Ozone production and transport over the Amazon Basin during the dry-to-wet and wet-to-dry transition seasons

M. M. Bela¹*, K. M. Longo², S. R. Freitas², D. S. Moreira², V. Beck³, S. C. Wofsy⁴, C. Gerbig³, K. Wiedemann⁴, M. O. Andreae⁵, and P. Artaxo⁶

¹Center for Earth System Science (CCST), National Institute for Space Research (INPE), São José dos Campos, Brazil
²Center for Weather Forecast and Climate Studies, National Institute for Space Research (INPE), Cachoeira Paulista, Brazil
³Max Planck Institute for Biogeochemistry, Jena, Germany
⁴Division of Engineering and Applied Science/Department of Earth and Planetary Science, Harvard University, Cambridge, MA, USA
⁵Biogeochemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
⁶Institute of Physics, University of São Paulo, São Paulo, Brazil

*now at: Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, USA
Abstract

The Regional Carbon Balance in Amazonia (BARCA) campaign provided the first Amazon Basin-wide aircraft measurements of O$_3$ during both the dry-to-wet (November and December 2008) and wet-to-dry (May 2009) transition seasons. Extremely low background values (< 20 ppb) were observed to the west and north of Manaus in both seasons and in all regions during the wet-to-dry transition. On the other hand, elevated O$_3$ levels (40–60 ppb) were seen during the dry-to-wet transition to the east and south of Manaus, where biomass burning emissions of O$_3$ precursors were present. Chemistry simulations with the CCATT-BRAMS and WRF-Chem models are within the error bars of the observed O$_3$ profiles in the boundary layer (0–3 km a.s.l.) in polluted conditions. However, the models overestimate O$_3$ in the boundary layer in clean conditions, despite lacking the predominant NO source from soil. In addition, O$_3$ simulated by the models was either within the error bars or lower than BARCA observations in mid-levels (3–5 km a.s.l.), indicating that the models do not represent the free troposphere—boundary layer gradient in O$_3$. Total tropospheric O$_3$ retrieved from OMI/MLS was higher than that simulated by the models, suggesting that the satellite observations are dominated by the middle troposphere and long-range processes and are not a good indication of O$_3$ conditions in the PBL. Additional simulations with WRF-Chem showed that the model O$_3$ production is very sensitive to both the O$_3$ deposition velocities, which were about one half of observed values, and the NO$_x$ emissions. These results have implications for the monitoring and prediction of increases in O$_3$ production in the Amazon Basin as the regional population grows.

1 Introduction

In the Amazon Basin, trace gases from biomass-burning, urban, and biogenic emissions are important sources of ozone precursors, which are efficiently transported by intense convective activity to the upper troposphere, where they can be dispersed over
long distances by regional and global circulations. Additionally, convective overshooting may inject heat, moisture and trace gases into the tropical tropopause layer, impacting stratospheric ozone and other aspects of global climate (Fueglistaler et al., 2009). In the dry-to-wet transition season, regional smoke and haze plumes from biomass burning are observed (Longo et al., 2009). On the other hand, in the wet-to-dry transition season, biogenic emission of VOCs, particularly from the Amazon rainforest, may maintain the atmospheric oxidative capacity for generating ozone and other photochemical pollutants (Lelieveld et al., 2008). Inhalation of elevated levels of ozone can irritate the lungs; aggravate asthma and cause emphysema, bronchitis, and premature death (Schwela, 2000). High ozone concentrations can also inhibit photosynthesis in plants and damage leaf tissue, harming wild ecosystems and reducing crop productivity (Reich and Amundson, 1985). In the upper troposphere, O$_3$ acts as a greenhouse gas, increasing surface radiative forcing (IPCC, 2001). The Amazon Basin continues to rapidly urbanize, and urban emissions of O$_3$ precursors are also expected to grow (Gallardo et al., 2010). An improved understanding/quantification of O$_3$ temporal and spatial variability in the tropical rainforest environment is important for projecting future impacts of land use and climate change in the Amazon Basin and other tropical rainforest regions worldwide on their expanding human populations and significant biodiversity.

Motivated by the impact of O$_3$ in the Amazon Basin on human and ecosystem health and global climate, we collected aircraft observations of O$_3$ during BARCA and conducted regional chemistry simulations in order to answer the following scientific questions: how does O$_3$ vary spatially and seasonally over the Amazon Basin? What are the sources and sink of O$_3$ in this region? How well can state-of-the-art regional chemistry models reproduce O$_3$ distributions over the Amazon Basin?

Previous analyses of satellite ozone data have noted early-year O$_3$ maximums in the tropical Southern Hemisphere primarily associated with cross-Atlantic transport of biomass burning emissions from Africa (Thompson et al., 1996), Northern Hemisphere fires and lightning NO$_x$ (Edwards et al., 2003). In the Amazon region, ground-based
and aircraft campaigns (e.g., Kirchhoff et al., 1990; Browell et al., 1996; Kaufman et al., 1998; Longo et al., 1999; Cordova et al., 2003; Andreae et al., 2001, 2002; Rummel et al., 2007; Kuhn et al., 2010; Martin et al., 2010; Toon et al., 2010) have observed both background O$_3$ levels of 10–20 ppb and elevated levels of 60–80 ppb due to production from regional fire emissions and recirculated urban pollution from SE Brazil, as well as evidence of deep convective transport of boundary layer air to the middle and upper troposphere.

In-situ data on cloud properties and chemical species, as well as observations of land use changes, boundary layer dynamics and larger-scale cloud-aerosol interactions, are scant in this region. Therefore, models are essential tools for monitoring and predicting atmospheric chemistry composition, weather, and climate at local, regional, and global scales. Uncertainties in the model representations of parameterized convection, turbulence, land surface and other subgrid scale processes lead to significant errors in simulated transport and chemical transformation of the atmospheric composition (Beck et al., 2013). The Regional Carbon Balance in Amazonia (BARCA) Large-Scale Biosphere-Atmosphere (LBA) experiment was an aircraft campaign based in Manaus and conducted during the dry-to-wet (November and December 2008) and wet-to-dry (May 2009) transition seasons. BARCA was the first flight campaign to sample ozone and other trace gases on a regional scale in both transition seasons. It offers a unique opportunity, together with satellite observations and modeling studies, to understand the regional ozone distribution in the Amazon under different meteorological and emissions regimes. It is interesting to compare BARCA data to observations from the NASA Amazon Boundary Layer Experiments ABLE campaigns (ABLE-2A and -2B), which took place during the dry season of 1985 and wet-to-dry transition of 1987. Andreae et al. (2012) showed that CO mixing ratios were about 10 ppb higher during ABLE-2B than in BARCA B everywhere except the southern region, reflecting the global trend towards decreasing CO emissions since the 1980s, particularly in the Northern Hemisphere. The CO comparison also showed a similar enhancement of 10–20 ppb in the lowest 1 km above the surface, attributed to diffuse biogenic sources, and also indicated
that the much higher enhancements during the dry season in BARCA A must be due to anthropogenic or biomass burning inputs. The O$_3$ comparison is expected to yield information in long-term trends in O$_3$ production in the Amazon Basin, as well as the relative importance of biogenic, urban and fire sources.

The structure of this paper is as follows. In Sect. 1.1, the measurements taken during the BARCA aircraft campaign are described, followed by the meteorological conditions and emissions regimes during the two phases of the campaign in Sect. 1.2. Section 1.3 reviews previous observational and remote sensing studies of O$_3$ distributions and seasonality in the Amazon. Section 2 describes the aircraft, ground-based, and remote sensing observations used in the analysis, as well as the setup of the CCATT-BRAMS and WRF-Chem simulations. In Sect. 3, the results of the analysis of meteorological and O$_3$ observations and simulations are presented, with final discussions and conclusions in Sect. 4.

1.1 BARCA aircraft campaigns

The BARCA flights were conducted with the EMB 110 Bandeirante aircraft of the Brazilian National Institute for Space Research (INPE). The flights consisted of quasi-Lagrangian measurements of carbon dioxide (CO$_2$), carbon monoxide (CO), methane (CH$_4$), ozone (O$_3$), and aerosols, and were designed to constrain basin-wide fluxes and understand distributions and sources of these species. The EMB 110 Bandeirante INPE aircraft had a ceiling of 4500 m, and flights usually consisted of ascending and descending vertical profiles separated by short (5–30 min) horizontal legs. In-situ measurements were made of CO$_2$, CH$_4$, CO, O$_3$, aerosol number concentration and optical properties. Flask samples were collected to determine CO$_2$, CH$_4$, sulfur hexafluoride (SF$_6$), CO, nitrous oxide (N$_2$O), hydrogen, and the oxygen-nitrogen ratio (O$_2$/N$_2$). A detailed description of the aircraft measurements can be found in Andreae et al. (2012). Figure 1 shows a map of the flight tracks from BARCA A and B. Both experiment periods included flights to the north, south and east of Manaus, as well as local flights near Manaus. Only BARCA A included flights to the west of Manaus, because intense
convective activity in that region during BARCA B precluded flying. During BARCA B, fire activity was low throughout the Amazon region due to heavy precipitation, while during BARCA A, intense fire activity occurred on the northern coast of Brazil and scattered fires were present throughout the southeastern Amazon.

1.2 Transition season meteorology and emissions

Andreae et al. (2012) summarized the BARCA campaign, meteorological background, carbon monoxide and aerosol observations and CO results from several regional transport and chemistry models. These included the CCATT-BRAMS and WRF-Chem simulations analyzed in greater detail in this paper. Meteorological analysis showed that during BARCA A, when the Inter-Tropical Convergence Zone (ITCZ) was to the north of the Amazon Basin, inflow to the Amazon was primarily from the Southern Hemisphere. During BARCA B, the ITCZ extended to 20° S and air at low levels was of Northern Hemisphere origin, including some smoke from west African fires. On the other hand, the mid tropospheric air was of mixed origin.

