in PM$_{10-2.5}$, PM$_{2.5-1.0}$ and PM$_{1.0-0.3}$ to total PM$_{10}$ mean concentration per element at MR (top), NK (middle) and DE (bottom). Absolute mean total PM$_{10}$ element concentrations are shown above each bar.
Figure 3. Mean, median and 25-75th percentile urban increment values for trace elements at NK relative to DE for PM\textsubscript{10-2.5} (top), PM\textsubscript{2.5-1.0} (middle) and PM\textsubscript{1.0-0.3} (bottom). Note that the median of Zr in PM\textsubscript{10-2.5} is below detection limit.
Figure 5. Mean, median and 25-75th percentile trace element concentrations at MR split in four wind direction sectors (N, E, S, W) normalized to the global median concentration per element for PM$_{10-2.5}$ (top), PM$_{2.5-1.0}$ (middle) and PM$_{1.0-0.3}$ (bottom). See Sect. 4.2.2 for the definition of the wind direction sectors.
Figure 6. Mean, median and 25-75th percentile kerb increment values for trace elements at MR relative to NK for PM_{10-2.5} (top), PM_{2.5-1.0} (middle) and PM_{1.0-0.3} (bottom) split in SW and NE wind sectors. See Sect. 4.2.2 for the definition of the wind direction sectors.
Figure 6. Diurnal cycles of 2 h median concentrations of Na, Si, S, Fe and Sb for PM$_{10-2.5}$ (left), PM$_{2.5-1.0}$ (middle) and PM$_{1.0-0.3}$ (right) at MR, NK, DE split in SW and NE wind sectors. See Sect. 4.2.2 for the definition of the wind direction sectors. Hour of day is start of 2 h sampling period, so 00:00 LT means sampling from 00:00 to 02:00 LT.
Figure 7. Figure 8. Weekly cycles of 2 h median concentrations of Na, Si, S, Fe and Sb for PM$_{10-2.5}$ (left), PM$_{2.5-1.0}$ (middle) and PM$_{1.0-0.3}$ (right) at MR, NK, DE.
Figure 8. (top) Diurnal (left) and weekly (right) cycles of traffic flow at MR, (middle and bottom left) diurnal cycles of 2 h median NO$_x$ and total PM$_{10}$ mass concentrations at MR, NK and DE split in SW and NE wind sectors, and (middle and bottom right) weekly cycles of 2 h median NO$_x$ and total PM$_{10}$ mass concentrations at MR, NK and DE. See Sect. 4.2.2 for the definition of the wind direction sectors. Time stamp is start of 2 h averaging period, so 00:00 LT means averaging between 00:00 and 02:00 LT.
Figure 9. (top panel) Time series of (top left axis) PM$_{1.0-0.3}$ S, K, Zn and Pb concentrations at NK and (top right axis) wind direction from BT Tower, time series of (bottom left axis) PM$_{10-2.5}$ Na, Si, S and Sb concentrations at NK and (bottom right axis) total PM$_{10}$ mass concentration at NK; (bottom panel) three NK footprints simulated with the NAME model corresponding to the vertical lines (A, B, C) indicated in the top panel. Trajectories are simulated for particles released from NK and followed back at 0–100 m a.g.l. for the previous 24 h at: (A) 23 January 2012 09:00 LT, (B) 31 January 2012 21:00 LT, (C) 6 February 2012 18:00 LT; particle concentrations increase from blue to red.
Supplement A: RDI backup filter and PM\textsubscript{1.0} cut off analysis

RDI backup filter analysis

RDI backup filters (Balston 050-11-BQ 2 μm, microfiber, fluorocarbon resin binder) from the ClearfLo winter campaign were immersed in water and sonicated for about 1.5 h. One filter per measurement site was available. Total sulphate (SO\textsubscript{4}2-) mass was obtained by analysing the solutions with ion chromatography and converted to concentrations by dividing by the total air volume that passed through the filter during the campaign.

Table S1 compares the S concentrations from the RDI PM\textsubscript{1.0-0.3} stage with S (from SO\textsubscript{4}2-) collected by the backup filter. The sum of both (Total S < 1 μm) is compared with S from AMS sulphate measurements. The ratio in the last column reveals mass-closure between the RDI and AMS within 2.025%.

