Supplement of

Laboratory studies of the aqueous-phase oxidation of polyols: submicron particles vs. bulk aqueous solution

K. E. Daumit et al.

Correspondence to: J. H. Kroll (jhkroll@mit.edu)
Figure S1. Results (including photolysis) for the oxidation of erythritol (C$_4$H$_{10}$O$_4$), showing sulfate-normalized mass concentrations of total organic (Org), ammonium (NH$_4^+$), CO$_2^+$, and key ions associated with erythritol (m/z 29, 39, 61, 73, 91) as a function of reaction time for (a) bulk oxidation and (b) chamber oxidation. Dark Fenton chemistry is indicated by grey shading, and exposure to UV by yellow shading.
Figure S2. Same as Figure S1, but for the oxidation of adonitol (C₅H₁₂O₅).
Figure S3. Same as Figure S1, but for the oxidation of mannitol ($C_6H_{14}O_6$).
Figure S4. Same as Figure S1, but for the oxidation of volemitol ($C_7H_{16}O_7$).