The highest CO levels were observed on the flights on 25–27 November in the southeastern Amazon, influenced by regional biomass burning, as maximum values were observed from 1–3 km. These are typical of injection heights of smoke plumes from savanna fires (Freitas et al., 2007). The excess CO from biomass burning was between about 30 and 200 ppb, increasing from north to south across the Basin. The mean contribution from biomass burning to total CO during BARCA A was about 31%, with a contribution from background (110 ppb) of about 61%. Biomass burning influence was indicated by CO mixing ratios up to 300 ppb, Condensation Nuclei (CN) approaching 10,000 cm⁻³ and a low CN to CO ratio (ΔCN/ΔCO) indicating aged smoke. This influence was highest in the southern Amazon from 1–3 km. Manaus back trajectories at 500 and 4000 m came from eastern Amazon fires rather than the intense African fires occurring at the same time. During BARCA B, little biomass burning influence was observed. CN counts were 300–500 cm⁻³ and a CO enhancement of ~10 ppb above the mixing ratios in air entering the Basin from the Atlantic was seen. Small boundary
layer enhancements were attributed to a source from the oxidation of biogenic VOCs (Andreae et al., 2012).

Andreae et al. (2012) also showed simulated vertical CO profiles from CCATT-BRAMS and WRF-Chem simulations, as well as the Stochastic Time Inverted Lagrangian Transport (STILT) model with two different meteorological field inputs and the WRF Greenhouse Gas Module (WRF-GHG). The simulated CO profiles matched mean observed values, but were overly vertical (too low near the surface and too high above 3 km). This suggested that the models had too much convective transport or vertical mixing from the PBL schemes. However, the probability densities were consistent with observations in the boundary layer, indicating that horizontal dispersion was reasonable. Beck et al. (2013) evaluated different CH$_4$ wetland emissions schemes and maps using WRF-GHG. They found the best agreement with BARCA CH$_4$ data for days where convective transport, as evaluated by comparison of upstream TRMM and WRF precipitation amounts, was well represented in the model. This indicates that proper representation of convective transport in models is essential for prediction of vertical distributions of pollutants in the Amazon Basin.

1.3 Previous studies of O$_3$ in the Amazon

Analyses of satellite, aircraft and ground-based observations of O$_3$ over Amazônia since the 1980s have demonstrated the influence of long-range transport of African biomass burning and Northern Hemisphere inputs, local fire sources, NO soil and biogenic VOC emissions, and convective transport on spatial and seasonal variability in O$_3$. In particular, data from the ABLE-2B aircraft and ground campaign during the 1987 wet-to-dry transition season and the BARCA observations offer the opportunity to compare the regional O$_3$ distribution across decades.

Several studies of satellite data have reported a seasonal O$_3$ maximum in the tropical Southern Hemisphere, largely associated with long-range transport of African fire emissions or lightning NO$_x$ sources. Fishman and Larsen (1987) combined data from 1979–1980 from the Total Ozone Mapping Spectrometer (TOMS) and the Stratospheric
Aerosol and Gas Experiment (SAGE) instruments to construct a climatology of tropospheric O$_3$ from 15° N to 15° S. They attributed the most elevated O$_3$ from 60° W to 60° E to biomass burning sources. Thompson et al. (1996) integrated TOMS satellite O$_3$ data with observations from the Transport and Atmospheric Chemistry near the Equator-Atlantic (TRACE-A) and the southern African Fire-Atmosphere Research Initiative (SAFARI) 1992 experiments. They showed a seasonal maximum in tropospheric O$_3$ in the south Atlantic, with the highest values (> 90 ppb) between 0–25° S. Back and forward trajectories attributed this elevated O$_3$ to transport of O$_3$ from fires in southern Africa by mid-level easterlies or recirculations, with little South American contribution. In Brazil, O$_3$ was seen to be lofted by deep convective transport, and then transported by high-level westerlies. However, from 0–10° S most of the O$_3$ was from Africa, since there was a delay of 1–2 months from peak African biomass burning to the O$_3$ maximum at the coastal site of Natal. O$_3$ production from the surface to 4 km was estimated to be 15 ppb O$_3$ per day, with a lower but nonzero rate in the upper troposphere. Using remote sensing observations of fire and lightning flash counts and NO$_2$, Edwards et al. (2003) identified an early-year tropical Atlantic tropospheric O$_3$ maximum in January 2001. The maximum contained two peaks, the first in the lower troposphere from Northern Hemisphere fires and the second in the southern tropical Atlantic mid-troposphere from lightning NO$_x$.

For the Amazon region, observations of O$_3$ and other trace gases were made in several aircraft and ground-based campaigns. These observations identified background (absent of urban and fire influence) O$_3$ values of around 20 ppb originating from soil NO emissions, decreasing to very low values (~ 5 ppb) at night due to O$_3$ deposition to the forest. However, nighttime values can increased due to convective downdrafts, and free troposphere enhancements from biomass burning sources are seen.

The earliest O$_3$ measurements over the Amazon Basin were made during aircraft campaigns in the dry seasons 1979 and 1980 (Crutzen et al., 1985). Mixing ratios of 20–30 ppb and 40–50 ppb were observed in the boundary layer and the free troposphere, respectively, and elevated O$_3$ was attributed to photochemical reactions and
biomass burning. During the dry season (July–August 1985), the Amazon Boundary Layer Experiment (ABLE-2A) integrated aircraft, ground-based and satellite observations to study the processes affecting the chemical composition in mixed layer over Amazonia (Harriss et al., 1988). Jacob and Wofsy (1988) used a photochemical model of the Amazonian boundary layer to study the diurnal cycle of isoprene, NO\textsubscript{y} and O\textsubscript{3} during ABLE-2A. They found that photochemical production spurred by NO emissions from soils increased daytime O\textsubscript{3} to about 20 ppb. However, at night, dry deposition to the forest caused O\textsubscript{3} to drop below 5 ppb. Model results were consistent with the NO values of 25–60 ppt observed in the lower boundary layer over central Amazonia (Torres and Buchan, 1988). Isoprene emissions were found to have little effect on O\textsubscript{3} levels, as the oxidation of CO would produce sufficient HO\textsubscript{x} to generate 20 ppb of O\textsubscript{3}. However, O\textsubscript{3} production in the model was highly sensitive to NO\textsubscript{x} emissions, and downward transport from the free troposphere became the dominant source of O\textsubscript{3} in the PBL when NO emissions were decreased below the average value of 44 ± 14 µg N m-2 h-1 NO measured by Kaplan et al. (1988). Lidar observations during ABLE-2A showed highly variable O\textsubscript{3} levels, with some small regions with up to 30–40 ppb, attributed to variable NO flux from the canopy (Browell et al., 1988). ABLE-2B was conducted during the wet-to-dry transition season (April–May 1987) (Harriss et al., 1990). Periodic inputs from the Northern Hemisphere were found to be a pollution source over Amazonia, and dry deposition in the region provides a significant sink in the global O\textsubscript{3} budget.

Aircraft measurements from TRACE-A over the south Atlantic in the 1992 dry season attributed high O\textsubscript{3} (> 100 ppb) in the upper troposphere to photochemical production from convectively lofted Brazilian biomass burning emissions. Elevated O\textsubscript{3} (> 75 ppb) originated in lower altitude (< 6 km) plumes from African fires (Browell et al., 1996).

During the Smoke, Clouds, and Radiation-Brazil (SCAR-B) campaign (Kaufman et al., 1998), ozone soundings were launched at Cuiabá from 16 August–10 September 1995. Elevated ozone was attributed to both local biomass burning pollution and recirculation of urban emissions from SE Brazil. Aerosol backscatter coefficient measurements
aboard the ER-2 aircraft during two flights between Cuiabá and Vilhena confirmed the co-occurrence of layers of elevated O_3 with smoke (Longo et al., 1999).

As part of ABLE-2, near-continuous O_3 surface measurements (1.5 m above the surface) showed daytime maximum of 5.7 and 3.7 ppb in a clearing and forest, respectively, and measurements in a tower in a clearing showed an increasing gradient of O_3 with height, up to 6.9 ppb at 15 m above the surface (Kirchhoff et al., 1990). Furthermore, 20 ozonesondes launched in the clearing showed typical mixing ratios of 40 ppb from 500–300 hPa, with values about 10 ppb lower in the wet than dry season.

Observations of O_3, NO$_x$ and CO at a pasture site in the state of Rondônia and forest sites in the states of Pará and Amazonas showed elevated (3×) O_3 and NO$_2$ levels in the dry-to-wet transition season at the pasture site due to the influence of biomass burning. This was shown by correlations with black carbon and aerosol number concentrations at the surface. On the other hand, NO levels were much lower in the dry-to-wet transition season due to the conversion of NO$_2$ to NO favored by elevated levels of VOCs, O_3, and radicals, and by higher temperatures. In addition, nighttime ozone was increased in the wet season by transport of ozone-rich cold air from the mid- and upper-troposphere by convective downdrafts, as shown by an anti-correlation of O_3 with equivalent potential temperature (Cordova et al., 2003).