Table S1. Comparison between S from RDI PM\textsubscript{1.0-0.3} fractions and backup filters (S from SO\textsubscript{4}2-) with S from the AMS (S from SO\textsubscript{4}2-). Units in ng m-3. The ratio of S in the RDI to the AMS is given in the last column (ratio of RDI Total S < 1 μm to AMS S).

<table>
<thead>
<tr>
<th>Site</th>
<th>RDI PM\textsubscript{1.0-0.3} S</th>
<th>S in backup filter</th>
<th>Total S < 1 μm</th>
<th>AMS S</th>
<th>Ratio RDI : AMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MR</td>
<td>195</td>
<td>398</td>
<td>593</td>
<td>476</td>
<td>1.25</td>
</tr>
<tr>
<td>NK</td>
<td>174</td>
<td>405</td>
<td>579</td>
<td>607</td>
<td>0.95</td>
</tr>
<tr>
<td>DE</td>
<td>224</td>
<td>359</td>
<td>583</td>
<td>715</td>
<td>0.82</td>
</tr>
</tbody>
</table>

RDI PM\textsubscript{1.0} cut off analysis

As noted in the main text and in Supplement C, elements whose mass is dominated by the PM\textsubscript{1.0} fraction are typically underestimated by RDI-SR-XRF relative to external measurements like the AMS and 24 h filter measurements. One explanation is that the collection efficiency of the RDI PM\textsubscript{1.0} stage is smaller than expected, e.g. by a larger-than-expected size cut off. We therefore performed new laboratory measurements of the RDI size-dependent collection efficiency, and compare these to earlier characterisations by Bukowiecki et al. (2009) and Richard et al. (2010).

Figure S1 shows the setup used for the collection efficiency measurements. (NH\textsubscript{4})\textsubscript{2}SO\textsubscript{4}, NH\textsubscript{4}NO\textsubscript{3} and NaCl particles were nebulized, dried and size-selected using a differential mobility analyser (DMA, TSI, Inc., Shoreview, MN, USA), and then sampled with the RDI. The DMA was operated with sample and sheath flow rates of 0.3 and 3.0 L min-1, respectively. A condensation particle counter (CPC1, TSI, Inc., Shoreview, MN, USA) with a flow rate of 1.0 L min-1 was continuously connected at the inlet stage of the RDI to measure the particles entering the RDI, and to correct for fluctuations in nebulizer performance. A second line led to an additional CPC (CPC2, 1 L min-1) and an Aerodyne aerosol mass spectrometer (AMS, Aerodyne Research, Inc., Billerica, MA, USA) with a flow rate of 0.1 L min-1. This line could be connected at the inlet, after the PM\textsubscript{2.5-1.0} (B) stage or after the PM\textsubscript{1.0-0.3} (C) stage. Measurements following the B and C stages were made by connecting the line to a small hole in the lid covering these stages, resulting in sampling of the air flow at a 90° angle (see picture in Fig. S1). The total flow through the system was controlled by a mass flow controller connected to a clean air generator pumping air into the nebulizer and RDI simultaneously. The RDI was operated using three wheels with freshly mounted 6 μm polypropylene foils coated with Apiezon to minimize particle bouncing effects, to simulate ambient field measurements. Tests ruled out differences in measurements...
on the top or bottom side of the lid at the B and C stages. For the final results, all data was collected at the bottom side of the B and C stages.

![Diagram of the setup](image)

Figure S1. Setup of the collection efficiency measurements of the RDI PM$_{1,0}$ impactor stage. The line with the AMS and CPC2 was connected at the inlet, after the PM$_{2.5-1.0}$ or after the PM$_{1.0-0.3}$ stage. The picture of the RDI shows the connection at the bottom side of the lid of the PM$_{1.0-0.3}$ stage.

