Reviewer #1

In this manuscript, the authors applied an energy balance model, SEBS, which was developed by the authors group before, to evaluate whole China’s terrestrial surface energy balances in 0.1-degree spatial resolution by making the maximum use of satellite data sets. The results show that the estimated fluxes are well represented in China. Comparisons with the eddy covariance measurements and other data sets show that the energy and radiation fluxes by the proposed approach attained one of the best performances among the data sets.

Generally, the global surface energy flux data sets, including reanalysis data, do not have enough spatial and temporal resolution when looking at the national-level fluxes. The surface flux data sets from reanalysis data sets still contain large uncertainty. Therefore, this reviewer agrees with the authors that it is necessary to produce spatially and temporal higher resolution surface flux data sets.

RESPONSE: We thank the reviewer for these appreciated comments. We fully agree with them. We have added more detailed discussions as the reviewers has pointed out. To give the readers a fully understanding of our work, the following paragraph was added in the new manuscript,

‘Generally, the global surface energy flux data sets, including reanalysis data, do not have enough spatial and temporal resolution when looking at the national-level fluxes. The surface flux data sets from reanalysis data sets still contain large uncertainty, partly due to the deficiency in their land surface process models that simulate land surface temperature by solving soil thermal transport equations (Chen et al., 1996) and usually result in a large error in LST simulation (Chen et al., 2011; Wang et al., 2014) if the model is not properly calibrated by measurements (Hogue et al., 2005). So the hypothesis tested in this paper is if it is possible to overcome the complex process in the soil by using satellite observed land surface temperature directly to calculate the land surface fluxes at continental scale? This study has demonstrated a benchmark on how to use satellite to derive a land surface flux dataset for a continental area on a personal laptop which is absolutely not feasible for the land surface process modeler to do in such a time and resource economic way.’ on page 25.

My major concerns are below: 1. From the current manuscript, it is not easy to find the novelty of this study. I understand that energy and radiation fluxes estimation across China in such a high spatial resolution is new. But I feel this may not be enough because the suits of equations used in this approach were developed in the past studies (Su et al., 2002) and there are other energy flux estimation studies with satellite data sets as is cited in this manuscript. It may be necessary to make an introduction to let readers know where is the novelty of this study.

Response: Actually, part of the innovative points have been explained in introduction, model development, input dataset preparation, and dealing with a large heterogeneous data. We agree that the basic equations were developed in the past studies. However the past studies do not give solutions on how to upscale the model to a continental area. The meteorological forcing data and satellite product used in our work are also from other studies. But the problems is why we chose these dataset but not others? and how to
combine several sources of dataset and use them in our study? Is the dataset applicable or not? All these issues need to be tackled before the model run. These experience and accumulated knowledge have never been reported in other papers. Thus firstly, we have innovated ways of using the model. Secondly, and certainly, the flux product is also one novelty of this work (on page 14491, line 24-26). As scientists have pointed out a spatially and temporally estimate of surface energy fluxes is urgently need by hydrological and meteorological studies due to that ‘all the available flux datasets are based on model simulations, which have deficiencies for studying changes in water-cycle and land–air interactions in China’. As you have seen in our response to your previous comment that we also added another paragraph to make the second novelty to be clearer to the reader. Thirdly, there are so many challenges in the beginning of the work, such as: difficulties in producing an accurate estimate of water and energy spatial distribution at a continental scale with remote sensing method. Remote sensing approaches to estimate surface heat and water fluxes have been largely used on regional scales, but there is rarely satellite-derived data which could be used for land-atmosphere interaction studies for continental area (on page 14474, line19-24). But here, we have made the first step by using satellite data to make this reference dataset for China’s continental land area. Besides, most remotely-sensed fluxes and evapotranspiration product have null values in urban, water, snow, barren and desert areas, such as the studies of Mu et al., 2007, Wang et al., 2007 and Jiménez et al., 2009 (on page 14475, line 1-18). Here we have overcome the shortages of their dataset and produced a spatially continuous distributions of land-surface energy fluxes and evapotranspiration. The sentence was added to make this advancement more clearly for the readers to understand the importance of our work: ‘We have overcome the shortages of previous remotely-sensed evapotranspiration products which have null values in barren and desert areas.’ in the ‘conclusion and discussion’. Finally, the critical challenge in using turbulent flux parameterization to remote sensing data is how to transfer from regional to continental and global scales (on page 14475, line 19-21). We have developed several steps to tackle the complexities met with the method when combining different spatial and temporal sampling input variables (on page 14480, line 13-30, page 14481, line 1-19). We also found a solution how to produce roughness length distribution for a continental area (On page 14475, line 25-29). Usually, the surface roughness length is given a fixed value in numerical models, here we developed a method to produce a dynamic variation of surface roughness length for the Chinese landmass which is closer to the reality. This novelty is notified by adding the paragraph in the ‘discussion and conclusions’: ‘We also found a solution on how to produce a dynamic surface roughness length due to variations in the canopy height, which is closer to the reality, for a continental area. Usually, the surface roughness length is given a fixed value in numerical models.’

2. Discussion of this paper is not organized well. Some of sentences are just the rewords of Introduction. Based on the validation results, I would like to see more general characteristics of the data sets. When and where the produced data is likely to fail or to deteriorate the accuracy? And why? What’s the bottleneck? Data or flux modellings? How could it be improved in future study?
Response: Thank you for pointing out these important issues for modellings. We agree that the assumptions and model imperfection are issues of importance. From the validation results, it shows that the sensible heat fluxes over high canopy is underestimated, this is due to the roughness sublayer over the high canopy is not considered in the model. So we added this sentence in the discussion part.

‘Additionally, the sensible heat flux over forest is underestimated by present turbulent flux parameterization method in SEBS which does not take the roughness sublayer over high canopy (Bosveld, 1999) into consideration.’

The bottleneck should be the availability of accurate remote sensing data, we have discussed partly on page 14492, line 14-19. To clarify the problem, we would like to add the sentences in the new manuscript to discuss it more and how the dataset may fail.

‘The accuracy of turbulent heat fluxes is largely dependent on the remotely sensed land surface temperature. Here we have made an assumption that the averaged Aqua and Terra sensors sensed LST in each month can represent the monthly average LST. Terra satellite sensor passes twice a day (at about 10:30am, and 22:30pm local time), also the Aqua satellite passes twice a day (at about 01:30am, and 13:30pm local time). So MODIS have four samples each day. The samples may not be enough for calculating the monthly LST, also due to the cloud noise. Besides, the time period of MODIS datasets is not longer than 15 years which may limit application of our dataset in climate analysis.’

following ‘It is challenging to ……from half-hourly through to monthly.’

3. The authors use the term “turbulent heat flux”. However, radiations like SWD, LWD are not considered turbulent heat flux. Rephrase it.

Response: Here we use ‘turbulent heat flux’ to represent sensible and latent heat. ‘turbulent heat flux’ was used two times in our paper. The first one is ‘In our study we set out to estimate turbulent heat fluxes simulated with energy balance’ and aerodynamic parameterization formulas that are based on a revised model of the surface energy balance system (SEBS)’. As this work is to calculate sensible and latent heat fluxes with SWD, LWD etc. which is produced by other works. So we think this is correct. The second usage is in the sentence ‘Potential effects of changes in turbulent heat fluxes on the monsoon over East Asia (Lee et al., 2011)’. Lee et al. have analyzed the changes of sensible and latent heat impacts on the East Asia, so the sentence is also right.

4. Page 14472, line 16: “turbulent flux and evapotranspiration” sounds like a little weird. Latent heat flux is also one of the turbulent flux, so I would recommend using latent heat flux instead of evapotranspiration.

Response: We understand that the reviewer to pick ‘turbulent flux and evapotranspiration’ out from the background. Turbulent flux includes ‘sensible and latent heat fluxes’. So we do not suggest to use ‘turbulent flux and latent heat flux’. Here we use ‘turbulent flux’ and ‘evapotranspiration’ to relate two community, ‘turbulent flux’ refers to the land-air study, and evapotranspiration refers to water cycle and hydrological study. The accurate downward long-wave radiation datasets are needed for both area when using the surface energy balance method. So we prefer not to change this sentence.

5. Page 14486, Lines 3 – 7: I’m not sure that this comparison is meaningful and fair.
The regions of interests are different and some of data are global estimation.

Response: Vinukollu et al. (2011b) could be the first and only one SEBS application in global fluxes and evapotranspiration efforts. We also contacted the authors to share their dataset with us, unluckily, due to disk physical problems, they can’t share the dataset with us which make it impossible to do more detailed comparative analysis. Our paper also addresses how to produce a continental turbulent flux and evapotranspiration dataset with the model, but with an improved one. Due to there are so many common basis, we think the comparisons are useful. We agree that the forcing dataset are different. But, we and Vinukollu et al. have the same purpose—how to get more accurate global or continental heat fluxes and evapotranspiration. The lower RMSE could be due to the model improvement and more accurate forcing dataset used in our study. So we have added the sentence ‘The difference could be due to the model improvement and more accurate meteorological forcing dataset used in our study.’ to discuss the difference in RMSE values. This literature comparison is important for our conclusion that more accuratedatasets are needed to be able to accurately estimate turbulent fluxes and evapotranspiration when using the surface energy balance model.’

6. Table 3: please add the explanation of “MB” in the caption. “Mean bias”

Response: We have added ‘MB is mean of observation minus model simulation.’ in the caption of new attached manuscript.

Reference:

Bosveld, F. C.: Exchange processes between a coniferous forest and the atmosphere, Ph.D, Wageningen University, 181 pp., 1999.
Reviewer #2

Generally, this MS utilized multi-source data and a modified surface energy balance model to simulate the temporal and spatial patterns of surface energy fluxes at national scale (China). Compare to the previous related studies, a higher resolution data set of energy fluxes was produced and well validated with ground flux measurement. With such dataset, 10 years variations of radiation and turbulent heat fluxes in China were evaluated. Obviously, this study provided a useful dataset and gave some interesting results on the spatial-temporal patterns of land surface energy balance in China, especially in Tibetan Plateau. However, there are still some explanations and modifications are needed, 1. In Introduction section, if the authors can make a more clearly introduction on the reasons for constructing such a high spatial resolution and long term dataset at national scale? And what are the progresses about this topic in China and world?