During the LBA-CLAIRE-98 experiment (Andreae et al., 2001) in March 1998, elevated levels of trace gases and biomass burning aerosol were observed at high altitudes (> 9 km) during a flight off the coast of Suriname. Model simulations of CO transport later confirmed the measurements to be the outflow of a deep convective system which had transported biomass burning emissions originating from the northern Amazon (Freitas et al., 2000; Andreae et al., 2001; Gevaerd et al., 2006). During the same experiment, trace gases and CCN spectra were also measured continuously at a ground station in Balbina, near Manaus (Zhou et al., 2002). During the experiment, air masses with origin over undisturbed rainforest and little anthropogenic influence, were sampled at Balbina, yielding O_3 values always less than 20 ppb. Photochemical production of O_3 of up to 15 ppb h$^{-1}$ was detected via aircraft transects in the Manaus
urban plumes (Kuhn et al., 2010). Most of the VOC reactivity was provided by isoprene emissions from the surrounding rainforest, and NO\textsubscript{x} emissions suppressed O\textsubscript{3} production close to urban sources, but stimulated it downwind.

Observations at a pasture site in Rondônia in January–February 1999 during the LBA Wet Season Atmospheric Mesoscale Campaign (WETAMC) showed that downward convective transport events increased nighttime surface O\textsubscript{3} up to 30 ppb, compared to a background of 3–5 ppb (Betts et al., 2002). During the LBA-EUSTACH experiments, CCN and trace gases (including O\textsubscript{3}, NO\textsubscript{x} and VOCs) were measured at forest and pasture sites in Rondônia in the wet-to-dry (27 April–29 May 1999) and dry-to-wet (12 September–27 October 1999) seasons (Andreae et al., 2002; Rummel et al., 2007). The observations showed VOC (isoprene, formaldehyde, acetaldehyde, acetic and formic acid) concentrations 4–5 times higher in the dry than wet-to-dry transition season. The VOC enhancement was a result of both enhanced biogenic emissions and photochemical decomposition due to increased solar radiation. In addition, VOC and O\textsubscript{3} concentrations peaked in the afternoon (around 15:00 LT) in both seasons and at both sites. Peak O\textsubscript{3} rose from ca. 15 to almost 60 ppb from the wet to dry-to-wet transition season. During the Amazonian Aerosol Characterization Experiment (AMAZE-08), O\textsubscript{3} was measured at the TT34 tower site from 14 February–14 March 2008 (Martin et al., 2010), with observed values of 1–20 ppb (Ebbon et al., 2011). The Tropical Composition, Clouds and Climate Coupling (TC4) experiment, based in Costa Rica in July and August of 2007, involved coordinated flights with the NASA ER-2, WB-57 and DC-8 aircraft to study convective processes in the ITCZ region (Toon et al., 2010). Using low ozone as an indicator of convective transport of boundary layer air, a maximum convective outflow height of 10–11 km was estimated (Avery et al., 2010). A flight in the boundary layer over the Columbian Amazon on 8 August 2007 measured O\textsubscript{3} of 10–20 ppb (R. Jiménez Pizzaro, personal communication, 2012).

Thus, satellite observations enable the attribution of tropical O\textsubscript{3} maxima to biomass burning and lightning NO\textsubscript{x} sources, while ground-based measurements allow the identification of key surface processes in the Amazon Basin affecting O\textsubscript{3} amounts. These
processes include O$_3$ production from soil NO$_x$ emissions and removal via dry deposition to the forest canopy. Aircraft campaigns complete the suite of observations, allowing the examination of convective lofting of surface emissions, with biomass burning emissions of particular importance on the regional scale.

2 Data and methods

2.1 BARCA aircraft measurements

During the BARCA campaign, in-situ measurements of O$_3$ were conducted aboard the EMB 110 Bandeirante INPE aircraft using a dual-cell, UV Photometric analyzer (Ozone Analyzer, Model 49i, Thermo Fisher Scientific, United States). During BARCA A, 1 min averages of the original 1 s data were taken. On the other hand, during BARCA B 1 s data were stored, and the detection limit for both campaigns was 1 ppb. The intake for O$_3$ was forward-facing, located 185 mm from the fuselage on the lower fuselage in front of the propellers to minimize effects of turbulence. The inlet lines consisted of stainless steel tubes with a bend radius of 100 mm and an inner diameter of 11.5 mm. The sample air was not heated or dried before measurement, so reported values are molar mixing ratios, nmol mol$^{-1}$, abbreviated “ppb”, with respect to ambient humid air (Andreae et al., 2012).

2.2 Satellite and ground-based O$_3$ and meteorological data

In addition to the in-situ O$_3$ data, the model results were compared with OMI/MLS monthly mean tropospheric ozone mixing ratios and total column ozone (http://acd-ext.gsfc.nasa.gov/Data_services/cloud_slice/#pub) (Ziemke et al., 2006). Tropospheric values were estimated by subtracting the stratospheric contribution from total column measurements. A cloud-slicing method was used to detect O$_3$ inside optically thick clouds. This method was able to detect elevated O$_3$ levels of around 50 ppb in the upper parts of convective clouds over South America and Africa, comparable to background
cloud-free levels in the tropics (Ziemke et al., 2009). The model total tropospheric O$_3$ column and mean tropospheric O$_3$ mixing ratio were calculated by summing O$_3$ mixing ratios, weighted by the model level air density, from the first model level to the level below the tropopause. The tropopause level was determined by the World Meteorological Organization (WMO) definition of a temperature lapse rate less than 2 K km$^{-1}$ (Logan, 1999).

The models were also compared with soundings measuring O$_3$, temperature, and relative humidity conducted at sites in Paramaribo, Surinam (5.8° N, 55.2° W) and Natal, Brazil (5.4° S, 5.4° W) during the BARCA periods as part of the Southern Hemisphere ADditional OZonesondes (SHADOZ) network (http://croc.gsfc.nasa.gov/shadoz/) (Thompson et al., 2003a, b, 2007).

Monthly mean precipitation over the Amazon region was obtained from the 3B43 Tropical Rainfall Monitoring Mission (TRMM) and Other Data Precipitation Product at a spatial resolution of 0.25° × 0.25° (obtained from http://trmm.gsfc.nasa.gov/) (Kummerow et al., 1998; Kawanishi et al., 2000). TRMM 3B43 is derived from retrievals of 3 hourly precipitation amount from the Precipitation Radar (PR), TRMM Microwave Imager (TMI), and Visible and Infrared Scanner (VIRS) aboard the TRMM satellite, merged with rain gauge data from Climate Anomaly Monitoring System (CAMS) and the Global Precipitation Climatology Project (GPCP). Satellite estimates of precipitation are used for model evaluation due to their more complete spatial and temporal coverage compared to rain gauge data. Buarque et al. (2011) found that mean annual rainfall from Brazilian rain gauge and TRMM 3B42 3 hourly data at 488 sites in the Amazon Basin for the years 2003–2005 agreed within 5 %. Other characteristics of the rainfall distribution, such as the number of days with rainfall, differed more substantially.

Surface downward shortwave radiation (Level 1.5) observed with a Kipp and Zonen CM-21 pyranometer (305–2800 nm) were obtained from the Solar Radiation Network (SolRad-Net) site at Manaus (2.56° S, 60.04° W, 93 m a.s.l.) (http://aeronet.gsfc.nasa.gov/cgi-bin/bamgomas_interactive).
Mean daily cycles of fluxes of sensible and latent heat and radiation were obtained from flux tower measurements for the wet (February–March 1999, January–March 2000) and dry (July–September 1999–2000) seasons at forest (Rebio Jarú, 10.08°S, 61.93°W, 145 m a.s.l.) and pasture (Fazenda Nossa Senhora, 10.75°S, 62.37°W, 293 m a.s.l.) tower sites (von Randow et al., 2004).

Surface meteorological station data was obtained for the BARCA region for October–November 2008 and April–May 2009 from 52 SYNOP (INMET) and 26 METAR (airport) stations. Meteorological soundings from the Manaus airport (3.15°S, 59.98°W) were conducted at 00Z (12 in October–November 2008, 60 in April–May 2009) and 12Z (49 in October–November 2008, 60 in April–May 2009). During BARCA A, 13 additional soundings were conducted at 18Z 18 from 18 November–1 December 2008.

2.3 Model description and simulation setup

Simulations of BARCA A and B were conducted with the Chemistry Coupled Aerosol-Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CCATT-BRAMS; Longo et al., 2013; Freitas et al., 2009) and Weather Research and Forecasting with Chemistry (WRF-Chem; Grell et al., 2005) Version 3.4.1 coupled chemistry and meteorology models. The model physics and chemistry options that were used are listed in Table 1. Both models used a two-way nested grid configuration, with a 140 km grid covering Africa and South America (southwest corner: 60°S, 100°W, northeast corner: 20°N, 50°W), to encompass the cross-Atlantic transport of biomass burning emissions from Africa, and a 35 km resolution grid covering most of south America (southwest corner: 35°S, 85°W, northeast corner: 15°N, 30°W), as depicted in Fig. 3.

The simulations were initialized on 1 October 2008 00:00 UTC and 1 April 2009 00:00 UTC for BARCA A and B, respectively. Boundary conditions and analysis nudging on the outer domain were given by the NCEP GFS analysis (http://rda.ucar.edu/datasets/ds083.2/) with a 6 hourly time resolution and 1° × 1° spatial resolution. Chemistry initial and boundary conditions were provided by 6 hourly analyses from the
Model of Atmospheric Chemistry at Large Scale (Modélisation de la Chimie Atmosphérique Grande Echelle, MOCAGE) global model (Peuch et al., 1999) with a T42 (∼2.8°) spatial resolution. Sea surface temperature was provided by the NOAA Optimum Interpolation (OI) Sea Surface Temperature (SST) V2 (available at http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html) with 1° × 1° spatial resolution. Soil moisture was initialized with the TRMM-based soil moisture operational product (GPNR) developed by Gevaerd and Freitas (2006).