As noted above, measurements were conducted at the RDI inlet, after the B stage impactor (nominal size cut = 1.0 μm) and after the C stage impactor (nominal size cut = 0.1 μm). RDI collection efficiency at each stage is defined as 1 minus transmission. To correct for fluctuations in nebulizer concentrations, all data for a given set of CPC2/AMS measurements were normalized to a constant inlet (CPC1) concentration. Transmission from the inlet across the B stage impactor was between 90 and 100% for all sizes (aerodynamic diameter $d < 950$ nm), indicating negligible particle losses and/or unintended collection of small particles. C stage collection efficiency (CE_C) was therefore calculated using Eq. (S1):

$$CE_C = 1 - \frac{Conc_C * \frac{CPC1_{ref}}{CPC1_{measC}}}{Conc_B * \frac{CPC1_{ref}}{CPC1_{measB}}}$$ (S1)

Concentrations were measured using both CPC2 and the AMS. For large particles, where the fraction of multiple charged particles passed by the DMA is negligible, these two methods yield similar results. For smaller particles, collection efficiency as calculated by the CPC2 is biased low due to the presence of multiple charged particles with larger diameters, as clearly evidenced from AMS size distributions. For simplicity, we therefore present only the AMS results here. RDI collection efficiencies are calculated by fitting a lognormal distribution to each mode and using the resulting mass concentrations in Eq. S1. This allows simultaneous calculation of RDI collection efficiencies for several sizes, providing an internal consistency and stability check for the measurements.

Figure S2 shows the collection efficiency of the PM$_{1,0-0.3}$ (C stage) nozzle for two RDIs (RDI1 and RDI2) as a function of d for NH$_4$NO$_3$ particles. D is calculated from AMS size measurements, assuming a density of 1.74 and a Jayne shape factor (DeCarlo et al., 2004) of 0.8. Cut points are estimated by a sigmoidal fit to the collection efficiency curves, and yield different cut points for the two RDIs. RDI1 has a cut point of 290 ± 25 nm and RDI2 a cut point of 410 ± 15 nm. This discrepancy
was investigated using RDI2 equipped with the PM$_{1.0-0.3}$ nozzle of RDI1 (RDI2 (nozzle RDI1)), demonstrating that the difference between the two RDIs is governed by nozzle performance, because the cut point of this system is 300 ± 20 nm and therefore closer to the RDI1 performance. Similar cut points for the various systems were obtained using (NH$_4$)$_2$SO$_4$ and NaCl particles (not shown).

Figure S2. Collection efficiency of the RDI PM$_{1.0-0.3}$ impactor stage as a function of aerodynamic diameter.

Measurements of the nozzle sizes under a microscope reveal small differences between the RDIs. A 1.0 μm cut point at the B stage impactor is obtained with a nozzle size of 0.68 x 10 mm. The RDI1 and RDI2 B stage nozzles were 0.70 x 10 mm, and a third RDI that was used at Marylebone Road during ClearfLo had a size of 0.71 x 10 mm. The C stage nozzle size should measure 0.30 x 10 mm for a cut point of 0.1 μm. However, the nozzle sizes were 0.30-0.31 x 10, 0.30-0.32 x 10 and 0.32 x 10 for RDI1, RDI2 and the third RDI, respectively. We expect the deviations from these measurements from the machining of the nozzles, resulting in higher cut points than expected for the PM$_{1.0}$ stage, and possibly also for the PM$_{2.5-1.0}$ stage.

Conclusions

The PM$_{1.0-0.3}$ collection efficiency curves are different for the two RDIs. RDI2 has a larger small-end cut point of 410 ± 15 nm than RDI1 of 290 ± 25 nm. RDI2 with the PM$_{1.0-0.3}$ nozzle of RDI1 resulted in a similar cut point of RDI1 of 300 ± 20 nm. The slightly larger nozzles than theoretically calculated are the likely reason for the observed increase in the small-end cut point of the PM$_{1.0-0.3}$ nozzle and thus in reduced particle collection at the C stage.
Supplement B: Changes in SR-XRF analysis

The data described in the main text was obtained with RDI-SR-XRF analysis. The following significant changes were made in the SR-XRF analysis compared to the methodology described in Bukowiecki et al. (2005), Bukowiecki et al. (2008) and Richard et al. (2010):

1. At SLS, we replaced the silicon drift detector (Roentec Xflash 2001 type 1102, Bruker AXS) with an e2v SiriusSD detector (SiriusSD-30133LE-IS). This detector is equipped with a thin polymer window resulting in a wider energy range down to about 300 eV and a better energy resolution of 133 eV (Mn Kα at 5.9 keV). In addition, the setup accepts a higher throughput resulting in negligible dead time effects. We also replaced the helium chamber with an in-house built vacuum chamber (sample exposure system for micro-X-ray fluorescence measurements, SESmiX) which reaches about 10⁻⁶ bar. This extended the measured range of elements down to Na and Mg.