RESPONSE: Thanks for your precious comments and suggestions. As Reviewer #1 has pointed out that ‘the global surface energy flux data sets, including reanalysis data, do not have enough spatial and temporal resolution when looking at the national-level fluxes. The surface flux data sets from reanalysis data sets still contain large uncertainty. Therefore, ……it is necessary to produce spatially and temporal higher resolution surface flux data sets.’; We have also discussed this issue (why a high spatial resolution and long term dataset at national scale is necessary):

On Page 14473, Line11-19 of our ACPD manuscript:

‘While it is of critical importance to understand the partitioning of water and energy distribution across China’s terrestrial surface, accurate monitoring of their spatial and temporal variation is notoriously difficult (Ma et al., 2011). Several field experiments are being carried out to monitor turbulent fluxes over selected land cover in China by using ground-based eddy covariance devices (Wang et al., 2010;Yu et al., 2006;Ma et al., 2008b;Li et al., 2009). However, these measurements are only representative of small areas around the locations where the measurements are being made. For this reason, establishment of an eddy-covariance flux network cannot provide a complete land-surface heat flux picture for the entire Chinese landmass.’ and

On Page 14474, line 8-14 of our ACPD manuscript:

‘Zhu et al. (2012) have also reported that summer sensible heat flux derived from eight datasets (including NCEP, ERA, and GLDAS) of China’s Tibetan Plateau region differ from each other in their spatial distribution. In addition, all the flux datasets mentioned above are based on model simulations, which have deficiencies for studying changes in water-cycle and land–air interactions in China (Chen et al., 2013;Su et al., 2013;Wang and Zeng, 2012;Ma et al., 2008a).’

in the Introduction section.

We have reviewed the topic progress in world with these sentences on page 14473, line 20- page 14474 line 6 (ACPD manuscript): ‘A number of methods can be used to derive land-surface energy fluxes. Jung et al. (2009), for example, generated global spatial flux fields by using a network up-scaling method. ………………………When these products
were applied at continental scales, the different approaches resulted in large differences (Vinukollu et al., 2011; Jiménez et al., 2011; Mueller et al., 2011).

In the revised manuscript, we have added more discussions on these issues to let the reader understand our work clearly. All the changes have been shown by the track change in the manuscript word file, which is uploaded as the supplementary file of our response to the reviewer comments.

2. In model description, although the structure and equations were detail introduced with many references, it is still not clearly that how the model was developed based on those references in this MS.

RESPONSE: Actually, the most development of the SEBS model by us have been done within our previous paper, Chen et al. JAMC 2013. The further development or improvement in this paper is to upscale the model to an continental coverage area. Actually, we have further developed several methods to help the model to be used in a global scale. Such as the method of how to get global canopy height information for SEBS. This method has been demonstrated in lines 16-30, page 14479 (ACPD manuscript). The second significant contribution of this work is how to make an gap filled land surface fluxes and evapotranspiration. Normally, application of remote sensing dataset is limited by the spatial and temporal gaps in themselves. Here we overcame the setbacks in LST product. To make this point more clearly, we added a new figure to show how reasonable is our process method of monthly LST.
Fig. 3 Time series comparison of monthly averaged LST derived from MOD11C3&MYD11C3 and in-situ measurement.

Thus, Lines 22-30 on page 14482, line1-10 on page 14483 were also revised appropriately. Please check the new manuscript.

3. Only the EC data with more than 70% available in a month was acceptable in flux validation. However, it is popular that the most nighttime EC data usually was questionable and filtered out under weak turbulent condition, which resulted in large gaps in EC data. So 70% available data probably main come from daytime. If it will affect the monthly flux validation, for example, sensible heat flux?

RESPONSE: We have checked the dataset, the percent of filtered fluxes at nighttime is very low, not higher than 0.1%. So its influence on the monthly averaged flux is negligible. 70% standard is used to kick off the months which have not enough samples due to equipment problems, e.g. EC at Maqu station has sensible heat flux data from 1th to 10th July, 2009, there is no data from 11th to 30th July due to electricity power problem, the valid sensible flux data takes a 30% percentage of that month. Thus the averaged monthly sensible heat flux for this month could not be used due to inadequate samples. That`s why we use this standard to filter this month and similar events at other stations.

4. If possible, please add a figure to show the validation of LWD, because it was assumed to be important and there still existed room for improvement, although linear fitting slope and correlation coefficient attained 0.9 and 0.98, respectively.

RESPONSE: If you look at the below evaluation results, it`s clear that the LWD has a certain systematic bias, even the R and fitting slope are very high. The scatter point closely located around the 0.91*x line, not 1:1 line, which makes us believe that the LWD still has some room for improvement. The following figure was added in the new manuscript. Please check the supplementary.
Figure 4 Scatter point for downward shortwave (SWD), upward shortwave (SWU), downward longwave (LWD), and upward longwave (LWU) radiation against in-situ measurement.

5. Why only the validation from Yucheng and SC flux site were introduced in detail, the results were similar for other 9 sites?

RESPONSE: The validation results for other 9 sites were uploaded as supplementary of the ACPD paper. Here, we would like to list results for the three sites located in the Western, Eastern and center of Tibetan Plateau, to show part of the evaluation results. Please check for others in the supplementary materials of the discussion paper.
Fig. 1 SEBS input and output variables vs measurement at BJ station in the central Tibetan Plateau

Fig. 2 SEBS input and output variables vs measurement at Maqu station in the eastern Tibetan Plateau
Fig. 3 SEBS input and output variables vs measurement at Ali station in the western Tibetan Plateau

The validation results also show that the sensible heat fluxes over high canopy is lower estimated, this is due to that the roughness sublayer over the high canopy is not considered in the model. So we added this sentence in the discussion part, ‘Additionally, the sensible heat flux over forest is lower estimated by present turbulent flux parameterization method in SEBS which does not take the roughness sublayer over high canopy (Bosveld, 1999) into consideration.’.

6. In trend analysis, it is interesting for the distinct variations in Tibetan Plateau, for example, in Fig 9 and 10. Meanwhile, it is also noticeable that the radiation and turbulent energy fluxes decreased in both northeastern and north China. Related explanations will be helpful for the understanding of the spatial variations of radiation and fluxes in China as a whole picture.

RESPONSE: Yes, we also agree that the trend analysis is interesting. The problem is that we only have 10-years dataset, which may not be long enough for climate studies. We have reminded the readers in the new manuscript with the sentence in the discussion section ‘Besides, the time period of MODIS datasets is not longer than 15 years which has limited application of our dataset in climate analysis.’.

Meanwhile, the dataset does show some variations in the last 10 years. We have reviewed papers and found some explanations, such as the drying atmosphere over the plateau could be used to explain why SWD on the Tibetan Plateau has increased during last decade, we also address the reason for the LWU rising trend in the Lhasa basin. It’s a pity that we didn’t find any related publications which could be used to explain the variations in radiation and fluxes in northeastern and north China.

7. The organization of discussion is not well, and lots of discussion has already appeared
in Introduction and Results section.

RESPONSE: Thanks for your appreciated comments. We have revised the introduction and discussion section. We have added more detailed discussions about the reasons for constructing such a high spatial resolution and long term dataset for China land area. Please check the new manuscript.

Technical corrections:
1. In Introduction section, some descriptions about the estimation method and input data were also included in this section, for example, “For this reason we chose a more physically-based method –turbulent flux parameterization – to produce the dataset” on p14475, line 17, and “To derive the surface energy balance terms for the Chinese landmass, we used high resolution reanalysis data,: : :” on p14476, line 16. It will be more appropriate to move such description into the Methods section.

RESPONSE: Please pay attention to the paragraph 'The simple relationships established cannot give a reasonable approximation for extreme conditions such as bare soil or other types of non-canopy land cover (e.g. lakes, deserts) because land covers behave significantly differently in land-surface energy flux partitioning. Fortunately, turbulent flux transfer parameterization can overcome the shortcomings of statistical methods and produce spatially continuous distributions of land-surface energy fluxes with prepared meteorological forcing data. For this reason we chose a more physically-based method –turbulent flux parameterization – to produce the dataset..', here we not only review the advancement in the related area, but also inform the readers why do we use the model. So we do not only talk about the Methods but also the frontier of land surface flux remote sensing retrievals. The two sentences you have selected out may not be enough to set up a new Methods section. The related paragraph was rewritten. We also revised the Introduction section. Please check the new manuscript.

2. Canopy height is important for the estimation of land surface heat flux. From eq. 8, it was just the linear function of NDVI, and even canopy fraction (fc) from eq. 9. Although the author indicated the reference, if some HC validations at flux sites can be provided?

RESPONSE: Actually, we have checked the produced canopy height at the 11 flux station by equation 8 and GLAS forest height. We add section 4.1 in the new manuscript to assess the canopy height method. The following content was added in the new version. “4.1 Canopy height assessment

We checked the canopy height variations at the 10 flux station produced by equation 8 and GLAS forest height (Figure 3). The derived canopy height for AL is not higher than 0.2 m, which is reasonable for the local land cover. YC, GT, and WS stations located in the North China, represent a typical agricultural land, where crops mature twice per year. The highest canopy height is around 1.5 m, a similar magnitude to the height of maize in summer. The step decrease in canopy height in June at these three stations is due to that wheat/maize is harvested and new seeds are sown during this period. This step variation in the canopy height also causes similar step changes in sensible and latent heat flux (shown by Fig. 5). Although the land cover near WJ station is crop, it is more surround by forest in a 10 km diameter. The GLAS forest height reflects this ground truth. These
canopy height assessments at the observation sites enable us to consider that the developed method in this work is an appropriate one for solving scarcity of canopy height information at a continental area.

Fig. 3 Monthly variation of canopy height at the 10 flux stations

3. The color and letters in Fig.1 is confusing, please improve it.

RESPONSE: Figure 1 was changed to DEM map, please check the new figure:

4. From Table 3, it seems that no forest flux site was included for model validation.

RESPONSE: Yes, forest site was not included. However, we have evaluated the model with a forest flux site in Netherlands. It shows that the sensible heat flux over forest cover is lower-estimated by SEBS. We added the discussion to remind the readers about this
shortage ‘Additionally, the sensible heat flux over forest is lower estimated by present turbulent flux parameterization method in SEBS which does not take the roughness sublayer over high canopy (Bosveld, 1999) into consideration.’.