The PBL parameterization in CCATT-BRAMS is based on Mellor and Yamada (1982), while in WRF-Chem the Mellor-Yamada-Janjic (MYJ; Janjic, 1994) scheme was used. In CCATT-BRAMS, shallow and deep convection are parameterized based on the mass-flux approach of Grell and Dévényi (2002). CCATT-BRAMS also uses the Turbulent Kinetic Energy (TKE) from the Planetary Boundary Layer (PBL) scheme to determine if convection will be triggered within a grid cell. In WRF-Chem the Grell 3-D (G3) scheme was used, which includes shallow convection and subsidence spreading of convective outflow into neighboring grid cells. The Noah land surface model (Koren et al., 1999) was used in WRF-Chem and the Land Ecosystem–Atmosphere Feedback model v.2 (LEAF-2; Walko et al., 2000) was utilized in CCATT-BRAMS. Land use was provided by the United States Geological Survey (USGS) global 1 km vegetation dataset, updated with a land cover map for the Brazilian Legal Amazon Region for use in meteorological models (PROVEG) (Sestini et al., 2003). PROVEG is based on the Thematic Mapper (TM) Landsat images with spatial resolution of 90m × 90m from the year 2000 and deforestation data from the Amazon Deforestation Monitoring Program (PRODES) for the year 1997. For WRF-Chem, albedo and greenness fraction were calculated offline using the updated vegetation dataset, Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data from the year 2002–2002 and vegetation parameters from the LEAF-2 land surface model as implemented in CCATT-BRAMS.

Emissions were generated with PREP-CHEM-SRC (Freitas et al., 2011) Version 1.2. Fire emissions were estimated from GOES, AVHRR and MODIS fire count data,
using the Brazilian Biomass Burning Emission Model (3BEM; Longo et al., 2009). Anthropogenic emissions were estimated from the RETRO, GOCART and EDGAR v4.0 global databases updated with South American inventories (Alonso et al., 2010). Biogenic emissions were provided by a monthly climatology for the year 2000 produced with the Model of Emissions of Gases and Aerosols from Nature (MEGAN; Guenther et al., 2006). In WRF-Chem, the same Gaussian diurnal cycle with peak at 15:00 UTC (11:00 LT) is applied to both anthropogenic and biogenic emissions, while in CCATT-BRAMS the diurnal cycle of biogenic emissions follows the solar radiation cycle. In both models, the biomass burning daily cycle peaks at 18:00 UTC (15:00 LT). In both CCATT-BRAMS and WRF-Chem, the Regional Atmospheric Chemistry Mechanism (RACM) was used (Stockwell et al., 1997). In WRF-Chem, the Goddard Chemistry Aerosol Radiation and Transport (GOCART; Chin et al., 2002) aerosol scheme was used with aerosol direct radiative effects. CCATT-BRAMS has a smoke aerosol scheme with intensive optical properties (extinction efficiency, single scattering albedo and asymmetry parameter) calculated in an offline Mie code based on observations of climatological size distribution and complex refractive index from AERONET sites in the southern Amazon (Rosario et al., 2011, 2013). CCATT-BRAMS includes scavenging of soluble species in the convective scheme following Berge (1993), as described in Freitas et al. (2005), where the wet removal rates are a function of the precipitation rate, liquid water content and precipitable water. In the cloud microphysics scheme the wet deposition follows Barth et al. (2001), whereby low solubility species partition into the liquid phase according to Henry’s Law and high solubility species by diffusion-limited mass transfer. In WRF-Chem, at the convective-parameterizing scale, a constant fraction of gas and aerosol species in convective updrafts are removed (complete removal for sulfur dioxide – SO₂, sulfate – H₂SO₄, ammonium – NH₃, nitric acid – HNO₃ and sea salt; no removal for hydrophobic organic (OC) and black carbon (BC) and dimethyl sulfide (DMS); and 50 % removal for all other aerosol species). On the other hand, no wet scavenging is included for cloud water and precipitation resolved by the microphysics
scheme, because this option is not currently available in WRF-Chem for the RACM chemical mechanism.

The CCATT-BRAMS simulations employ a lightning NO$_x$ parameterization based on convective cloud top height (Stockwell et al., 1999). In WRF-Chem, lightning production of NO$_x$ was not included, because these parameterizations have not yet been evaluated for the Amazon region. Uncertainties remain about the scavenging efficiencies of soluble species by deep convective storms. Simulations of an idealized thunderstorm by several cloud-resolving models yielded varying results for CH$_2$O, H$_2$O$_2$ and HNO$_3$ in convective outflow due to differing microphysics and assumptions about retention of chemical species during cloud drop freezing (Barth et al., 2007). In the tropics, over continents, lightning production is comparable to other sources of NO$_x$, including biomass burning and soil release, and it is the primary source over oceans (Bond et al., 2002). Since lightning NO$_x$ production peaks in the upper troposphere, it could be an important contributor to ozone production. The impact of wet deposition and lightning NO$_x$ production on O$_3$ distributions will be more closely examined in future modeling studies of tropospheric chemistry in the Amazon.

For model results evaluation, the mean vertical O$_3$ profiles for observations, CCATT-BRAMS and WRF-Chem were calculated for the regions to the west, north, south, east, and around Manaus. Horizontal flight legs were excluded from analysis to eliminate the influence of plumes in the boundary layer. To calculate the mean simulated profiles, the four grid points closest in latitude and longitude to each observation were determined at the two model hours that bracket the observations. At each of these grid points and hours, vertical profiles were extracted from the model output and then linearly interpolated to the observed GPS height. The four points from each time were averaged, weighting by the inverse distance to the observed longitude and latitude. Finally, the prior and posterior hour values were averaged with appropriate weights. Thus, 16 model points were used with spatial and temporal weights to obtain each model value for comparison to observations. The observed and model time series were then separated into five regions to the west, north, east, and south of Manaus, and in the region of
Results and discussion

3.1 BARCA O₃ observations

The vertical distributions of O₃ measured by the aircraft during BARCA A and B are depicted in Fig. 2. Observations during the dry-to-wet transition (BARCA A) are plotted separately for clean (west, north and around Manaus regions) and fire-influenced polluted (east and south regions) conditions. The O₃ distributions are similar during BARCA A in the clean regions and BARCA B, with median values ranging from 10–25 ppb. However, there is more variability, as measured by the difference between the 25th and 75th percentiles, in the BARCA A data. This may be due to downward mixing of O₃ transported long-range from fires in Africa or recirculated from the polluted southeast Brazil region. In the fire-influenced regions during BARCA A, medians range from 25–45 ppb, peaking at a typical plume injection height for savanna fires of 2–3 km. The highest variability is seen in polluted conditions during BARCA A, particularly at 2–3 km, indicating the influence of small-scale fire plumes. This variability of O₃ in the PBL presents a challenge to the regional models, since the effects of small-scale processes such as plume rise and convection are parameterized and averaged across the grid cell.

3.2 Observed and simulated meteorology

In addition to surface emissions and chemical sources and sinks of O₃, several meteorological processes are key drivers of tropospheric O₃ distributions, including solar radiation, tracer transport and removal. Thus, first we evaluate the ability of the models to represent these processes and their seasonalities.
In the dry-to-wet transition season, a band of increased precipitation extends in TRMM 3B43 observations from the northwest Amazon to southeast Brazil, and precipitation is also intense in the ITCZ at 10° N (Fig. 4). In the wet-to-dry transition season, increased precipitation extends from the western Amazon to the northeast coast of Brazil (Fig. 5). Incident solar radiation is higher in the dry than wet season for both sites (Figs. 6–8). At the forest and pasture sites, peak sensible heat flux is higher in the dry-to-wet than wet-to-dry transition seasons, and higher at forest than pasture sites for both seasons, while latent heat flux is higher in the wet-to-dry than dry-to-wet transition seasons for both sites, and higher at the pasture site for both seasons (Figs. 7 and 8).

In radiosoundings, a decrease in dew point temperature is observed in upper levels (300–400 hPa) from 0 to 12 or 18Z, likely due to precipitation, more pronounced in the wet-to-dry transition season (Figs. 9 and 10).

Mean precipitation during the dry-to-wet (November 2008) and wet-to-dry (May 2009) transition seasons was calculated for the TRMM 3B43 data and the CCATT-BRAMS and WRF-Chem models for three regions: the Amazon (15° S–10° N, 50–80° W), northeast Brazil (15° S–0° N, 35–50° W), and southeast South America (15–35° S, 35–65° W). The values are listed in Table 2. The mean precipitation on the 35 km resolution domain for the two months is shown in Figs. 3 and 4, respectively, as well as the delineations of the subregion boxes. The signs of NE–SE differences are correctly modeled by both models during both seasons, i.e., the NE is drier than the SE during November and vice-versa during May. For the Amazon, CCATT-BRAMS slightly underestimates the precipitation rates in both seasons, but the rate in WRF-Chem is about twice that of TRMM 3B43. The models were also evaluated against TRMM 3B42 3 hourly precipitation rates at the 78 surface station locations in the Amazon (Table 3). Both models had a positive bias in both seasons, but WRF-Chem had a higher bias and RMSE than CCATT-BRAMS.