2. Reference standards for calibration of element fluorescence counts to mass concentrations were produced on the same 6 µm PP substrate as used for RDI sampling, in contrast to the previous standard where a much thicker 100 µm PET foil (Folex, BG-32.5 RS plus) was used. Two standards suitable for measurements at both SLS and HASYLAB contained elements in equal concentrations, and have a similar mix of elements as the standard previously used. Two additional standards containing only specifically selected light elements were produced. One standard contained Na, Al, P and Ca; the other Mg, Si, S, K and Ca. The concentrations of these elements were increased by a factor 3.8 relative to the other two standards to improve signal-to-noise ratios in the SR-XRF calibration. Co was added to these additional standards, but in the same concentration as in the other two foils and was used as a quality check of the fabrication procedure of the four standards. The concentration difference of the light elements was taken into account before applying the relative calibration of the sample elements. The new reference standards allowed the use of identical geometry and irradiation time for RDI samples and reference standards, meaning that all SR-XRF measurements exhibit the same scattering and secondary fluorescence excitation. This reduced uncertainties in both the absolute and relative calibration of the samples.

3. Previously, spectra were fitted with the WinAxil software package (Canberra Inc; Van Espen et al., 1986). This rather old spectral fitting package allows little flexibility in spectrum continuum correction and peak fitting. PyMCA (Sole et al., 2007) on the other hand, is more flexible, but lacks the possibility to save uncertainty calculations in batch mode. In this study, spectra were fitted with an in-house developed software package called Spectral Analysis for Multiple Instruments – toolkit for XRF (SAMI-XRF) using the IGOR Pro software environment (Wavemetrics, Inc., Portland, OR, USA) to evaluate the data and create custom interfaces to accomplish specialized tasks. SAMI sequentially determines (1) energy calibration of the X-ray line as a function of detector channel; (2) spectrum continuum correction; (3) peak width calibration as a function of energy (assuming Gaussian peak shape and a general square root law of the full-width-half-maximum (FWHM) energy relation); and (4) peak fitting of the entire spectrum, at which stage only peak heights are fitted as a free parameter and all other parameters are fixed. Steps (1) and (3) are performed with user-selected reference peaks, and incorporates fitting of complex (multi-Gaussian) peak shapes caused by nearly complete overlapping Kα₁ and Kα₂ lines. Step (2) utilizes collected spectra of a blank foil as a reference for the continuum shape, and scales this reference to user-selected element-free regions of the processed spectra. Step (4) allows lines to be fitted freely or fixed to another line, e.g. to the strongest line in a shell. For example, the Kα₂ and Kβ lines can be fixed to the...
Kα₁ line according to the relative intensities given by Bearden (1967). In this study, all
lines within an electron shell were fitted fixed to the strongest line in that shell.
Additionally, Ni, Cu and Zn Lα₁,₂ lines were fixed to the Kα₁ line to reduce the
influence of peak overlap with Na. The ratios of Lα₁,₂ to Kα₁ for Ni, Cu and Zn were
determined by fitting calibration standards having these elements but low Na. Final
fits were then obtained using the acquired relations, thereby reducing uncertainties in
the Na concentrations due to peak overlap and improving Na quantification.
Supplement C: Data intercomparison