5. As for the sensible heat flux and latent heat flux, different names were used in this MS, for example, Heat flux, Surface fluxes, Heat and water fluxes, Land surface fluxes, Land surface-energy fluxes, Turbulent flux, Turbulent heat fluxes, Turbulent heat, etc., please check and uniform it.

RESPONSE: A uniform ‘land surface heat fluxes’ was adopted in the new manuscript. Please check it.

References:

Bosveld, F. C.: Exchange processes between a coniferous forest and the atmosphere, Ph.D, Wageningen University, 181 pp., 1999.

Development of a 10-year (2001–2010) 0.1-degree dataset of land-surface energy balance for mainland China

Xuelong Chena, Zhongbo Sua, Yaoming Mab, Shaomin Liuc, Qiang Yud, Ziwei Xuc

a Faculty of Geo-Information Science and Earth Observation, University of Twente, Enschede, The Netherlands
b Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
c State Key Laboratory of Remote Sensing Science, School of Geography, Beijing Normal University, Beijing, China
d Plant Functional Biology & Climate Change Cluster, University of Technology, Sydney, PO Box 123, Broadway, NSW 2007, Australia

Abstract

In the absence of high resolution estimates of the components of surface energy balance for China, we developed an algorithm based on the surface energy balance system (SEBS) to generate a dataset of land-surface energy and water fluxes on a monthly time scale from 2001 to 2010 at a 0.1 × 0.1 degree spatial resolution by using multi-satellite and meteorological forcing data. A remote-sensing-based method was developed to estimate canopy height, which was used to calculate roughness length and flux dynamics. The land-surface flux dataset was validated against “ground-truth” observations from 11 flux tower stations in China. The estimated fluxes correlate well with the stations’ measurements for different vegetation types and climatic
conditions (average bias = 15.3 Wm$^{-2}$, RMSE = 26.4 Wm$^{-2}$). The quality of the data product was also assessed against the GLDAS dataset. The results show that our method is efficient for producing a high-resolution dataset of surface energy flux for the Chinese landmass from satellite data. The validation results demonstrate that more accurate downward long-wave radiation datasets are needed to be able to accurately estimate turbulent fluxes and evapotranspiration when using the surface energy balance model. Trend analysis of land-surface radiation and energy exchange fluxes revealed that the Tibetan Plateau has undergone relatively stronger climatic change than other parts of China during the last 10 years. The capability of the dataset to provide spatial and temporal information on water-cycle and land–atmosphere interactions for the Chinese landmass is examined. The product is free to download for studies of the water cycle and environmental change in China.

1. Introduction

As China is one of the fastest growing and urbanizing economies in the world, changes in land cover and land use can significantly influence the environment by altering land–atmosphere energy and water exchanges (Suh and Lee, 2004; Lin et al., 2009). For instance, rapid urban expansion has substantially changed land surface heat fluxes in the Pearl River delta (PRD) (Lin et al., 2009) and has increased sensible heat fluxes in the Beijing metropolitan area (Zhang et al., 2009a). The variability of surface energy balance and its partitioning may also have an important impact on climate variability in China (Sun and Wu, 2001). Similarly, changes in surface energy fluxes have been shown to alter the intensity of the East Asian monsoon (Zhou and Huang, 2008; Qiu, 2013; Hsu and Liu, 2003). In short, understanding variation in energy fluxes is
important for the study of climate change in China (Brauman et al., 2007). Nevertheless, the
spatial and temporal variability of China’s land-surface energy balance, and the magnitude of
each, are still unknown.

While it is of critical importance to understand the partitioning of water and energy distribution
across China’s terrestrial surface, accurate monitoring of their spatial and temporal variation is
notoriously difficult (Ma et al., 2011). Several field experiments are being carried out to monitor
turbulent fluxes over selected land cover in China by using ground-based eddy covariance
devices (Wang et al., 2010; Yu et al., 2006; Ma et al., 2008b; Li et al., 2009). However, these
measurements are only representative of small areas around the locations where the
measurements are being made. For this reason, establishment of an eddy-covariance flux
network cannot provide a complete land-surface heat flux picture for the entire Chinese landmass.

A number of methods can be used to products can be derived from land-surface energy fluxes.
Jung et al. (2009), for example, generated global spatial flux fields by using a network up-scaling
method. However their flux network included only a limited number of flux stations in China.
The Global Soil Wetness Project 2 (GSWP-2) (Dirmeyer et al., 2006) produced a global land
surface product on a 1 × 1 degree grid for the period 1986 to 1995. The Global Land Data
Assimilation System (GLDAS) (Rodell et al., 2004) can provide a global coverage in the form of
3-hourly, 0.25-degree data. Furthermore, products from the European Centre for Medium-Range
Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim) (Dee et al., 2011), the National
Centers for Environmental Prediction (NCEP) (Kalnay et al., 1996), Modern-Era Retrospective
Analysis for Research and Applications (MERRA) (Rienecker et al., 2011) and other reanalysis
data can also provide temporally continuous – but coarse – spatial resolution datasets of land
surface fluxes. Jiménez et al. (2011) made an inter-comparison of different land-surface heat flux products. When these products were applied at continental scales, the different approaches resulted in large differences (Vinukollu et al., 2011a; Jiménez et al., 2011; Mueller et al., 2011).

The problems met by using currently available flux data in climate studies of China have been reported by Zhou and Huang (2010). Zhu et al. (2012) have also reported that summer sensible heat flux derived from eight datasets (including NCEP, ERA, and GLDAS) of China’s Tibetan Plateau region differ from each other in their spatial distribution. In addition, all the flux datasets mentioned above are based on model simulations, which have deficiencies for studying changes in water-cycle and land–air interactions in China (Chen et al., 2013c; Su et al., 2013; Wang and Zeng, 2012; Ma et al., 2008a).

A spatially and temporally explicit estimate of surface energy fluxes is of considerable interest for hydrological assessments and meteorological and climatological investigations (Norman et al., 2003). Satellite-sensed data of surface variables can be used to produce maps of heat and water fluxes at different scales (Wang and Liang, 2008; Li et al., 2012a; Liu et al., 2010; Vinukollu et al., 2011b). Remote sensing approaches to estimate surface heat and water fluxes have been largely used on regional scales (Fan et al., 2007; Ma et al., 2011; Jia et al., 2012; Zhang et al., 2009b; Li et al., 2012b; Shu et al., 2011), but there is no analysis of satellite-derived data currently underway to produce a complete, physically-consistent, decadal land-surface heat flux dataset (Jiménez et al., 2009) for the Chinese landmass. The use of remotely-sensed data offers the potential of acquiring observations of variables such as albedo, land surface temperature, and NDVI at a continental scale for China. Figure 1 shows an example of an NDVI map for China.
Since surface fluxes cannot be directly detected by satellite-borne sensors, an alternative for estimating continental water and energy fluxes can be derived by applying the aerodynamic theory of turbulent flux transfer (Ma et al., 2011) or by establishing statistical relationships between related satellite observations and land surface fluxes (Jiménez et al., 2009; Wang et al., 2007). Most remotely-sensed latent heat flux or evapotranspiration products have null values in urban, water, snow, barren and desert areas (Mu et al., 2007; Wang et al., 2007; Jiménez et al., 2009). This is due to the lack of a uniform representation of turbulent exchange processes over different types of land cover in their method. Meanwhile, the aerodynamic turbulent transfer method can describe the flux exchange through changes in surface roughness length over different land covers. Statistical methods establish relationships between satellite-sensed observations (e.g. NDVI, LST, albedo) and land surface fluxes through various fitting techniques (Wang et al., 2007). The simple relationships established cannot give a reasonable approximation for extreme conditions such as bare soil or other types of non-canopy land cover (e.g. lakes, deserts) because land covers behave significantly differently in land-surface energy flux partitioning. Fortunately, turbulent flux transfer parameterization can overcome the shortcomings of statistical methods and produce spatially continuous distributions of land-surface energy fluxes with prepared meteorological forcing data. For this reason we chose a more physically-based method – turbulent flux parameterization – to produce the dataset.

The challenge in using turbulent flux parameterization lies in the transition from regional to continental and global scales, because meteorological data of high resolution (i.e. 1–10 km) are not easily obtained for a large region. Recently, Chinese scientists have produced high resolution meteorological forcing data that can be used in our study. Another issue is the complexity met with the method when combining different spatial and temporal sampling input variables. This is
discussed in detail in Subsection 3.1. The last difficulty that has surrounded application of
turbulent flux parameterization at continental scales is the acquisition of roughness length. To
address this difficulty, we have developed a remote-sensing-based mixing technique to estimate
canopy heights at a continental scale and use the resulting canopy height dataset to derive, for the
very first time, the dynamic variation of surface roughness length for the Chinese landmass.

Complex topography (shown by Fig. 1) and climatic conditions in China make it very difficult to
obtain a clear picture of the distribution of energy and water fluxes with a high spatial resolution
over a relatively long period for such a large area. In our study we set out to estimate
turbulent land-surface heat fluxes simulated— with energy balance and aerodynamic
parameterization formulas in that are based on a revised model of the surface energy balance
system (SEBS) (Chen et al., 2013b; Chen et al., 2013a; Su, 2002; Timmermans, 2011); Previous
tests show that the revised model delivers better performance and improvements in cases where
the type of land cover in China is bare soil, short canopy or snow (Chen et al., 2013b; Chen et al.,
2013a). Sensible heat flux in SEBS was derived from the difference between surface temperature
and air temperature by using Monin–Obukhov similarity theory and bulk atmospheric boundary
layer similarity (Brutsaert, 1999), which parameterizes ground surface momentum and heat-
transfer coefficient maps to take into account surface roughness, canopy height, vegetation cover,
and meteorological stability (Su et al., 2001; Su, 2002; Chen et al., 2013b). The latent heat flux
can then be estimated from an energy balance model, assuming surface net radiation and ground
flux are known (Ma et al., 2002; Allen et al., 2011; Vinukollu et al., 2011b). We used high
resolution reanalysis data, which merges model outputs, remote sensing observations, and in-situ
measurements. In addition, we also assessed the accuracy of the surface energy balance terms
(net radiation, sensible heat, latent heat, and ground heat fluxes) and their climatic trends in the preceding decade (2001–2010).