In the dry-to-wet transition season, for both CCATT-BRAMS and WRF-Chem, the mean daily cycle of surface incident shortwave radiation calculated for the Manaus AERONET site for October–November 2008, falls within one standard deviation of
the mean AERONET observations (Fig. 6), but is closer to the upper limit, possibly due to underestimated cloudiness or AOD in the models. For the forest and pasture sites, both models represent the daily cycles of incident shortwave and ingoing and outgoing longwave radiation, although incident shortwave is slightly overestimated (by 50–100 W m\(^{-2}\)) at peak (Fig. 7). During the wet-to-dry transition season, both models overestimate peak incident shortwave radiation by about 100 W m\(^{-2}\) (Fig. 8), suggesting that they underestimate cloudiness.

In the dry-to-wet transition season (Fig. 7), the peak latent heat flux at 13:00 LT is higher at the forest site than at the pasture site (460 W m\(^{-2}\) vs. 268 W m\(^{-2}\)) whereas the sensible heat flux shows an opposite difference (180 vs. 215 W m\(^{-2}\)), due to lower evapotranspiration and higher surface temperatures in the pasture. As a result, the observed Bowen ratio (sensible/latent heat flux) is lower at the forest site than the pasture site (0.23–0.38 vs. 0.8). However, in WRF-Chem, the Bowen ratio at 13:00 LT shows a smaller contrast between the forest and pasture sites (0.40 vs. 0.51), due to underestimated sensible heat flux at the pasture site. In the wet-to-dry transition season (Fig. 8), as for the dry-to-wet transition, peak latent heat flux at 13:00 LT is higher at the forest site than at the pasture site (401 W m\(^{-2}\) vs. 324 W m\(^{-2}\)). However, the sensible heat flux is also higher at the pasture site (119 W m\(^{-2}\) vs. 168 W m\(^{-2}\)) and Bowen ratio is lower at both forest and pasture sites for this season (0.18–0.39 vs. 0.33–0.59). On the other hand, in WRF-Chem, latent and sensible heat flux and thus the Bowen ratio are nearly constant at the forest and pasture sites (0.39 vs. 0.38).

Mean vertical profiles at Manaus from radiosoundings, CCATT-BRAMS and WRF-Chem for October–November 2008 at 0, 12 and 18Z and April–May 2009 at 0 and 12Z are shown in Figs. 9 and 10. For BARCA A, while the temperature profile is well represented by the models, the dew point temperature in CCATT-BRAMS is approximately 10 K too high above 500 hPa and 5 K too low below 500 hPa. The wind speed is overestimated by both models above 500 hPa and underestimated below 500 hPa. For BARCA B, dew point temperature is about 5 K too high in CCATT-BRAMS above 500 hPa. Wind speed is about 2 m s\(^{-1}\) too low above 600 hPa in both models.
The models were evaluated against data from 26 METAR (airports) and 52 Synop (INPE) surface meteorological stations, whose locations are depicted in Fig. 11. Values of Root Mean Squared Error (RMSE) and bias for various meteorological parameters for CCATT-BRAMS and WRF-Chem simulations for BARCA A (October–November 2008) and BARCA B (April–May 2009) are shown in Table 3. Both models overestimate precipitation on average, with a RMSE of 2.4–3.0 mm h\(^{-1}\) and bias of 0.3–3.5 mm h\(^{-1}\) for CCATT-BRAMS, and RMSE of 4.5–7.1 mm h\(^{-1}\) and bias of 3.5–5.8 mm h\(^{-1}\) for WRF-Chem. Dew point temperature is underestimated by 1–2 K and surface pressure is underestimated by 1–2 hPa. Wind speed is underestimated by CCATT-BRAMS and overestimated by WRF-Chem by 0.1–0.6 m s\(^{-1}\). Temperature is underestimated in all cases by 0.1–2.4 K except by CCATT-BRAMS during BARCA A, which overestimated temperature by about 1 K.

Now we summarize the key findings of the model-data meteorological comparison and their implications for the chemistry simulations. The models capture the seasonal spatial distribution of precipitation over northern South America, although the mean precipitation rates are slightly lower (CCATT-BRAMS) and substantially higher (WRF-Chem) than the TRMM retrievals in the Amazon region. This may indicate errors in the strength and vertical distribution of convective transport and the amount of convective wet removal. Peak shortwave radiation is slightly overestimated by both models, which may be related to low cloudiness (convection is triggering too early) or AOD (too much aerosol wet removal). This will increase O\(_3\) production from photolysis, as well as increase surface temperature and evaporation. Although biogenic emissions are not coupled with meteorology in these simulations, this may increase biogenic emissions in future studies that include online biogenic emissions. WRF-Chem predicts a nearly constant Bowen ratio at forest and pasture sites. This indicates that the Noah land surface model is not properly representing the impact of conversion of forest to pasture and the resulting increase in sensible heat flux. The models generally show good agreement with soundings, but excess moisture in CCATT-BRAMS above 500 hPa may stimulate excess O\(_3\) production. Despite these limitations, the models
are able to capture the meteorological contrast between the dry-to-wet and wet-to-dry transition seasons.

3.3 Observed and simulated chemistry

Lower levels of O$_3$ in the rainy season are largely associated with increased presence of convective clouds and precipitation. Decreased surface temperatures and incident solar radiation due to cloudiness suppress emissions of biogenic VOCs such as isoprene. In addition, higher surface humidity and precipitation decrease the occurrence of fires that emit NO$_x$ and VOCs. O$_3$ precursors are further decreased by wet removal within the storms. On the other hand, during the dry-to-wet transition season, increased solar radiation, latent heat and temperature stimulate the production of OH and other HO$_x$ radicals that can stimulate net O$_3$ production.

For BARCA, the simulated mean monthly emission rates for two O$_3$ precursors, NO$_x$ (anthropogenic and biomass burning) and isoprene (biogenic) are shown in Fig. 12. In November 2008, elevated NO$_x$ emission rates of up to 5×10^{-5} kg m$^{-2}$ d$^{-1}$ are seen from an area of intense biomass burning in the northeast Amazon, as well as from more scattered fires in the southeast Amazon. These are both regions that were overflown by the aircraft (Fig. 12). In May 2009, the Amazon region is largely free of fire. Because biogenic NO emissions (e.g., from soil) were not included in the MEGAN climatology used in this study, background NO emissions (in absence of fire) are likely too low. Typical model anthropogenic NO$_x$ emissions values over the Amazon, primarily from biofuel sources, were 0.008–13 µg N m$^{-2}$ h$^{-1}$ N. These NO$_x$ emissions included in the models were less than one third of the mean values of 44 ± 14 µg N m$^{-2}$ h$^{-1}$ NO measured by Kaplan et al. (1988) during ABLE-2A. This is considered a threshold value for NO$_x$-driven O$_3$ production to be the dominant O$_3$ source in the PBL. The model emissions were also much lower than the mean emissions from forest of 35.8 µg N m$^{-2}$ h$^{-1}$ NO measured in the 1998 dry season (Garcia-Montiel et al., 2003). Wetting the forest soil resulted in small pulses of NO and therefore the mean emissions are expected
to be higher in the wet season than dry season. Isoprene emissions are highest in the western and southern Amazon, reaching $15 \times 10^{-5} \text{ kg m}^{-2} \text{ d}^{-1}$ in November 2008 and $5–10 \times 10^{-5} \text{ kg m}^{-2} \text{ d}^{-1}$ in the aircraft sampling region. Due to decreased surface temperature and incident solar radiation in the rainy season, isoprene emissions in the Amazon Basin are much lower during BARCA B, $3–5 \times 10^{-5} \text{ kg m}^{-2} \text{ d}^{-1}$. The MEGAN emissions are consistent with isoprene emission measurements above the Amazonian canopy: a normalized flux of $5.76 \times 10^{-5} \text{ kg m}^{-2} \text{ d}^{-1}$ in July 2000 at the end of the rainy season (Rinne et al., 2002) and an average noontime flux of $18.7\pm5.5 \times 10^{-5} \text{ kg m}^{-2} \text{ d}^{-1}$ in September 2004 during the dry season (Karl et al., 2007).

Figures 13 and 14 show the average O_3 dry deposition flux and median daytime deposition velocity, respectively, as simulated on the 35 km resolution domain by the CCATT-BRAMS and WRF-Chem models for November 2008 and May 2009. In the Amazon Basin, O_3 deposition fluxes are higher in the dry-to-wet transition season, with values reaching $3.5 \text{ nmol m}^{-2} \text{ s}^{-1}$ for CCATT-BRAMS and $6 \text{ nmol m}^{-2} \text{ s}^{-1}$ for WRF-Chem in the northeast Amazon, near the region of concentrated biomass burning. These values are also seen along the northern Andes and southeast Brazil, due to recirculation of O_3–rich air. In the wet-to-dry transition season, O_3 deposition is at a minimum in the western Amazon, with values of $0.5–1 \text{ nmol m}^{-2} \text{ s}^{-1}$ for CCATT-BRAMS and $2 \text{ nmol m}^{-2} \text{ s}^{-1}$ for WRF-Chem. For both models, deposition velocities are higher over the rainforest than in the savanna to the east or south of the Amazon Basin, and higher in the wet-to-dry transition than in the dry-to-wet transition. These patterns are also seen in the tower observations in Table 4.