A short description of the data intercomparison between RDI-SR-XRF data and independent filter data is given in Sect. 3 of the main text. Here the details of this comparison are given. We compare XRF data with filter data (24 h PM$_{10}$ trace element data analysed with ICP-MS; roughly 9 % uncertainty at a 95 % confidence interval and calibrated with NIST standards) for 18 elements collected at MR and NK (no filter data was available at DE). For this comparison, the three size ranges of the RDI were summed up to total PM$_{10}$ and averaged to the filter collection period. The intercomparison results are shown in Fig. S3, and are divided into four groups to facilitate discussion. Fit coefficients and Pearson’s R values for the intercomparison are shown in Table S2, while XRF uncertainties and detection limits are given in Table S3. For all elements, except Mn, the sample inhomogeneity provides the largest source of uncertainty of maximal 20 %. RDI flow rate fluctuations are estimated at a maximum of 5 %. Absolute and relative calibration uncertainties are larger for lighter elements due to their low fluorescence yields, making them harder to detect. For Na-K these uncertainties are 13 %, for Ca-Pb only 2 %. The last source of uncertainty is the energy calibration of an X-ray line as function of detector channel and shows the effect of line overlap in the detection of a specific line. The uncertainties range between 1 and 22 % for most elements, but are around 60 % for Mn due to the overlap with Fe being present in much higher concentrations (on average a factor of 55). Overall, an estimate of the total uncertainties for the median of all data points lies between 21 and 27 % (46 % for Mn) for all elements in the three size fractions. All RDI data points lie well above their detection limits (last column Table S3).

Elements shown in Fig. 2a–Fig. S3a (Al, Ca, Ti, Mn, Fe, Cu, Zn, Sr, Sb, Ba) agree within approximately ± 50 % with good correlations (Pearson’s R > 0.78). In Fig. S3b–d(Figs. 2b–d), we show elements for which the intercomparison shows significant biases and/or no significant correlation between RDI and filters. Note that the elements exhibiting good agreement in Fig. 2a–Fig. S3a span orders of magnitude difference in concentration (and fluorescence counts), suggesting that there are no global or concentration-dependent biases in the RDI-SR-XRF data. For elements exhibiting lesser agreement (Fig. S3b–d), this leaves the element relative calibration (i.e. element fluorescence yield as a function of line energy), spectral peak fitting, and instrument size cut points as issues to address potential sources of error in the XRF analysis.
Figure S3. Total PM$_{10}$ element mass concentrations measured by the RDI (sum of PM$_{10-2.5}$, PM$_{2.5-1.0}$ and PM$_{1.0-0.3}$ fractions) at MR and NK averaged to 24 h versus 24 h PM$_{10}$ filter measurements of elements for (a) elements that agree within ± 50 %, (b) elements with poor correlations, (c) elements with good correlations but a factor 2.5 higher with RDI, (d) other elements. The one-to-one line is added in black. See Table S2 for fit coefficients and Pearson’s R values. Note that many elements are scaled to improve visualization.

<table>
<thead>
<tr>
<th>Element</th>
<th>Fit coefficient</th>
<th>Pearson’s R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na</td>
<td>2.82</td>
<td>0.89</td>
</tr>
<tr>
<td>Mg</td>
<td>2.34</td>
<td>0.99</td>
</tr>
<tr>
<td>Al</td>
<td>1.55</td>
<td>0.89</td>
</tr>
<tr>
<td>K</td>
<td>0.55</td>
<td>0.78</td>
</tr>
<tr>
<td>Ca</td>
<td>0.81</td>
<td>0.94</td>
</tr>
<tr>
<td>Ti</td>
<td>1.04</td>
<td>0.86</td>
</tr>
<tr>
<td>V</td>
<td>0.17</td>
<td>0.66</td>
</tr>
<tr>
<td>Mn</td>
<td>1.37</td>
<td>0.91</td>
</tr>
<tr>
<td>Fe</td>
<td>0.95</td>
<td>0.96</td>
</tr>
<tr>
<td>Ni</td>
<td>0.71</td>
<td>0.56</td>
</tr>
<tr>
<td>Cu</td>
<td>1.30</td>
<td>0.95</td>
</tr>
<tr>
<td>Zn</td>
<td>0.70</td>
<td>0.94</td>
</tr>
<tr>
<td>Sr</td>
<td>1.21</td>
<td>0.78</td>
</tr>
<tr>
<td>Mo</td>
<td>2.35</td>
<td>0.90</td>
</tr>
<tr>
<td>Sn</td>
<td>0.43</td>
<td>0.98</td>
</tr>
<tr>
<td>Sb</td>
<td>1.18</td>
<td>0.93</td>
</tr>
<tr>
<td>Ba</td>
<td>1.36</td>
<td>0.94</td>
</tr>
<tr>
<td>Pb</td>
<td>0.34</td>
<td>0.61</td>
</tr>
</tbody>
</table>
Table S3. Estimated total uncertainty (% of measured value) of the calculated element concentrations per size fraction, and detection limits for each element (ng m$^{-3}$).