After defining the equations of the SEBS model (Section 2), we describe (in Section 3) the input data and ground-truth measurements used in the study. Further, we assess the capacity of the remote-sensing-based product to reproduce the range and variability of measured fluxes by comparing them with in-situ flux tower measurements, followed by trend analysis of the spatial patterns of the fluxes (Section 4). Concluding remarks are found in Section 5.

2 Model description and development

The surface energy balance system model known as SEBS (Su, 2002) uses aerodynamic resistance to create a spatially coherent estimate of land surface heat fluxes. Some model inputs can be obtained from remote sensing data, while others can be obtained from meteorological forcing data (e.g. GLDAS, ERA and NCEP reanalysis data). The model’s equations and the required forcing variables are described in the remainder of this section.

The surface energy balance equation can be expressed as:

\[Rn = G_o + H + LE, \]

(1)

where \(Rn \) is the net radiation flux; \(G_o \) is the ground heat flux, which is parameterized by its relationship with \(Rn \) (Su et al., 2001); \(H \) is the sensible heat flux; and \(LE \) is the latent heat flux. \(LE \) is computed by using the evaporative fraction after deriving the other three variables in Equation 1 and taking into consideration energy and water limits (Su, 2002). As these fluxes were
produced with a monthly average temporal resolution, energy storage in vegetation is not considered.

Net radiation flux is:

\[R_n = (1 - \alpha) \times SWD + LWD - LWU, \]

where \(\alpha \) is broadband albedo; \(SWD \) is downward surface short-wave radiation; and \(LWD \) and \(LWU \) are downward and upward surface long-wave radiation, respectively.

Here satellite observed albedo is used. \(LWU \) is derived from land surface temperature (LST) using the Stefan–Boltzmann law. Land surface emissivity is derived as described in Chen et al. (2013a). \(LWD \) and \(SWD \) values are obtained from meteorological forcing data.

Sensible heat flux (\(H \)) is computed according to the Monin–Obukhov similarity theory (MOST):

\[H = k \, u_* \rho C_p (\theta_0 - \theta_a) \left[\ln \left(\frac{z - d}{z_{0h}} \right) - \Psi_h \left(\frac{z - d}{L} \right) + \Psi_h \left(\frac{z_{0h}}{L} \right) \right]^{-1}, \]

where \(k \) is the von Karman constant; \(u_* \) is friction velocity; \(\rho \) is air density; \(C_p \) is specific heat for moist air; \(\theta_0 \) is the potential temperature at the ground surface; \(\theta_a \) is the potential air temperature at height \(z \); \(d \) is the zero plane displacement height; \(\Psi_h \) is the stability correction function for sensible heat transfer (Brutsaert, 1999); and \(L \) is the Obukhov length. In our study \(\theta_a \) was obtained from meteorological forcing data and \(\theta_0 \) was derived from Moderate Resolution Imaging Spectroradiometer (MODIS) LST data. For more detailed information about \(u_* \) and the calculation of \(L \), see Su (2002) and Chen et al. (2013b).

The roughness height for heat transfer \((z_{0h}) \) in Equation 3 is calculated as follows:
Using the fractional canopy coverage, kB^{-1} at each pixel can be derived according to the following modification of the equation described by Su et al. (2001):

$$kB^{-1} = f_c^2 \times kB_c^{-1} + f_s^2 \times kB_s^{-1} + 2 \times f_c \times f_s \times kB_m^{-1},$$

where f_c is fractional canopy coverage and f_s is the fraction of bare soil in one pixel; kB_c^{-1} is the kB^{-1} of the canopy; kB_s^{-1} is the kB^{-1} of bare soil; and kB_m^{-1} is kB^{-1} for mixed bare soil and canopy. As kB^{-1} is the most important parameter in a MOST-based calculation of sensible heat flux, kB^{-1} has been updated by Chen et al. (2013b). The momentum roughness length used to calculate kB_c^{-1} was given a value of 0.004 (Chen et al., 2013b), and the heat roughness length of bare soil was calculated according to Yang et al. (2002). The new kB^{-1} gives a better performance than the previous version of kB^{-1} (Chen et al., 2013b; Chen et al., 2013a). Detailed evaluations of the new parameterization of kB^{-1} can be found in Chen et al. (2013b).

The roughness height for momentum transfer z_{om} in Equation 4 is derived from canopy height (HC), leaf area index (LAI) and the canopy momentum transfer model (Massman, 1997):

$$z_{om} = HC \times (1 - d/HC) \times \exp(-k \times \beta),$$

$$\beta = C_1 - C_2 \times \exp(-C_3 \times C_d \times LAI),$$

where $C_1 = 0.32$, $C_2 = 0.26$, and $C_3 = 15.1$ are model constants related to the bulk surface drag coefficient (Massman 1997). The three constants have been tested for several canopies (Chen et al., 2013b; Cammalleri et al., 2010) and evaluated as one of the best solutions for canopy turbulent-flux parameterization (Cammalleri et al., 2010). C_d is the drag coefficient, which typically equals 0.2 (Goudriaan, 1977); d is displacement height, which is derived from HC and the wind speed extinction coefficient (Su, 2002; Su et al., 2001).
As Chen et al. (2013b) have pointed out, HC is vital for turbulent heat simulations, which makes accurate estimation of HC for the Chinese landmass important for this study. A remote-sensing-based canopy height method (Chen et al., 2013b) was further developed to estimate canopy height distribution for the whole China in this study. Simard et al. (2011) produced a global forest canopy-height map using data from the Geoscience Laser Altimeter System (GLAS) aboard ICESat (Ice, Cloud, and land Elevation Satellite). However, short-canopy (e.g. maize, rice, wheat) height information cannot be acquired by laser techniques. Since short-canopy height usually varies by season throughout the year – crops are planted in spring and harvested in autumn – we calculated short-canopy height using an NDVI-based equation from Chen et al. (2013b):

\[
HC = HC_{\text{min}} + \frac{HC_{\text{max}}-HC_{\text{min}}}{(NDVI_{\text{max}}(x,y)-NDVI_{\text{min}}(x,y))} \times (NDVI(x,y) - NDVI_{\text{min}}(x,y)),
\]

(8)

where \(HC_{\text{max}}\) and \(HC_{\text{min}}\) are the maximum and minimum short-canopy height; \(HC_{\text{min}}\) is set to 0.0012 m (Chen et al., 2013b); and \(HC_{\text{max}}\) is set to 2.5 m, corresponding to the greatest height of seasonal crops in China. \(NDVI_{\text{min}}\) and \(NDVI_{\text{max}}\) are a matrix of minimum and maximum NDVI values during our 10-year study period. Each short-canopy pixel was given an \(NDVI_{\text{min}}\) and \(NDVI_{\text{max}}\) value to calculate the canopy height. The NDVI-based short-canopy height method above was used to fill relevant pixels with forest canopy heights of less than 10 m. Higher canopy heights (greater than 10 m) were assumed to be constant, i.e. with no seasonal change. By merging canopy heights greater than 10 m and variable short-canopy data, we constructed dynamic monthly maps of canopy heights for the Chinese landmass for the period of 2001–2010.
These maps were then used to calculate land surface heat fluxes. Figure 2 gives an example of derived canopy height at 11 China flux stations.

3 Data and validation

Our modeling approach makes use of a variety of satellite-based sensor data and meteorological forcing data to estimate monthly energy and water fluxes across China. The forcing data can come from satellite-based or reanalysis datasets. Due to the influence of weather, satellite-sensed visible and thermal band data (e.g. NDVI, albedo, LST) often have spatial and temporal gaps in daily data. Various temporal and spatial gap-filling algorithms have been developed to produce continuous monthly data for satellite-sensed variables (Chen et al., 2004; Moody et al., 2005). In order to avoid both spatial and temporal gaps in the final product, we selected some specific satellite-sensed datasets for this study (see Table 1). Detailed information about each input variable is described in following subsections.

The longest period covered by the forcing dataset is approximately 31 years; the shortest is about 10 years. Spatial resolution of the dataset varies from 0.01 to 0.25 degrees and its sample frequency from 3 hours to 1 month. The meteorological forcing data developed by the Institute of Tibetan Plateau Research, Chinese Academy of Sciences (hereafter referred to as ITPCAS forcing data) (He, 2010) was constructed to study meteorological variation in China. ITPCAS forcing data covers the entire landmass of China and has the highest temporal resolution among the input datasets used. Other variables such as LST and albedo, for example, have coarser temporal resolutions (monthly) and global coverage. When combining data of different spatial and temporal resolutions, both spatial and temporal scaling issues need to be addressed.
Estimates of land-surface energy flux can be subject to large errors, due to bias in the meteorological forcing input data. The spatial distribution of meteorological variables is closely related to topography (Li et al., 2013). When interpolating meteorological input variables to finer scales, these effects have to be accounted for (Sheffield et al., 2006), which goes beyond the scope of our study. Therefore we chose to resample the satellite product of high spatial resolution to a lower spatial resolution that matches the resolution of the meteorological input data. Also, the meteorological data were averaged to monthly values that have the same temporal resolution as the remotely-sensed input variables. ITPCAS forcing data provides us data of the highest spatial resolution among the meteorological forcing data currently available (e.g. ERA-interim, NCEP, GLDAS, MERRA). Taking into account of all these items, our aim was to produce a monthly product of 0.1 × 0.1 degree resolution land-surface heat fluxes that contains neither spatial nor temporal gaps and can be used to study seasonal and inter-annual variability in the hydrological and energy cycles of China.