O_3 surface fluxes and dry deposition velocities predicted by the models were compared with observations from several field campaigns (Table 4). These include during the dry (May 1999) and wet (September–October 1999) seasons at Reserva Biológica Jarú (RBJ, forest) and Fazenda Nossa Senhora (FNS, pasture) from LBA-EUSTACH (Rummel et al., 2009; Kirkman et al., 2002) and during the wet season at Reserva Ducke (RD, forest tower near Manaus, $2.95^\circ \text{S, 59.95}^\circ \text{W}$) from ABLE 2B (April–May 1987) (Fan et al., 1990) and at FNS from LBA-TRMM (January–February 1999) (Sigler
et al., 2002). For the observations, the means of the hourly (WRF-Chem) and 3 hourly (CCATT-BRAMS) \(O_3 \) dry deposition fluxes (nmol m\(^{-2}\) s\(^{-1}\)) and the medians of the daytime (11:00–21:00 UTC) hourly mean deposition velocities (cm s\(^{-1}\)) are shown. The values were extracted from the grid points closest to the tower locations. In the observations, \(O_3 \) fluxes are larger in the dry season, due to higher \(O_3 \) mixing ratios. However, deposition velocities are higher in the wet season, and \(O_3 \) deposition to the Amazon forest constitutes a globally significant \(O_3 \) sink (Rummel et al., 2009). Both models capture these patterns, but the models underestimate the deposition velocities by 15–75%, which may be partially responsible for the low \(O_3 \) fluxes at the Jarú forest site in both seasons and the pasture site in the dry season.

The mean tropospheric and total tropospheric column \(O_3 \) from OMI/MLS, CCATT-BRAMS and WRF-Chem for November 2008 and May 2009 are shown in Figs. 15 and 16, respectively. The models significantly underestimate the total columns from satellite and middle altitudes from BARCA. For both BARCA A and B, the models represent the pattern of lower \(O_3 \) over the Amazon and higher values over northeast Brazil (BARCA A only) and at 30° S, although the values are strongly underestimated. In November 2008, OMI/MLS mean tropospheric \(O_3 \) concentrations show an inflow of elevated \(O_3 \) (mean ca. 55 ppb, total 40–45 DU) on the northeast Brazilian coast due to cross-Atlantic transport from biomass burning in southern and sub-Saharan Africa. Additionally, a band of elevated \(O_3 \) (mean 55–60 ppb, total 35–40 DU) passes over the South American continent at around 30° S, also from cross-Atlantic transport. During this month, Northern Hemisphere \(O_3 \) levels to the north of South America are relatively low (mean 35–40 ppb, total 25–30 DU). On the other hand, the tropospheric ozone distribution in May 2009 (Fig. 16) is characterized by a band of low ozone extending over the Amazon Basin and northeast Brazil between 10° S and 10° N (mean 25–35 ppb, total 20–25 DU). In addition, lightly elevated values are found at around 30° S, primarily over the oceans (40–55 ppb, 30–35 DU) and higher ozone in the Northern Hemisphere (mean 50–55 ppb, total 35–40 DU to the north of 10° N). Both models capture
the overall distribution (inflow in NE Brazil in November 2008, lower values over the Amazon Basin, elevated at 30° S) but values are underestimated relative to OMI/MLS.

However, the BARCA observations are generally lower than the models in the boundary layer, indicating that the satellites appear here to be dominated by the middle troposphere and long-range transport. An example of observed and simulated O$_3$ during the flight legs between Manaus and Belém in BARCA A and B is shown in Fig. 17. While the models capture the pattern of increasing O$_3$ values with height, the models underestimate elevated O$_3$ values from 2.5–4.5 km, and overestimate low values near the surface (1–1.5 km). The models also do not reproduce the variability in the high values, likely due to the aircraft intersection of biomass burning plumes. This is expected given the coarse horizontal grid resolution. Thus, mean profiles are analyzed in order to study differences among the regions and seasons and to assess the models’ abilities to capture the impacts of such small-scale processes on regional O$_3$ distributions.

The mean vertical O$_3$ profiles for observations, CCATT-BRAMS and WRF-Chem for the regions to the west, north, south, east and around Manaus are shown for BARCA A and B in Figs. 18 and 20, respectively, and NO profiles corresponding to the aircraft tracks are depicted in Figs. 19 and 21, respectively. Mean profiles from longitudinal surveys over Amazônia of O$_3$ during ABLE-2A (Browell et al., 1988) and ABLE-2B (Harriess et al., 1990) and NO during ABLE-2A (Torres and Buchan, 1988) are included for comparison. In BARCA B, O$_3$ values were at or near background values in all regions, ranging from 8–15 ppb at the surface to 2–15 ppb at 4–4.5 km, and the models are generally within 5–10 ppb of the observations. During BARCA A, while the W region still had low O$_3$ values (5 ppb at the surface to 20 ppb at 4–4.5 km), the N, S and M regions ranged from 15–20 ppb at the surface to 30–35 ppb at 4–4.5 km, and the E region presented the most elevated values, from 25–55 ppb. ABLE-2A O$_3$ profiles are similar in all regions, ranging from 15–20 ppb near the surface to 30–40 ppb from 4–6 km, so that the BARCA values are higher in the fire-influenced east and south regions, lower in the north and west regions, and very similar around Manaus. The profiles from ABLE-2B are within one standard deviation of the BARCA B measurements, except for the north
region, where they are lower (5–15 ppb). These results suggest an increasing influence of fire emissions to the east and south of Manaus, but that O$_3$ in clean regions has not changed much.

Both models generally overestimate O$_3$ from 1–2 km and underestimate O$_3$ from 3–4.5 km. As seen in the CO results shown in Andreae et al. (2012), the model profiles have steeper slopes than the observations, except in the polluted south, possibly due to excessive vertical mixing of precursors. In addition, the models may be missing sources of O$_3$ and/or precursors at 3–4.5 km in the model inflow boundary conditions. In general the models overestimate O$_3$ in the PBL compared to aircraft measurements, but underestimate the total column values relative to the OMI/MLS satellite product. This suggests that the total column values in Amazonia are dominated by global pollution from Africa, rather than local O$_3$ production from biomass burning. A typical OMI averaging kernel (cloud-free ocean conditions) shows maximum sensitivity from 594–416 hPa (Zhang et al., 2010). Therefore, OMI may not be detecting O$_3$ in the PBL from local sources, but rather primarily seeing global pollution from Africa.

The excess O$_3$ in the PBL in the models could be due to either a low deposition sink, as O$_3$ dry deposition velocities in the models are about half of observed values, or excessive model sensitivity to NO$_x$ emissions, or both. Two additional simulations were conducted with WRF-Chem to evaluate the model sensitivity to these processes: (1) doubling the calculated deposition velocity for O$_3$ only (2DEPVEL) and (2) halving the NO$_x$ surface emission rates (0.5ENOx). The O$_3$ profiles corresponding to BARCA flights for these two simulations are also included in Figs. 18 and 20. The corresponding NO profiles from all model simulations as well as a mean profile over Amazônia from ABLE-2A are depicted in Figs. 19 and 21. The 0.5ENOx simulation reduces O$_3$ more than 2DEPVEL throughout the entire profile. In the dry-to-wet transition, 2DEPVEL reduces O$_3$ in the lower PBL by about 25%, while 0.5ENOx decreases O$_3$ by around 40%, and in the wet-to-dry-transition the reductions are about 10 and 30%, respectively. In general the 0.5ENOx O$_3$ profiles are lower than observed in the first 500 m above the surface, but they provide the best representation of the data for the
north and west regions in the dry-to-wet transition. They also provide a similarly good fit as 2DEPVEL for the east, Manaus and south regions, while in the wet-to-dry transition 0.5ENOx is closer to the observed value from 0–500 m in all regions except the north. During BARCA A, NO in all WRF-Chem simulations in the north, west, and Manaus regions is 10–15 ppt from 0–500 m above the surface, increasing to a maximum of 20–50 ppt at 2 km a.g.l., and is generally lower than the ABLE-2A observations in the PBL. In the east and south, where biomass burning influence was seen, NO in 0–500 m a.g.l. increased from 20–50 ppt in the base simulation to 35–60 ppt in 2DEPVEL due to decreased O₃ and conversion of NO to NO₂, and was generally within one standard deviation of the ABLE-2A measurements in the PBL. In BARCA B, NO simulated by WRF-Chem is very low, 5–10 ppt in the entire profile, except for the west region, where a mean NO of 30 ppt is seen from 0–500 m a.g.l. This is again due to very low O₃, and for the Manaus region, where anthropogenic NO_x sources may have contributed to NO values of 20 ppt. These results suggest that adjustment of dry deposition parameterizations are needed to increase O₃ deposition velocities by about a factor of two in agreement with ground observations. Future research will compare simulated NO_x fields with observations from more recent field campaigns, as the results of these simulations also suggest that O₃ in WRF-Chem is very sensitive to NO_x emissions.