<table>
<thead>
<tr>
<th>Element</th>
<th>PM$_{10,2.5}$ (%)a</th>
<th>PM$_{2.5,1.0}$ (%)a</th>
<th>PM$_{1.0,0.3}$ (%)a</th>
<th>DL (ng m$^{-3}$)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>2.552</td>
</tr>
<tr>
<td>Mg</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>0.962</td>
</tr>
<tr>
<td>Al</td>
<td>24</td>
<td>25</td>
<td>25</td>
<td>1.709</td>
</tr>
<tr>
<td>Si</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>0.420</td>
</tr>
<tr>
<td>P</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>0.118</td>
</tr>
<tr>
<td>S</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>0.503</td>
</tr>
<tr>
<td>Cl</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>0.158</td>
</tr>
<tr>
<td>K</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>0.031</td>
</tr>
<tr>
<td>Ca</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>0.267</td>
</tr>
<tr>
<td>Ti</td>
<td>24</td>
<td>26</td>
<td>27</td>
<td>0.024</td>
</tr>
<tr>
<td>V</td>
<td>30</td>
<td>30</td>
<td>24</td>
<td>0.008</td>
</tr>
<tr>
<td>Cr</td>
<td>27</td>
<td>27</td>
<td>26</td>
<td>0.015</td>
</tr>
<tr>
<td>Mn</td>
<td>83</td>
<td>69</td>
<td>46</td>
<td>0.042</td>
</tr>
<tr>
<td>Fe</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>0.033</td>
</tr>
<tr>
<td>Ni</td>
<td>22</td>
<td>22</td>
<td>21</td>
<td>0.005</td>
</tr>
<tr>
<td>Cu</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>0.028</td>
</tr>
<tr>
<td>Zn</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>0.058</td>
</tr>
<tr>
<td>Br</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>0.117</td>
</tr>
<tr>
<td>Sr</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>0.036</td>
</tr>
<tr>
<td>Zr</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>0.036</td>
</tr>
<tr>
<td>Mo</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>0.037</td>
</tr>
<tr>
<td>Sn</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>0.061</td>
</tr>
<tr>
<td>Sb</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>0.052</td>
</tr>
<tr>
<td>Ba</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>0.254</td>
</tr>
<tr>
<td>Pb</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>0.137</td>
</tr>
</tbody>
</table>

a Combination of uncertainties regarding sample inhomogeneity (20 %), RDI flow rate (5 %), absolute and relative calibration (Na-K 13 %, Ca-Pb 2 %) and spectral analysis specific per element and size fraction (median uncertainties for all data points).

b As 3x the standard deviation of the spectra signals used for continuum corrections.

c Na uncertainties might be underestimated due to the overlap with the L lines of Ni, Cu and Zn. In the current analysis the ratio of the Lα to Kα lines are determined empirically, and quantification of the associated uncertainties is under investigation.