3.1 Input datasets and their validations

3.1.1 Meteorological forcing data

In studies previous to ours, reanalysis data have been applied in many different ways, for example to construct land-surface forcing data (Sheffield et al., 2006), to detect climate trends (Taniguchi and Koike, 2008), and to investigate water and energy cycles at regional and continental scales (Roads and Betts, 2000). Reanalysis data has also been applied by the remote sensing community to derive estimates of global terrestrial evapotranspiration and gross primary production (Mu et al., 2007; Yuan et al., 2010). Few studies, however, have used reanalysis data together with remotely-
sensed ground data to derive global land-energy fluxes (sensible heat flux, latent heat flux, net radiation, etc.).

Researchers have developed several kinds of reanalysis data. Comparisons and evaluations of these reanalysis products with in-situ observations have been performed for individual sites, specific regions, and the entire globe (Wang and Zeng, 2012; Decker et al., 2011). It is well known that inaccuracies existing in reanalysis forcing data may have substantial impacts on the simulation of land-surface energy partitioning. It is difficult to choose which reanalysis data is better for use as forcing data. Additionally, the spatial resolution of all of the above reanalysis/forcing datasets is not as high as that of remote sensing data. The ITPCAS forcing dataset was produced by merging a variety of data sources. This dataset benefits in particular from the merging of information from 740 weather stations operated by the China Meteorological Administration that have not been used in other forcing data. The dataset has already been used to run land surface models and has been shown to be more accurate than other forcing datasets (Chen et al., 2011; Liu and Xie, 2013). ITPCAS meteorological forcing data include variables such as instantaneous near-surface air temperature (Ta), near-surface air pressure (P), near-surface air specific humidity (Q), near-surface wind speed (Ws) at a temporal resolution of 3 hours, 3-hourly mean downward surface short-wave (SWD) and downward surface long-wave (LWD) radiation. The time period covered is from 1979 to 2010; the spatial resolution has a grid size of 0.1 × 0.1 degrees.

3.1.2 MODIS11C3 land surface temperature processing
MODIS (Moderate-resolution Imaging spectroradiometer) sensors have been used to produce several global and continental scale LST datasets. MOD11C3 V5 and MYD11C3 V5 products (Wan, 2009) are validated over a range of representative conditions with an average bias of less than 1 Kelvin (Coll et al., 2009; Wan and Li, 2008). The MOD11C3 V5 monthly LST product, MOD11C3 and MYD11C3, has a 0.05-degree grid size, a monthly temporal resolution without gaps and covers the period March 2000 to October 2012 near present. It provides monthly daytime and night-time LST values. In our study we averaged the daytime and night-time values of MOD11C3 and MYD11C3 to represent monthly means.

After spatially interpolating the monthly MOD11C3 V5 mean LST from 0.05×0.05 degree to 0.1×0.1 degree resolution, we picked out LST values of pixels that included the 11 flux tower stations from which in-situ measurements were gathered. The time series comparisons of LST with the ground measurements were shown by Fig. 2. It shows that the processed monthly LST can present the seasonal variations in LST over different land covers very well. The pixel values were validated against the in-situ LST measurements. Detailed information about each station is given in Subsection 3.2. The linear correlation ($R = 1.0$), RMSE ($=1.9$ K) and MB (mean value of the satellite data minus in-situ observation = 0.5 K) indicate that the quality of the merged remotely-sensed monthly LST data in China is high. They also show that MOD11C3 V5 LST captures the in-situ LST variability of different elevations and land surfaces, which is described in Subsection 4.1.

3.1.3 Albedo
Land surface albedo determines the fraction of short-wave radiation absorbed by the ground, thus influencing the surface energy budget. Studies of land-surface energy balance require temporal and spatial albedo input data without gaps. Several research projects have been devoted to producing long-term time series of surface albedo from various satellite-borne sensors (Riihel et al., 2013; Muller et al., 2012; Liu et al., 2013a). However most of the albedo products do not provide gap-filled time-series albedo maps. Taking MODIS MCD43B albedo product as an example, 20 to 40% of the pixels of global landmass miss valid albedo values every year (Liu et al., 2013a). Twenty percent invalid values in albedo input data will result in the same amount of empty values in heat flux output, an issue that limits albedo data that can be used in our study. After checking several albedo products (including GlobAlbedo (Muller et al., 2012), CMSAF cLouds, Albedo and RAdition Surface Albedo (CLARA-SAL albedo) (Riihel et al., 2013), and MCD43B), we decided to use GlobAlbedo as its data does not contain spatial or temporal gaps. This albedo dataset is based on a monthly sample and has a spatial resolution of 0.05 degrees, which we interpolated to a 0.1 degree resolution for our study.

3.1.4 NDVI

The Normalized Difference Vegetation Index (NDVI) is regarded as a reliable indicator of vegetation parameters. NDVI has been widely used to explore vegetation dynamics and their relationships with environmental factors (Piao et al., 2006). NDVI data from the Systeme Pour l’Observation de la Terre (SPOT) VEGETATION sensor, distributed by Vito, have a spatial resolution of 1 km × 1 km and a temporal resolution of 10 days (synthesized on days 1, 11 and 21 of each month). In order to reduce noise resulting from clouds, the maximum NDVI value in a month for each pixel is selected to represent the canopy status of that month.
3.1.5 Canopy fraction

Canopy fraction (f_c) is defined as the fraction of ground surface covered by the vegetation canopy (varying from 0 to 1). f_c in SEBS is used to distinguish the contributions of vegetation and soil to the roughness parameterization. Here f_c was derived from NDVI data using the following equation:

$$f_c = \frac{NDVI - NDVImin}{NDVImax - NDVImin}.$$

3.2 Validation data

The product generated by our model needed to be validated by comparing it with an independent observational dataset. The energy balance measurement system (eddy covariance, four component radiation and ground heat flux) at flux sites is widely accepted as a method for direct measurement of energy and fluxes and is widely applied for assessing global evapotranspiration products (Zhang et al., 2010; Jung et al., 2011; Yan et al., 2012; Fisher et al., 2008).

To validate the product, we compiled a dataset from 11 flux stations in China with land cover types including bare soil, alpine meadow, forest, cropland, orchard, grassland, and wetlands. Elevations of these stations range from 5 m to 4800 m. The observational dataset includes data from Maqu (MQ) (Chen et al., 2013b; Wang et al., 2013), Wenjiang (WJ) (Zhang et al., 2012), Bijie (BJ) (Ma et al., 2006), Miyun (MY) (Liu et al., 2013b), Daxing (DX) (Liu et al., 2013b), Guantao (GT) (Liu et al., 2011; Liu et al., 2013b), Yucheng (YC) (Flerchinger et al., 2009), Dongtan (DT) (Zhao et al., 2009), SC (Semi-Arid Climate and Environment Observatory of Lanzhou University) (Huang et al., 2008; Wang et al., 2010; Guan et al., 2009), and Weishan (WS) stations (Lei and Yang, 2010b, a). Detailed information about each site is listed in Table 2.
Half-hourly fluxes were processed using standardized quality control procedures, which are described in the literature references for each station. The half-hourly H, LE, and four component radiation were then averaged to monthly values. Monthly average values derived from less than 70% of the flux data in each month were not used in the validations. Gap filling was not used for the flux measurement data.

4 Results

4.1 Canopy height assessment

We checked the canopy height variations at the 10 flux station produced by equation 8 and GLAS forest height (Figure 3). The derived canopy height for AL is not higher than 0.2 m, which is reasonable for the local land cover. YC, GT, and WS stations located in the North China, represent a typical agricultural land, where crops mature twice per year. The highest canopy height is around 1.5 m, a similar magnitude to the height of maize in summer. The step decrease in canopy height in June at these three stations is due to that wheat/maize is harvested and new seeds are sown during this period. This step variation in the canopy height also causes similar step changes in sensible and latent heat flux (shown by Fig. 5). Although the land cover near WJ station is crop, it is more surround by forest in a 10 km diameter. The GLAS forest height reflects this ground truth. These canopy height assessments at the observation sites enable us to consider that the developed method in this work is an appropriate one for solving scarcity of canopy height information at a continental area.

4.2 Validation against flux tower measurements
The accuracy of remote-sensing-based land-surface heat fluxes is questionable without validation against ground-based measurements (Meir and Woodward, 2010). This subsection describes the validation of the SEBS model against heat flux measurements from a diverse range of climates.

In order to analyze the source of flux calculation errors, variables related to surface radiation fluxes were all validated against flux station observations. Table 3 shows that H and LE have RMSE values slightly less than 22 W/m², which is lower than the RMSE values of products of other statistical methods (see Table 7 in (Wang et al., 2007) and Table 5 in (Jiménez et al., 2009)). Indeed, Kalma et al. (2008) assessed 30 published LE validation results obtained by using ground flux measurements and reported an average RMSE value of about 50 W/m² and relative errors of 15–30%. The RMSE of our LE dataset is significantly lower than their averaged RMSE value.

We also compared our validation results with that of other, similar products produced by a previous version of SEBS. Vinukollu et al. (2011b), for instance, produced global land surface fluxes with RMSE values of 40.5 W/m² (sensible flux) and 26.1 W/m² (latent flux) (calculated from Table 4 in (Vinukollu et al., 2011b)), which are larger than those in our study. The difference could be due to the model improvement and more accurate meteorological forcing dataset used in our study. Table 3 lists the values of the statistical parameters for the validation of a data product produced by GLDAS (which has the highest spatial resolution compared with other available terrestrial energy-flux datasets) against the same measurements from the Chinese flux stations as used in our study. According to the mean values of the statistical variables, the quality of our flux dataset is comparable to GLDAS’ model and data assimilation results. These
comparisons of accuracy demonstrate that our revised model is efficient for producing a high-resolution dataset of land-surface energy fluxes for China.

Net radiation has relatively higher RMSE and MB values than H, LE and G_0 in the dataset because its accuracy is dependent on the accuracy of the other variable estimates (albedo, LST, SWD, LWD, LWU, etc.). Any errors in these variables can cause bias in net radiation. LWD, for example, has a linear-fitting slope value of 0.9, with most points located around the fitting line (Figure 4). The correlation coefficient is as high as 0.98, thus demonstrating that there is still room for improvement of the LWD algorithms. LWD in ITPCAS was calculated with algorithms developed from measurements from across the Tibetan Plateau. The LWD algorithms may not, therefore, be accurate for other parts of China (K. Yang, personal communication). This underlines the need for more accurate LWD radiation fluxes in order to improve the accuracy of turbulent fluxes and evapotranspiration.