Above the boundary layer, from 3–4 km a.g.l., chemical inflow at the eastern boundary of South America may contribute to O₃ elevated above background. In order to evaluate the model representation of this inflow, vertical profiles from SHADOZ soundings on the northeast coast of South America during the BARCA A and B periods were compared with CCATT-BRAMS and WRF-Chem (Fig. 22). In addition, 120 h back trajectories from the sounding locations at heights of 1500 m, 6000 and 9000 m above ground level (gal) were calculated with the HYSPLIT model (http://ready.arl.noaa.gov/hypub-bin/trajtype.pl?runtype=archive) using meteorological data from the NCEP/NCAR global reanalysis. Inflow at Paramaribo originated either in the Caribbean or the tropical Atlantic, while at Natal, air parcels came from anti-cyclonic
recirculation from southeastern Brazil or the tropical Atlantic. Both models generally represent the SHADOZ \(O_3 \) profiles up to 600 hPa, but do not capture layers of elevated \(O_3 \) above 500 hPa. These are likely to be either from pollution recirculated from southeast Brazil or possibly from African biomass burning. The models also do not reproduce thinner layers of high \(O_3 \) below 600 hPa. For example, at Natal on November 7, 2008 (Fig. 22c, air of African origin at \(\sim 850 \) hPa and \(\sim 470 \) hPa) and November 19, 2008 (Fig. 22d, air from the central African coast at \(\sim 850 \) hPa and recirculation from southeastern Brazil at \(\sim 470 \) hPa and \(\sim 310 \) hPa) and at Paramaribo on 11 May 2009 (Fig. 22f, air of tropical Atlantic origin at all three levels), both models underestimate \(O_3 \) above 500 hPa by 40–60 ppb (model values of 30–50 ppb vs. observations maximum values of 80–100 ppb). A previous analysis of ozone soundings and aircraft measurements at Natal suggested that increases in tropospheric ozone in the Southern Hemisphere springtime may be due to stratospheric intrusion (Logan, 1985). This is consistent with the November 2008 profiles at Natal; the models may not be capturing the intrusion of stratospheric air masses seen in the observations, indicated by upper tropospheric (> 500 hPa) layers with elevated \(O_3 \) and very low relative humidity (< 20 %). On the other hand, at Paramaribo on November 6 and November 25, 2008 and at Paramaribo on 4 May 2009, when air masses at all levels were of Northern Hemisphere origin, the models reproduced the nearly constant with altitude \(O_3 \) values of 30–40 ppb.

In summary, chemistry simulations of the BARCA periods with CCATT-BRAMS and WRF-Chem overestimated \(O_3 \) in the PBL by 5–10 ppb in the wet-to-dry transition (BARCA B), with background levels observed (10–20 ppb) in all regions. In the dry-to-wet transition (BARCA A), the models generally reproduced elevated \(O_3 \) levels in the northeast and southeast Amazon where biomass burning emissions of precursors led to significant enhancements of ambient \(O_3 \). The models overestimate \(O_3 \) in the PBL by 5–10 ppb, whereas from 2–4 km the modeled values are generally lower than observations. These discrepancies of models with observations may result from an overly-mixed (constant with altitude) profile due to overly active vertical mixing from
the PBL scheme from 1–2 km or too much downward convective transport of O₃ from 2 km to the surface, as observed by Betts et al. (2002). In the lower boundary layer, the surface sink of O₃ (dry deposition) may be too low, or overestimation of NOₓ sources may produce too much O₃. Additional simulations with WRF-Chem showed that O₃ in the lower boundary layer was about twice as sensitive to increases in O₃ deposition velocity as reductions in NOₓ emissions, but both simulations achieved better agreement with observations. Although NO emissions over the forest were less than half of observed values, likely due to the lack of inclusion of soil emissions, sufficient O₃ production occurred to match or exceed aircraft observations, suggesting that the model chemistry is overly NOₓ-sensitive.

4 Conclusions

The BARCA campaign offered the first regional aircraft survey of O₃ in the Amazon Basin in both the dry-to-wet and wet-to-dry transition seasons. In both seasons, extremely low background O₃ values (< 20 ppb) were observed to the west and north of Manaus, and in the wet-to-dry transition low O₃ was also measured to the east and south and in the region around Manaus. These background values are the lowest observed on Earth, due to a combination of isolation from anthropogenic and biomass burning NOₓ sources and O₃ deposition to the forest canopy, and the ecosystem and atmospheric chemistry is adjusted to these very low values. According to the models, the chemistry in the Amazon is very sensitive to NOₓ emissions from soils, so that even a small overestimate of NOₓ emissions generates too much O₃ in the PBL. However, it is likely that the model chemistry is incorrect in the PBL, because the models have about the right amount of NOₓ but far too much O₃ in the PBL. Therefore, we conclude that the current model chemistry produces much more O₃ per unit NOₓ than the atmosphere at very low NOₓ, but may be about right in polluted conditions. Further simulations with WRF-Chem showed that the model O₃ production is very sensitive to both the O₃ deposition velocities, which were about one half of observed values,
and the NO\textsubscript{x} emissions. In addition, simulated O\textsubscript{3} was lower than both the OMI/MLS total tropospheric O\textsubscript{3} and the BARCA observations in mid-levels, indicating that the O\textsubscript{3} retrieved by satellites is dominated by the middle troposphere and long-range transport and does not represent well boundary layer O\textsubscript{3} values. As the regional population grows in the Amazon basin, leading to increases in both urban and fire NO\textsubscript{x} sources, this is indeed a big concern because PBL O\textsubscript{3} is lower in clean areas than the models predict, so that the change to polluted conditions is larger, and that the chemistry to define the path to higher NO\textsubscript{x} conditions is poorly represented. Future modeling studies can include more complete organic chemistry and biogenic emissions, including NO emissions from soil, as well as improved representation of lightning NO\textsubscript{x} production, dry deposition, convective transport and wet scavenging processes, to address this NO\textsubscript{x} sensitivity. Additionally, future field campaigns in the Amazon that include aircraft observations of nitrogen oxides and hydrocarbons and ground-based measurements of NO flux from the forest canopy may allow better constraints on the Amazonian O\textsubscript{3} budget.

Acknowledgements. The authors are grateful to the entire BARCA team, including E. Gottlieb, V. Y. Chow, M. D. P. Longo, G. W. Santoni, F. Morais, A. C. Ribeiro, N. Jürgens, J. Steinbach, H. Chen, O. Kolle, L. V. Gatti, J. B. Miller, and the two INPE Bandeirante airplane pilots, P. Celso and D. Gramacho. We would also like to thank the GMAI group at INPE for indispensable support with the modeling and analysis, including F. Santos, R. Stockler, R. Mello, M. Alonso, M. Sanchez, D. Franca, R. Braz, H. Lopez, and V. Oliveira. Many thanks to A. Thompson, N. Paes Leme, R. Scheele, and F. J. Schmidlin for the SHADOZ ozone sounding data. We thank B. Holben for his effort in establishing and maintaining the Manaus AERONET site. This work was supported by an IIE Fulbright Scholarship and PCI CNPQ, and the flight campaign was supported by the Max Planck Society, NASA grants NASA NNX08AP68A and NASA NNX10AR75G, FAPESP thematic project AEROCLIMA 2008/58100-2, CNPq Millennium Institute of the Large Scale Biosphere – Atmosphere Experiment in Amazonia (LBA) (CNPq Project 477575/2008-0), and MCT and INPE.
References

Table 1. CCATT-BRAMS and WRF-Chem physics and chemistry options for the BARCA simulations.

<table>
<thead>
<tr>
<th></th>
<th>CCATT-BRAMS</th>
<th>WRF-Chem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short/longwave radiation</td>
<td>Based on CARMA</td>
<td>RRTMG</td>
</tr>
<tr>
<td>Cloud microphysics</td>
<td>Single moment bulk</td>
<td>WSM-5</td>
</tr>
<tr>
<td>Deep/shallow convection</td>
<td>Grell and Dévényi (GD)</td>
<td>Grell 3-D</td>
</tr>
<tr>
<td>Trace gas chemistry</td>
<td>RACM</td>
<td>RACM</td>
</tr>
<tr>
<td>Photolysis</td>
<td>F-TUV</td>
<td>F-TUV</td>
</tr>
<tr>
<td>Aerosol scheme</td>
<td>Smoke aerosol</td>
<td>GOCART</td>
</tr>
<tr>
<td>Wet deposition</td>
<td>convective and grid scales</td>
<td>convective scale only</td>
</tr>
</tbody>
</table>
Table 2. Monthly mean precipitation (mm h\(^{-1}\)) for TRMM 3B43, CCATT-BRAMS and WRF-Chem models for three regions: the Amazon (15° S–10° N, 50–80° W), northeast Brazil (15° S–0° N, 35–50° W), and southeast South America (15–35° S, 35–65° W).

<table>
<thead>
<tr>
<th>Region</th>
<th>TRMM 3B43</th>
<th>CCATT-BRAMS</th>
<th>WRF-Chem</th>
<th>TRMM 3B43</th>
<th>CCATT-BRAMS</th>
<th>WRF-Chem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amazon</td>
<td>0.24</td>
<td>0.22</td>
<td>0.51</td>
<td>0.20</td>
<td>0.15</td>
<td>0.40</td>
</tr>
<tr>
<td>northeast</td>
<td>0.12</td>
<td>0.07</td>
<td>0.08</td>
<td>0.37</td>
<td>0.23</td>
<td>0.49</td>
</tr>
<tr>
<td>southeast</td>
<td>0.19</td>
<td>0.11</td>
<td>0.24</td>
<td>0.10</td>
<td>0.06</td>
<td>0.07</td>
</tr>
</tbody>
</table>
Table 3. Values of RMSE and bias for CCATT-BRAMS and WRF-Chem simulations for 26 METAR and 52 SYNOP stations in the Amazon Basin for BARCA A (October–November 2008) and BARCA B (April–May 2009).