Figure 2b-Figure S3b shows good correlations for Mo (Pearson’s $R = 0.90$), but the RDI measures a factor 2.4 higher concentrations than found on the filters, whereas V and Ni show no significant correlation between RDI and filters (Pearson’s $R = 0.56-0.66$). The most likely reason for the discrepancy between both methods is the ICP-MS extraction efficiency. This was 66 % for Ni, but unknown for V and Mo, leading to increased uncertainties of the filter data and potentially underestimated concentrations. As shown in the main text, the RDI time series of these elements (including both urban/kerb increments and diurnal/weekly cycles) are consistent with those of elements expected to be co-emitted by the same sources. Visual inspection of the spectrum indicates that significant interferences between lines are unlikely, and this is confirmed by peak fitting sensitivity tests investigating the response of the calculated concentrations to uncertainties in line energy calibration (i.e. energy as a function of detector channel), the continuum, and calculated peak width. We estimate a 3 % uncertainty in the measurement of Mo due to spectral analysis and an overall uncertainty of 21 %. Strong correlations between filter and RDI time series also suggest that spectral fitting errors are not the cause of the discrepancy. Mo falls in a well-constrained region of the calibration curve (although is not directly measured on calibration foils), so relative calibration errors would require a systematic bias across this entire region of the calibration curve. While there are not enough jointly measured elements within the intercomparison to evaluate this possibility, good
agreement between RDI and filter measurements is obtained through Sr (Kα = 14.1 keV) and at Sb (Kα = 26.4 keV) (Mo Kα lines fall at 17.5 keV), suggesting such a bias is unlikely. For ICP-OES the extraction efficiency was unknown for Mo, potentially indicating that the filter data might be underestimated. The other elements (V, Cr, Ni) in Figure 2b show no significant correlation between RDI and filters. Similar to the discussion of Mo, we do not expect significant spectral interferences for these elements. Spectral analysis uncertainties are somewhat higher for V and Ni, and this is confirmed by the uncertainty analysis described above, which with about 19 % for V and 6.6 % for Ni (overall uncertainties of 28 and 22 %) yielded around 20 % uncertainty for V, Cr, and Ni. Unlike Mo, the relative calibration is well-constrained both in terms of elements directly measured on calibration foils and in terms of intercomparison with nearby elements in the XRF calibration curve, where V and Cr falls just above Ca and Ti and just below Mn and Fe, and Ni just above Mn and Fe and just below Cu and Zn. RDI and filter measurements are shown to be in good agreement for these six elements in Figure 2a and Figure S3a. However, the ICP-OES had an extraction efficiency for Ni of 66 %, whereas for V and Cr this was unknown, leading to increased uncertainties of these elements relative to others. Further, as shown in the following sections, the RDI time series of V, Cr, and Ni (including both urban/kerb increments and diurnal/weekly cycles) are consistent with those of elements expected to be co-emitted by the same sources. We therefore assume the RDI V, Cr, and Ni measurements to be valid, even though they are close to the minimum detection limits of SR-XRF.

Figure 2c and Figure S3c shows good correlations for Na and Mg (Pearson’s R > 0.89), but the RDI concentrations are a factor 2.5 higher than the filters. The two measurement techniques each provide internally consistent results, with the Mg to Na ratio for the filter data at NK of 0.13 and the RDI data at NK and MR of 0.12, both of which is are in very good agreement with the theoretical sea salt ratio of 0.12. The XRF relative calibration curve for Na and Mg is difficult to constrain due to the low response of these elements, but only led to an uncertainty of 13 % (for Na-K compared to 2 % for Ca-Pb)–10%. The extraction efficiency for Mg in ICP-OES was 90 %, which does not explain the discrepancy between both methods, but was unknown for Na. However, it remains unclear why the results of both methods differ for these two elements on an absolute scale. But since most analyses in the main text focus on relative changes/ratios per element across sites, the conclusions remain unaffected independent by the exact absolute concentrations.

The elements K, Sn and Pb in Figure 2d and Figure S3d show reasonable to good correlations between RDI and filter measurements (Pearson’s R > 0.78) but the RDI data is less than half the filter data (filter measurements of K and Sn only at NK). Pb has a significant fraction of the mass in the fine fraction (see Figure 2 in main text). Underestimation by the RDI is explained by an unexpected high small-end cut point of 290-410 nm (compared to 100 nm), as discussed below. K and Sn also have a significant fraction of their mass in the fine fraction, and might be affected by the cut off similarly to Pb.