In addition to the statistical evaluation of model results against observations, seasonal and interannual changes in the model results also need to be checked. Yucheng station, which is an agricultural experimental station with winter wheat and summer maize as dominant crops was taken as an example (Figure 52). Crops at Yucheng station mature twice per year, which is representative of warm temperate farming cropland, typical for the North China Plain. A two-year flux dataset was used to compare against values extracted from our model-derived product. The inter-annual and seasonal LST and LWU data closely match the in-situ observations. The SWD term also successfully captures seasonal variations. LWD is systematically lower than observations. The LE produced at Yucheng station not only captures seasonal variation, but also responds at step stages, which occur when the wheat is harvested or maize seeds have just been
sown (from June to August). The increased sensible heat and decreased latent heat flux observed
in July 2003 were caused by the wheat harvest, however this signal change is not captured by the
model result. The simulated sensible and latent heat produced by SEBS has a one-month lag
when compared to reality. This phenomenon is caused by adopting a maximum monthly NDVI
value, resulting in faulty representation of canopy status changes in the month of June.

The Semi-Arid Climate and Environment Observatory of Lanzhou University (SC station) is
situated on China’s Loess Plateau, at 1965.8 m above sea level. Annual mean precipitation there
is 381.1 mm and annual evapotranspiration is 1528.5 mm (Huang et al., 2008). Being typical of
stations operating under arid conditions, its flux measurements were compared with the grid
point values extracted from the model product (Figure 63). In 2008 the land surface around the
station was covered by snow from 19 January to 20 February. Consequently the GlobAlbedo
value was high for February. Unexpectedly, albedo was relatively low for January, which could
be caused by the coarse temporal sampling of the station pixel by the satellite sensor. The
calculated monthly sensible heat and latent heat in January 2008 have biases of -11.7 (with an
observed monthly mean sensible heat = 15 W/m²) and -7.6 W/m² (with an observed monthly
mean latent heat = 4.8 W/m²), respectively. The relatively large bias for SC station when
covered with snow may be caused by the mixed pixel around the station.

The results of other stations have been included in supplementary materials submitted with this
paper. Comparison with the results of these other stations shows that model estimates of surface
energy balance variables match the magnitude and seasonal variation observed at stations in
several contrasting ecosystems. Comparisons between the flux-tower-measured and the modeled
fluxes show that latent fluxes were more accurate than sensible fluxes. Comparisons with other

20
studies, which are presented in Table 4, show that the accuracy of our dataset is one of the best among high-resolution datasets of land surface fluxes.

4.32 Spatial distribution of land-surface energy fluxes.

Using maps of average annual land-surface radiation and energy fluxes, we analyzed the spatial patterns of radiation and energy fluxes for the Chinese landmass and compared them with other products, such as GLDAS. The highest values of downward surface solar radiation (Figure 74a) are located in the southwest of the Tibetan Plateau, while the lowest values occur in the Sichuan Basin (SB). The highest levels of upward short-wave radiation (Figure 74c) occur around the snow-covered peaks of the Himalaya (HM), Karakorum (KRM) and Kunlun (KLM), and the Qilian (QLM) and Nyainqentanglha (NQM) mountain ranges. The strongest net solar radiation (SWD minus SWU) on the Chinese landmass occurs in the southern part of the Tibetan Plateau (see supplementary materials). The downward and upward long-wave radiation (Figures 74b and 74c) on the Tibetan Plateau are the lowest for the entire Chinese landmass. Southern China has the highest levels of upward and downward long-wave radiation. The highest values of net long-wave radiation (LWU minus LWD) occur in the southern and western parts of the Tibetan Plateau (see supplementary materials).

Figure 85 shows that northwestern China (NWC), the western Tibetan Plateau (TP), the inner Mongolian Plateau (MP) and the Loess Plateau (LP) have the highest yearly average values for surface sensible-heat flux. Croplands of the northern China Plain (NCP, including the lowlands of Shandong, Henan, and Hebei provinces) and the northeastern China Plain (NEP, including the
lowlands of Liaoning, Jilin, and Heilongjiang provinces) have low average yearly values for sensible heat flux. The Pearl River delta (PRD) and Tarim (TRB) and Sichuan (SCB) basins also have low levels of sensible heat flux, as do the Yinchuan (YCB) and the inner Mongolian basins (IMB) along the Yellow River. This spatial distribution is consistent with GLDAS results (see supplementary materials).

Simulated annual latent heat fluxes (Figure 85b) exhibit a southeast to northwest decreasing gradient, which is consistent with other studies (Liu et al., 2013c). The southeastern Tibetan Plateau has high levels of annual latent heat flux. The Gobi desert, in the northwest of China (NWC), has the lowest annual latent heat flux, followed by the western Tibetan Plateau and the inner Mongolian Plateau (MP). Lake regions along the Yangtze River and the region of basins along the Yellow River have relatively high levels of latent heat flux.

The highest levels of annual average surface net radiation (Figure 85c) can be found in southwestern China and the Lhasa Basin (LB); the lowest levels occur in the Sichuan (SCB) and Junggar Basins (JB). The highest levels of annual average ground-heat flux (Figure 85c) are to be found in western China, due to large amounts of incoming solar radiation that occur under dry conditions. The monthly average of G0 is negligible when compared with other fluxes.

The role of plateau heating on Asia’s monsoons is being discussed vigorously (Qiu, 2013; Wu et al., 2012; Boos and Kuang, 2010). Figure 96 shows seasonal comparisons of H between boreal winter (DJF), spring (MAM), summer (JJA) and autumn (SON). The largest area of positive sensible heating occurs in spring. Lee et al. (2011) have shown that contrasting sensible heat fluxes between the Chinese landmass and the seas surrounding it during the pre-monsoon period (April-May) affect monsoon development in East Asia. Figure 96 (a) shows that sources of
sensible heating in spring occur over the Tibetan and several other plateaus in China. During
summer, the highest sensible heat fluxes are to be found on the western Tibetan Plateau, the
eastern Loess Plateau (LP) and in northwestern China (NWC).

LE in summer has the largest area of high latent heating, followed by that in spring, autumn and
winter (Figure 102). Latent heat in summer is highest in southeastern and southern China as a
result of abundant rainfall in these regions. Similarly on irrigated land, such as that found in
Yinchuan (YB), the inner Mongolian basin (IMB) and the downstream basins of the Tianshan
(TM) and Kunlun (KLM) mountains, latent heat and evapotranspiration are high due to the
ample supply of water in summer. Latent heat fluxes in autumn and winter are significantly
lower than those of the other two seasons. The magnitudes and spatial patterns of LE in China of
our product are generally consistent with other reports (Yao et al., 2013; Mu et al., 2007; Jung et
al., 2010).

Net radiation in summer has the highest values of the four seasons. Most of the Chinese
landmass acts as a source of surface energy for the atmosphere (Figure 114).

4.4.3 Trend analysis

The ability to capture the inter- and intra-annual variation for each land-surface energy variable
is of interest to researchers of monsoon phenomena and climate change (Zhu et al., 2012). Indeed,
understanding these variations is essential for studies on climate change and water-resource-
related issues. We have calculated annual average values for each flux variable. The
nonparametric Mann-Kendall test (MK) is one of the most widely used methods for hydro-
meteorological time series analysis (Liu et al., 2013d; Gan, 1998). The MK method was applied to the series of annual average fluxes to check variations during the period 2001–2010. The resulting slope indicates that downward surface short-wave radiation increased during that decade over the majority of the Tibetan Plateau (Figure 129).

The ground solar measurements at China Meteorological Administration (CMA) stations during 2003–2006, as shown in Figure 1b of Yang et al. (2012), confirms the increasing trend of downward surface short-wave radiation found in our study. The annual mean visibility measured at these stations also displays an increasing trend (Figure 2a of Yang et al. (2012)), while ERA-40 reanalyzed precipitable-water and station-observed specific humidity show a decreasing trend from 2000 to 2006 (Figure 3a of Yang et al. (2012)). These results indicate that the atmosphere over the plateau is becoming drier, which would explain why SWD has increased during the decade.

The upward short-wave radiation over the Himalaya (HM), the Ganges (GM), the Karakorum (KRM), and the Qilian (QLM) and Nyainqentanglha (NQM) mountain ranges has also increased over the last 10 years, which may be caused by the glacial retreat that has occurred in these areas (Scherler et al., 2011; Yao et al., 2004). Lhasa basin (LB) has the steepest rising trend in LWU, perhaps because of the relatively greater degree of anthropogenic (e.g., urbanization) activity occurring in this area. The trend analysis did not reveal any clear spatial pattern in downward long-wave radiation. Net radiation over several high mountain ranges (including the Himalaya, the Ganges, the Karakorum and the Qilian and Nyainqentanglha mountain ranges) increased by approximately 5 W/m² between 2001 and 2010 (Figure 130). The strongest increase in net radiation occurred in the central part of the Tibetan Plateau. As Matthew (2010) has pointed out,
soil moisture in the central Tibetan Plateau showed an increasing trend from 1987 to 2008. Wetter soil can cause the ground surface to absorb more net radiation and thus increase latent heat flux. Moreover, wetter soil can increase soil heating capacity (Guan et al., 2009) and so further increase ground heat flux. The increases in net radiation and soil moisture may also explain a rising trend in latent heat in the central Tibetan Plateau. Clearly, the plateau is experiencing accelerated environmental changes (Zhong et al., 2011; Salama et al., 2012). Indeed, land-surface radiation and energy trend analyses also show that the Tibetan Plateau is experiencing a relatively stronger change in land-surface radiation (verified by Tang et al. (2011) and energy exchange than other parts of China.