<table>
<thead>
<tr>
<th></th>
<th>Oct–Nov 2008</th>
<th></th>
<th></th>
<th>May–Apr 2009</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CCATT-BRAMS</td>
<td>WRF-Chem</td>
<td></td>
<td>CCATT-BRAMS</td>
<td>WRF-Chem</td>
<td></td>
</tr>
<tr>
<td>T (K)</td>
<td>Mean Obs.</td>
<td>295.97</td>
<td></td>
<td>293.89</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RMSE</td>
<td>2.30</td>
<td>2.81</td>
<td>1.70</td>
<td>2.44</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bias</td>
<td>1.04</td>
<td>−2.42</td>
<td>−0.06</td>
<td>−2.28</td>
<td></td>
</tr>
<tr>
<td>T_d (K)</td>
<td>Mean Obs.</td>
<td>289.26</td>
<td></td>
<td>288.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RMSE</td>
<td>2.68</td>
<td>1.72</td>
<td>1.76</td>
<td>1.67</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bias</td>
<td>−1.92</td>
<td>−0.81</td>
<td>−0.99</td>
<td>−0.83</td>
<td></td>
</tr>
<tr>
<td>Wind Spd. (m s$^{-1}$)</td>
<td>Mean Obs.</td>
<td>3.00</td>
<td></td>
<td>2.59</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RMSE</td>
<td>1.41</td>
<td>1.33</td>
<td>1.15</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bias</td>
<td>−0.60</td>
<td>0.16</td>
<td>−0.51</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>Sfc. Press. (hPa)</td>
<td>Mean Obs.</td>
<td>1013.17</td>
<td></td>
<td>1016.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RMSE</td>
<td>2.16</td>
<td>1.43</td>
<td>1.09</td>
<td>1.34</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bias</td>
<td>−2.01</td>
<td>−1.02</td>
<td>−0.79</td>
<td>−1.17</td>
<td></td>
</tr>
<tr>
<td>Precip. TRMM (mm h$^{-1}$)</td>
<td>Mean Obs.</td>
<td>0.49</td>
<td></td>
<td>0.62</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RMSE</td>
<td>2.42</td>
<td>4.50</td>
<td>3.03</td>
<td>7.12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bias</td>
<td>0.28</td>
<td>3.47</td>
<td>0.25</td>
<td>5.84</td>
<td></td>
</tr>
</tbody>
</table>
Table 4. Average O$_3$ dry deposition flux (nmol m$^{-2}$ s$^{-1}$) and daytime (11:00–21:00 UTC) median deposition velocity (cm s$^{-1}$) in the dry and wet seasons (Rummel et al., 2007), and WRF-Chem and CCATT-BRAMS simulations from November 2008 (dry-to-wet transition) and May 2009 (wet-to-dry transition) for Reserva Biológica Jarú (RBJ), Fazenda Nossa Senhora (RNS) and Reserva Ducke (RD).

<table>
<thead>
<tr>
<th>Site</th>
<th>Flux</th>
<th>ν_d</th>
<th>Flux</th>
<th>ν_d</th>
<th>Flux</th>
<th>ν_d</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dry Season</td>
<td></td>
<td>Wet Season</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Observed</td>
<td>CCATT-BRAMS</td>
<td>WRF-Chem</td>
<td>Observed</td>
<td>CCATT-BRAMS</td>
<td>WRF-Chem</td>
</tr>
<tr>
<td>RBJ (forest)</td>
<td>-5.69</td>
<td>-2.43</td>
<td>-3.25</td>
<td>-2.93</td>
<td>-1.59</td>
<td>-2.39</td>
</tr>
<tr>
<td>FNS (pasture)</td>
<td>-4.68</td>
<td>-3.06</td>
<td>-2.49</td>
<td>-2.04</td>
<td>-2.07</td>
<td>-2.04</td>
</tr>
<tr>
<td>RD (forest)</td>
<td>-1.82</td>
<td>-1.63</td>
<td>-2.68</td>
<td>1.6</td>
<td>0.4</td>
<td>0.6</td>
</tr>
</tbody>
</table>
Figure 1. Flight tracks during BARCA.
Figure 2. \(O_3 \) observations during (a) BARCA A, clean conditions (west, north and around Manaus regions), (b) BARCA A, polluted conditions (east and south regions) and (c) BARCA B. The central mark is the median, the edges of the box are the 25th and 75th percentiles, the whiskers extend to the most extreme data points not considered outliers (as defined by Matlab) and outliers are plotted individually as red plusses.
Figure 3. Land surface albedo (fraction) and locations of the coarse (140 km resolution) and nested (35 km resolution) domains for WRF-Chem simulations.
Figure 4. Monthly mean precipitation (mm h$^{-1}$) for November 2008 on the 35 km resolution domain (dark gray line) from (a) TRMM 3B43, (b) CCATT-BRAMS and (c) WRF-Chem. The subregions for precipitation comparison are indicated by black lines.
Figure 5. Same as Fig. 4, but for May 2009.
Figure 6. Mean daily cycle of surface incident shortwave radiation from the Manaus AERONET site (solid line, dotted line denotes one standard deviation), WRF-Chem (crosses) and CCATT-BRAMS (circles) for the BARCA A period (October–November 2008).
Figure 7. Mean daily cycles of surface (a) latent (LE) and sensible (H) heat and (c) incident shortwave (S_{in}) and incoming (L_{in}) and outgoing (L_{out}) longwave radiation fluxes for a forest site and (b) heat and (d) radiation fluxes for a pasture site, comparing observations (solid lines) from von Randow et al. (2004) for the dry-to-wet transition season (July–September 1999–2000) and from WRF-Chem (crosses) and CCATT-BRAMS (circles) for the BARCA A period (October–November 2008).
Figure 8. Mean daily cycles of surface (a) latent (LE) and sensible (H) heat and (c) incident shortwave (S_{in}) and incoming (L_{in}) and outgoing (L_{out}) longwave radiation fluxes for a forest site and (b) heat and (d) radiation fluxes for a pasture site, comparing observations (solid lines) from von Randow et al. (2004) for the wet-to-dry transition season (February–March 1999, January–March 2000) and from WRF-Chem (crosses) and CCATT-BRAMS (circles) for the BARCA B period (April–May 2009).
Figure 9. Mean vertical profiles at Manaus from radiosoundings (black, gray line denotes one standard deviation), CCATT-BRAMS (blue) and WRF-Chem (green) for October–November 2008 at (a) 0, (b) 12 and (c) 18Z.
Figure 10. Mean vertical profiles at Manaus from radiosoundings (black, gray line denotes one standard deviation), CCATT-BRAMS (blue) and WRF-Chem (green) for April–May 2009 at (a) 0 and (b) 12Z.
Figure 11. Locations of surface meteorological stations for model evaluation.
Figure 12. Mean emission rates (10^{-5} kg m$^{-2}$ day$^{-1}$) from PREP-CHEM-SRC for the 35 km domain (dark gray outline) for NO$_x$ for (a) BARCA A (November 2008) and (b) BARCA B (May 2009) and isoprene for (c) BARCA A and (d) BARCA B periods.
Figure 13. Average O$_3$ dry deposition flux (nmol m$^{-2}$ s$^{-1}$) as simulated on the 35 km resolution domain (dark gray outline) by the CCATT-BRAMS model for (a) November 2008 and (b) May 2009 and by the WRF-Chem model for (c) November 2008 and (d) May 2009.
Figure 14. Same as Fig. 13, but daytime (11:00–21:00 UTC) median deposition velocity (cm s\(^{-1}\)).
Figure 15. Mean tropospheric O$_3$ (ppb) on the 35 km domain from (a) OMI/MLS, (b) CCATT-BRAMS and (c) WRF-Chem and total tropospheric column O$_3$ (Dobson units) from (d) OMI/MLS, (e) CCATT-BRAMS and (f) WRF-Chem for November 2008.
Figure 16. Same as Fig. 15, but for May 2009.
Figure 17. O_3 as observed (black circles) and simulated with CCATT-BRAMS (blue stars) and WRF-Chem (base case – green diamonds, 2DEPVEL – cyan circles and 0.5ENOx – yellow squares) from BARCA flights (a) from Manaus to Belém on November 18, 2008, (b) Belém to Manaus on November 19, 2008, (c) Manaus to Belém on 21 May 2009 and (d) Belém to Manaus on November 23, 2009.
Figure 18. Mean vertical O_3 profiles for BARCA A flights for observations (black, gray line denotes one standard deviation), CCATT-BRAMS (blue) and WRF-Chem (base case – green, 2DEPVEL – cyan and 0.5ENOx – yellow) simulations by region: (a) north, (b) east, (c) west, (d) south, and (e) around Manaus. ABLE-2A observations (gray) from the same regions are included for comparison.
Figure 19. Mean vertical NO profiles corresponding to BARCA A flights for CCATT-BRAMS (blue) and WRF-Chem (base case – green, 2DEPVEL – cyan and 0.5ENOx – yellow) simulations by region: (a) north, (b) east, (c) west, (d) south, and (e) around Manaus. ABLE-2A observations (gray) from the same regions are included for comparison.
Figure 20. Mean vertical O_3 profiles for BARCA B flights for observations (black, gray line denotes one standard deviation), CCATT-BRAMS (blue) and WRF-Chem (base case – green, 2DEPVEL – cyan and 0.5ENOx – yellow) simulations by region (a) north, (b) east, (c) west, (d) south, and (e) around Manaus. ABLE-2A observations (gray) from the same regions are included for comparison.
Figure 21. Mean vertical NO profiles corresponding to BARCA B flights for CCATT-BRAMS (blue) and WRF-Chem (base case – green, 2DEPVEL – cyan and 0.5ENOx – yellow) simulations by region: (a) north, (b) east, (c) west, (d) south, and (e) around Manaus.
Figure 22. Vertical profiles of potential temperature, relative humidity, and O$_3$ from SHADOZ soundings (black), CCATT-BRAMS (blue) and WRF-Chem (green) and HYSPLIT back trajectories at 13Z at 1500 m (∼850 hPa, red), 6000 m (∼470 hPa, blue) and 9000 m (∼310 hPa, green) for: Paramaribo on (a) November 6 and (b) November 25, 2008, Natal on (c) November 7 and (d) November 19, 2008 and Paramaribo on (e) 4 May and (f) 11 May 2009.