S is a useful element for evaluation of the small-end cut off, as it is dominant in the fine fraction and measurable by several techniques. Therefore, we compared S data obtained with the RDI to simultaneous S mass calculated from sulphate (SO₄) measured by an AMS at MR, NK, and DE. The results in Supplement A show that the S mass in the RDI is on average about three times lower than that measured by the AMS. This is consistent with the discrepancy difference between RDI and filter measurements for fine fraction dominated elements. The RDI backup filter, which collects particles too small to impact at the PM₁₀-₀.₃ stage, was analysed for SO₄²⁻ using ion chromatography (Supplement A). Adding the S from this analysis to the S collected at the RDI PM₁₀-₀.₃ stage yielded mass closure with the S from AMS.
measurements within 25 % at all three sites. This suggests that elements with considerable mass in the small end of the PM$_{1.0}$ size range are not sampled by the PM$_{0.3}$ stage may be significantly underestimated. This affects S and Pb, and potentially also K, Zn, Br and Sn. To further investigate this underestimation effect, new RDI collection efficiency measurements for the PM$_{1.0}$ deposition stage were performed (Supplement A). The actual small-end cut off was determined to be 290-410 nm, rather than the previously measured value of 100 nm (Bukowiecki et al., 2009; Richard et al., 2010), and found to be very sensitive to the machining tolerances of the PM$_{1.0}$ nozzle.

Only a small fraction of the measured elements are affected by this cut off issue in the sense that absolute values are smaller than with a PM$_{0.1}$ stage. Further, because the analyses presented in the following sections main text depends on site-to-site ratios (for the same element) and relative concentration changes, potential biases are reduced by the similar (though not identical, see Fig. S2 in Supplement A) cut offs of the different RDI units. The conclusions presented herein in the main text are thus not significantly affected by this artefact.
Figure S43. Same as Figure 5.4 in main text, but for NK with mean, median and 25-75th percentile trace element concentrations split in four wind direction sectors (N, E, S, W) normalized to the global median concentration per element for PM$_{10-2.5}$ (top), PM$_{2.5-1.0}$ (middle) and PM$_{1.0-0.3}$ (bottom). See section 4.2.2 for the definition of the wind direction sectors.
Figure S54. Same as Figure 5.4, but for DE with mean, median and 25-75th percentile trace element concentrations split in four wind direction sectors (N, E, S, W) normalized to the global median concentration per element for PM$_{10-2.5}$ (top), PM$_{2.5-1.0}$ (middle) and PM$_{1.0-0.3}$ (bottom). See section 4.2.2 for the definition of the wind direction sectors.
Figure S65. Wind roses as a function of wind direction (angle) and wind speed (diameter) at (a) BT Tower, color-coded by NO\textsubscript{x} concentrations (ppb) at MR, (b) BT Tower, color-coded by NO\textsubscript{x} concentrations (ppb) at NK, (c) DE, color-coded by NO\textsubscript{x} concentrations (ppb) at DE for the RDI sampling periods (see Table 1 in main text).
Figure S76. Same as Figure 6, but with mean, median and 25-75th percentile kerb increment values for trace elements at MR relative to NK for PM$_{10-2.5}$ (top), PM$_{2.5-1.0}$ (middle) and PM$_{1.0-0.3}$ (bottom) split in N, E, S and W wind sectors. See section Sect. 4.2.2 for the definition of the wind direction sectors.
Figure S87. Same as Figure 7.6, but for all other elements: P, K, Br, Zn, Pb (regional background); Mg (sea salt), Al, Ca, Ti, Sr (mineral dust); Cl (sea salt), V, Cr, Mn, Ni (traffic-related); Cu, Zr, Mo, Sn, Ba (brake wear). Diurnal cycles of 2-hr median concentrations for PM$_{10-2.5}$ (left), PM$_{2.5-1.0}$ (middle) and PM$_{1.0-0.3}$ (right) at MR, NK, DE split in SW and NE wind sectors. See section Sect. 4.2.2 for the definition of the wind direction sectors. Hour of day is start of 2 h sampling period, so 00:00 LT means sampling from 00:00 to 02:00 LT.
Figure S78. Continued.
Figure S78. Continued.
Figure S78. Continued.
Figure S98. Same as Figure 8, but for all other elements: P, K, Br, Zn, Pb (regional background); Mg (sea salt), Al, Ca, Ti, Sr (mineral dust); Cl (sea salt), V, Cr, Mn, Ni (traffic-related); Cu, Zr, Mo, Sn, Ba (brake wear). Weekly cycles of 24 hr median concentrations for PM$_{10-2.5}$ (left), PM$_{2.5-1.0}$ (middle) and PM$_{1.0-0.3}$ (right) at MR, NK, DE.
Figure S98. Continued.
Figure S98. Continued.
Figure S98. Continued.
References