5 Conclusions and discussion

In view of China’s highly fragmented landscape, high-resolution land-surface heat flux maps are necessary for hydrological studies. As China includes arid, semi-arid, humid, and semi-humid regions, quantifying its water and energy budgets is a challenge. We have developed the surface energy balance system (SEBS) further to produce a land-surface heat flux dataset at a continental scale of higher resolution than datasets derived using other methods. Generally, the global surface energy flux data sets, including reanalysis data, do not have enough spatial and temporal resolution when looking at the national-level fluxes. The surface flux data sets from reanalysis data sets still contain large uncertainty, partly due to the deficiency in their land surface process model that simulate land surface temperature by solving soil thermal transport equations (Chen et al., 1996) and usually result in a large error in LST simulation (Chen et al., 2011; Wang et al., 2014) if the model is not properly calibrated by measurements (Hogue et al., 2005). So the
The hypothesis tested in this paper is if it is possible to neglect the complex process in the soil by using satellite observed land surface temperature directly to calculate the land surface fluxes at continental scale? This study has demonstrated a benchmark on how to use satellite to derive a land surface flux dataset for a continental area on a personal laptop which is absolutely not feasible for the land surface process modeler to do in such a time and resource economic way. We have overcome the shortages of previous remotely-sensed evapotranspiration products which have null values in barren and desert areas. We also found a solution on how to produce a dynamic surface roughness length due to variations in the canopy height, which is closer to the reality, for a continental area. Usually, the surface roughness length is given a fixed value in numerical models. In summary, using remote sensing data and surface meteorological information, an independent data product of monthly resolution has been developed for land-surface heat flux analysis. We have validated our remote-sensing-based approach with in-situ observations from 11 flux stations in China. Taking into account the limitations of available spatial data and computing resources, we applied the model to the entire Chinese landmass using a 0.1-degree resolution meteorological dataset, MODIS LST, vegetation indices and other variables to generate a climatological dataset of land-surface energy balance for a 10-year period. The modeling results for both pixel-point and spatial distribution demonstrate that this approach meets our aims in terms of (a) being robust across a variety of land cover and climate types and (b) performing well for the temporal and spatial scales of interest. The spatial distribution maps generated for each variable of surface energy balance give important background information on the terrestrial hydrology and energy cycles. This product also demonstrates the impact of topography and climatic conditions on land–air energy and moisture exchanges in China.
The applicability of remote-sensing-based estimates of land surface fluxes is hampered by limited temporal coverage of satellite sensors (Ryu et al., 2012). Remote sensing data are snapshots of the land surface status at a particular point in space and time (Ryu et al., 2011). It is challenging to compare remote-sensing-based monthly flux data with ground measurements that are made on time scales ranging from half-hourly through to monthly. The accuracy of land surface heat fluxes is largely dependent on the remotely sensed land surface temperature. Here we have made an assumption that the averaged Aqua and Terra sensors sensed LST in each month can represent the monthly average LST. Terra satellite sensor passes twice a day (at about 10:30am, and 22:30pm local time), also the Aqua satellite passes twice a day (at about 01:30am, and 13:30pm local time). So MODIS have four samples each day. The samples may not be enough for calculating the monthly LST, also due to the cloud noise. Besides, the time period of MODIS datasets is not longer than 15 years which may limit application of our dataset in climate analysis. Additionally, the sensible heat flux over forest is underestimated by present turbulent flux parameterization method in SEBS which does not take the roughness sublayer over high canopy (Bosveld, 1999) into consideration.

The energy flux product we have developed has a spatial resolution of approximately 10 km, while flux towers have a footprint of tens to hundreds of meters. The tower footprint may not be representative of the larger pixel of the product, and this mismatch will result in errors if the mean of the satellite pixel is different from that of the flux tower footprint. Remote-sensing-based studies stress that direct comparison is a challenge because scale mismatch (Norman et al., 2003) and heterogeneity of the land surface reduce the spatial representativeness of ground-site measurements (Mi et al., 2006). Another challenge is validating the grid-box-based simulation
results on the scale of the Chinese landmass, since reliable observations of flux data are only available from a few sites in the simulated region.

Potential effects of changes in turbulent land surface heat fluxes on the monsoon over East Asia (Lee et al., 2011) as a result of China’s recent urbanization can be studied further using our product. As an independent satellite-based product, it can also be used as a data source for evaluating land surface models. We also produced an evapotranspiration product for China land area using the dataset in this paper. The land surface fluxes and evapotranspiration product can be downloaded from the URL. Recent results will be shared when the forcing dataset is available: https://drive.google.com/folderview?id=0B7yGrB1U9eDec2JFbnA5eldVHe&usp=sharing

Acknowledgements

This study was supported by the Chinese National Key Program for Developing Basic Sciences (2010CB951701), the Chinese National Natural Science Foundation (41275010), CAS-KNAW joint PhD project, the ESA WACMOS project and the FP7 CORE-CLIMAX project. The forcing dataset used in our study was developed at the Data Assimilation and Modeling Center for Tibetan Multi-spheres, Institute of Tibetan Plateau Research, Chinese Academy of Sciences. We thank Professor Yang Kun for his comments during the writing of this paper. For our study we used eddy covariance data acquired from the scientific community and networks. We
acknowledge Wenjiang, Ali, Yucheng, and Weishan stations, Nagqu Station of Plateau Climate and Environment, Magqu Zoige Plateau Wetlands Ecosystem Research Station, and the Semi-Arid Climate and Environment Observatory of Lanzhou University for providing their in-situ measurement datasets. We also acknowledge Professor Xiangde Xu (CMA), Dr. Lide Tian (ITP, CAS), Dr. Yu Zhang (CAREERI, CAS), Dr. Shouhua Xu (IGSNNR, CAS), Dr. Bin Zhao (Fudan University), and Dr. Huimin Lei (Tsinghua University) for providing us with their flux datasets. Special thanks to the editor, Dr. Nobuko Saigusa, for her kind help during the collection of Chinaflux network dataset.

Bosveld, F. C.: Exchange processes between a coniferous forest and the atmosphere, Ph.D, Wageningen University, 181 pp., 1999.

Timmermans, J.: Coupling optical and thermal directional radiative transfer to biophysical processes in vegetated canopies, Phd, faculty of geo-information science and earth observation, University of Twente, Enchede, The Netherlands, 1-157 pp., 2011.

Yan, H., Wang, S. Q., Billesbach, D., Oechel, W., Zhang, J. H., Meyers, T., Martin, T. A.,
Matamala, R., Baldocchi, D., Bohrer, G., Dragoni, D., and Scott, R.: Global estimation of
evapotranspiration using a leaf area index-based surface energy and water balance model,
Yang, K., Koike, T., Fujii, H., Tamagawa, K., and Hirose, N.: Improvement of surface flux
parametrizations with a turbulence-related length, Quarterly Journal of the Royal Meteorological
Yang, K., Ding, B., Qin, J., Tang, W., Lu, N., and Lin, C.: Can aerosol loading explain the solar
dimming over the Tibetan Plateau?, Geophys. Res. Lett., 39, L20710, 10.1029/2012gl053733,
2012.
Yao, T., Wang, Y., Liu, S., Pu, J., Shen, Y., and Lu, A.: Recent glacial retreat in High Asia in
China and its impact on water resource in Northwest China, Science in China Series D: Earth
Sciences, 47, 1065-1075, 10.1360/03yd0256, 2004.
Yao, Y., Liang, S., Cheng, J., Liu, S., Fisher, J. B., Zhang, X., Jia, K., Zhao, X., Qin, Q., Zhao,
latent heat flux in China based on a modified Priestley–Taylor algorithm, Agricultural and Forest
ChinaFLUX and evaluation of its eddy covariance measurement, Agricultural and Forest
Yuan, W., Liu, S., Yu, G., Bonnefond, J.-M., Chen, J., Davis, K., Desai, A. R., Goldstein, A. H.,
Gianelle, D., Rossi, F., Suyker, A. E., and Verma, S. B.: Global estimates of evapotranspiration
and gross primary production based on MODIS and global meteorology data, Remote Sensing of
Zhao, B., Yan, Y., Guo, H., He, M., Gu, Y., and Li, B.: Monitoring rapid vegetation succession
in estuarine wetland using time series MODIS-based indicators: An application in the Yangtze
Zhong, L., Su, Z., Ma, Y., Salama, M. S., and Sobrino, J. A.: Accelerated changes of
environmental conditions on the Tibetan Plateau caused by climate change, Journal of Climate,
24, 6540-6550, 10.1175/jcli-d-10-05000.1, 2011.

Table 1. Input datasets used for calculating land surface fluxes for China (see Sections 2 and 3 for an explanation of abbreviations)

<table>
<thead>
<tr>
<th>Variables</th>
<th>Data source</th>
<th>Temporal resolution</th>
<th>Availability</th>
<th>Domain</th>
<th>Spatial resolution (degrees)</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWD</td>
<td>ITPCAS</td>
<td>3 hours</td>
<td>1979-2010</td>
<td>China land</td>
<td>0.1</td>
<td>Reanalysis</td>
</tr>
<tr>
<td>SWU</td>
<td>ITPCAS & GlobAlbedo</td>
<td>3 hours</td>
<td>1982-2009</td>
<td>China land</td>
<td>0.1</td>
<td>Satellite & Reanalysis</td>
</tr>
<tr>
<td>LWD</td>
<td>ITPCAS</td>
<td>3 hours</td>
<td>1979-2010</td>
<td>China land</td>
<td>0.1</td>
<td>Reanalysis</td>
</tr>
<tr>
<td>LWU</td>
<td>MOD11C3 & MYD11C3 V5 & Emis of Chen et al. 2013</td>
<td>1 month</td>
<td>2000-2012</td>
<td>China land</td>
<td>0.05</td>
<td>Satellite</td>
</tr>
<tr>
<td>Ta</td>
<td>ITPCAS</td>
<td>3 hours</td>
<td>1979-2010</td>
<td>China land</td>
<td>0.1</td>
<td>Reanalysis</td>
</tr>
<tr>
<td>Q</td>
<td>ITPCAS</td>
<td>3 hours</td>
<td>1979-2010</td>
<td>China land</td>
<td>0.1</td>
<td>Reanalysis</td>
</tr>
<tr>
<td>Ws</td>
<td>ITPCAS</td>
<td>3 hours</td>
<td>1979-2010</td>
<td>China land</td>
<td>0.1</td>
<td>Reanalysis</td>
</tr>
<tr>
<td>P</td>
<td>ITPCAS</td>
<td>3 hours</td>
<td>1979-2010</td>
<td>China land</td>
<td>0.1</td>
<td>Reanalysis</td>
</tr>
<tr>
<td>LST</td>
<td>MOD11C3 V5 & MYD11C3 V5</td>
<td>1 month</td>
<td>2000-2012</td>
<td>Global</td>
<td>0.05</td>
<td>Satellite</td>
</tr>
<tr>
<td>h\textsubscript{c}</td>
<td>GLAS & SPOT VEGETATION</td>
<td>1 month</td>
<td>2000-2012</td>
<td>China land</td>
<td>0.01</td>
<td>Satellite</td>
</tr>
<tr>
<td>A</td>
<td>GlobAlbedo</td>
<td>1 month</td>
<td>2000-2010</td>
<td>Global</td>
<td>0.05</td>
<td>Satellite</td>
</tr>
<tr>
<td>NDVI</td>
<td>SPOT VEGETATION</td>
<td>10 days</td>
<td>1998-2012</td>
<td>Global</td>
<td>0.01</td>
<td>Satellite</td>
</tr>
<tr>
<td>LAI</td>
<td>MOD15A2 & MCD15A2</td>
<td>8 days</td>
<td>Feb, 2000- Jul, 2002 Aug, 2002-2012</td>
<td>Global</td>
<td>0.01</td>
<td>Satellite</td>
</tr>
<tr>
<td>Site</td>
<td>Lat(deg)/Lon(deg)</td>
<td>Land cover</td>
<td>Eddy covariance</td>
<td>Radiometer</td>
<td>Measurement period</td>
<td>Site elevation (m)</td>
</tr>
<tr>
<td>------</td>
<td>-------------------</td>
<td>------------</td>
<td>----------------</td>
<td>------------</td>
<td>--------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>MQ</td>
<td>33.8752N/102.1406E</td>
<td>Alpine meadow</td>
<td>CSAT3,Licor7500 (10 HZ)</td>
<td>CNR-1</td>
<td>Apr 2009 - May 2010</td>
<td>3439</td>
</tr>
<tr>
<td>AL</td>
<td>33.3905N/79.7035E</td>
<td>Bare soil</td>
<td>CSAT3,Licor7500 (10 HZ)</td>
<td>CNR-1</td>
<td>Jul 2010 - Dec 2010</td>
<td>4700</td>
</tr>
<tr>
<td>BJ</td>
<td>31.5686N/91.8964E</td>
<td>Alpine grass</td>
<td>CSAT3,Licor7500 (10 HZ)</td>
<td>CNR-1</td>
<td>Jan 2008 - Dec 2010</td>
<td>4520</td>
</tr>
<tr>
<td>MY</td>
<td>40.6038N/117.3233E</td>
<td>Orchard</td>
<td>CSAT3,Licor7500 (10 HZ)</td>
<td>CNR-1</td>
<td>Jan 2008 - Dec 2010</td>
<td>350</td>
</tr>
<tr>
<td>DX</td>
<td>39.8213N/116.4270E</td>
<td>Crop</td>
<td>CSAT3,Licor7500 (10 HZ)</td>
<td>CNR-1</td>
<td>Jan 2008 - Dec 2010</td>
<td>100</td>
</tr>
<tr>
<td>GT</td>
<td>36.5150N/115.1274E</td>
<td>Crop</td>
<td>CSAT3,Licor7500 (10 HZ)</td>
<td>CNR-1</td>
<td>Jan 2008 - Dec 2010</td>
<td>30</td>
</tr>
<tr>
<td>DT</td>
<td>31.5159N/121.9717E</td>
<td>Wetland</td>
<td>CSAT3,Licor7500 (10 HZ)</td>
<td>CNR-1</td>
<td>Jan 2005 - Dec 2007</td>
<td>5</td>
</tr>
<tr>
<td>SC</td>
<td>35.955N/104.133E</td>
<td>Dry land</td>
<td>CSAT3,Licor7500 (10 HZ)</td>
<td>CNR-1</td>
<td>Jan 2007 - Dec 2008</td>
<td>1965</td>
</tr>
</tbody>
</table>
Table 3. Comparison of accuracy of our flux data product and GLDAS against in-situ measurements from 11 Chinese flux towers. MB is mean of observation minus model simulation.

<table>
<thead>
<tr>
<th></th>
<th>Energy flux</th>
<th>Radiation flux</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H (Wm$^{-2}$)</td>
<td>LE (Wm$^{-2}$)</td>
</tr>
<tr>
<td>Our</td>
<td></td>
<td></td>
</tr>
<tr>
<td>flux</td>
<td>Slope</td>
<td>0.39</td>
</tr>
<tr>
<td>data</td>
<td>Intercept</td>
<td>-0.5</td>
</tr>
<tr>
<td>product</td>
<td>RMSE</td>
<td>21.5</td>
</tr>
<tr>
<td></td>
<td>MB</td>
<td>14.7</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td>Sample</td>
<td>280</td>
</tr>
<tr>
<td>GLDAS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope</td>
<td>0.77</td>
<td>0.87</td>
</tr>
<tr>
<td>Intercept</td>
<td>20.83</td>
<td>5.1</td>
</tr>
<tr>
<td>RMSE</td>
<td>26.5</td>
<td>20.6</td>
</tr>
<tr>
<td>MB</td>
<td>-15.8</td>
<td>0.75</td>
</tr>
<tr>
<td>R</td>
<td>0.46</td>
<td>0.80</td>
</tr>
<tr>
<td>Sample</td>
<td>249</td>
<td>250</td>
</tr>
</tbody>
</table>

Table 4. Comparison of statistical values reported in similar studies

<table>
<thead>
<tr>
<th>Reference</th>
<th>Research area</th>
<th>Method</th>
<th>Statistical parameters</th>
<th>H (Wm$^{-2}$)</th>
<th>LE (Wm$^{-2}$)</th>
<th>Flux network</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>This study</td>
<td>Chinese landmass</td>
<td>SEBS</td>
<td>RMSE</td>
<td>23.1</td>
<td>21.9</td>
<td>flux towers in China</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MB</td>
<td>16.8</td>
<td>8.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>0.6</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wang et al. 2007</td>
<td>Southern Great Plains, USA</td>
<td>Regression method</td>
<td>RMSE</td>
<td>×</td>
<td>29.8</td>
<td>flux towers in Southern Great Plains, USA</td>
<td>calculated from Table 9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MB</td>
<td>×</td>
<td>12.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>×</td>
<td>0.91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jiménez et al. 2009</td>
<td>global</td>
<td>Statistical method</td>
<td>RMSE</td>
<td>×</td>
<td>×</td>
<td>AmeriFlux</td>
<td>calculated from Tables 5 and 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MB</td>
<td>-5.23</td>
<td>7.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>0.68</td>
<td>0.76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinukollu et al. 2011b</td>
<td>global</td>
<td>SEBS</td>
<td>RMSE</td>
<td>40.5</td>
<td>26.1</td>
<td>AmeriFlux</td>
<td>calculated from Table 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MB</td>
<td>27.98</td>
<td>-7.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>0.53</td>
<td>0.51</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 1. A DEMNDVI map of the Chinese landmass based on SPOT satellite data. The symbols indicate major physical phenomena: Tibetan Plateau (TP), northwestern China (NWC), inner Mongolian Plateau (MP), Loess Plateau (LP), North China Plain (NP), northeastern China Plain (NEP); Pearl River delta (PRD), Sichuan (SCB), Yinchuan (YCB), the inner Mongolian (IMB), and Lhasa (LB), Tarim (TRB), Junggar (JB) basins; the Himalaya (HM), Ganges (GM), Kunlun (KL), Karakorum (KRM), Tianshan (TM), Nyainqentanglha (NQM) and Qilian mountain (QLM) ranges. The plateau and plain letter symbols are in red type. The basins letter symbols are in green type. The flux station letter symbols are in yellow type. BlueWhite lines show several of the major rivers in China. Black lines indicate the borders of provinces.
Fig. 2 Time series comparison of monthly averaged LST derived from MOD11C3&MYD11C3 and in-situ measurements.
Fig. 3 Monthly variation of canopy height at the 10 flux stations
Figure 4 Scatter point for downward shortwave (SWD), upward shortwave (SWU), downward longwave (LWD), and upward longwave (LWU) radiation against in-situ measurement.
Figure 52. Time-series comparison of SEBS input and output variables against measurements at Yucheng station. Black lines are SEBS results; red lines are measured values.
Figure 6.3. Time-series comparison of SEBS input and output variables against measurements at SC station. Black lines are SEBS results; red lines are measured values.
Figure 74. Maps of annual average (a) downward short-wave radiation (SWD), (b) downward long-wave radiation (LWD), (c) upward short-wave radiation (SWU), and (d) upward long-wave radiation (LWU) from 2001 to 2010. Black lines show several major rivers in China.
Figure 85. Maps of multiyear (2001–2010) means of retrieved fluxes: (a) sensible heat flux (H), (b) latent heat flux (LE), (c) net radiation (Rn), and (d) ground heat flux (G0). White lines show several major rivers in China.
Figure 96. Maps of seasonal average sensible heat flux for (a) March-May (MAM), (b) June-August (JJA), (c) September-November (SON), and (d) December-February (DJF) from 2001 to 2010. Black lines show several major rivers in China.
Figure 107. Maps of seasonal average latent heat flux for (a) March-May (MAM), (b) June-August (JJA), (c) September-November (SON), and (d) December-February (DJF) from 2001 to 2010. White lines show several major rivers in China.
Figure 118: Maps of seasonal average net radiation for (a) March-May (MAM), (b) June-August (JJA), (c) September-November (SON), and (d) December-February (DJF) from 2001 to 2010. White lines show several major rivers in China.
Figure 129. Spatial trends of (a) SWD (downward short-wave), (b) LWD (downward long-wave), (c) SWU (upward short-wave), and (d) LWU (upward long-wave radiation) for the Chinese landmass from 2001 to 2010.
Figure 130. Spatial trends of (a) sensible heat flux (H), (b) latent heat flux (LE), (c) net radiation (Rn), and (d) ground heat flux (G0) on the Chinese landmass from 2001 to 2010.