1 Reply to reviewer 1

We like to thank reviewer #1 for the careful review and comments. The suggestions and corrections provided helped us to improve the article. They are discussed point-by-point below.

1.1 General comments

Reviewer #1. One point worth clarification concerns the sensitivity test calculations with aqueous ammonium sulphate aerosol solutions described in Section 5 and implications of this discussed in Section 6. I suggest to mention that the gas-liquid partitioning described with Henry’s law actually applies to the limiting case of an organic compound being present in tiny amounts (both in gas and liquid phases) only, as defined by Eq. (1). This may therefore not apply to all situations found in the lower atmosphere. In addition, as soon as not only an aqueous ammonium sulphate phase is present in an aerosol, but, e.g., also a hydrophobic organic phase, the partitioning of the considered polyols may be quite different from the simple examples given in the calculations and shown in Figure 2; see, e.g., Zuend et al. (2010). In such a case, less hydrophilic compounds may still partition substantially to the particles, despite the simple Henry’s law calculation (and activity coefficient values in the aqueous phase) suggesting otherwise.

Author’s response. We added clarifications in Section 5 and 6 based on the reviewer’s comments.

Section 5, page 13539, line 20, we add:
“We note that this discussion, based on Henry’s law, is only applicable if the organic compound is present in a tiny amount, and this may not be justified for all situations encountered in the lower atmosphere.”

Section 5.2, page 13540, line 22, we add:
“Note however that this test is only applicable to a situation with a tiny amount of organics. If e.g. a separate organic phase is present, less hydrophilic compounds may partition substantially to the particles, even if the HLC based analysis suggests otherwise.”

Section 6.3, page 13546, line 15, we add:
“Note that this analysis is only applicable for aqueous AS aerosol in the limiting case of small concentration of organics. If e.g. a separate organic phase
is present in the aerosol, partitioning to this phase should be taken into account as well.”

1.2 Specific comments

Reviewer #1. p. 13530, line 23: “enthalpy of gas phase dissolution”, perhaps better: enthalpy of dissolution of a gas phase species. Check also the subscripts in the formula given there.

Author’s response. Replacement done and subscripts corrected here, as well as on the first line of 13531.

Reviewer #1. p. 13532, line 6: “its liquid vapour pressure”; better: its pure liquid-state vapour pressure.

Author’s response. “liquid vapour pressure” replaced with “pure liquid state vapour pressure”

Reviewer #1. p. 13532, line 7: “corresponding enthalpy change”; unclear: state what process is meant.

Author’s response. Replaced by “the enthalpy of dissolution of an infinitesimal amount of gas phase species”. Also p. 13533 “enthalpy change” is replaced by “enthalpy of dissolution of gas phase species”

Reviewer #1. p. 13532, line 15: “liquid, at infinite dilution”; change to: liquid solute at infinite dilution.

Author’s response. Replacement done.

Reviewer #1. p. 13532, 13533., Eq. (5) vs. Eq. (10): Check the equations regarding factor R.

Author’s response. We apologize for this oversight. In Eqs. (5), (6), (7), (11) and (12) the factor \(R \) has been added at the appropriate places.

Reviewer #1. p. 13535, line 21: “due to the crystal contribution”; this is vague, please clarify what is meant.

Author’s response. Replaced by: “as this depends on the molecular arrangement in the crystal structure which is compound-specific.”

Reviewer #1. p. 13535, line 22: I suggest to write there “liquid state vapour pressure”.

Author’s response. Replacement done. The same is done at p. 13535, line 18.

Reviewer #1. p. 13536, Eq. (17): Check the subscripts “g” of \(C_p, g \) in the integrals related to the entropy/enthalpy changes of the fusion phase transition. Shouldn’t it be \(C_{p,L} - C_{p,Cr} \)?
Author’s response. We derive Eq. (17) here for $\Delta S_{\text{sub}}(T_{\text{ref}})$ step-by-step

$$\Delta S_{\text{sub}}(T_{\text{ref}}) = S_g(T_{\text{ref}}) - S_{Cr}(T_{\text{ref}})$$ \hspace{1cm} (1)

$$S_g(T_{\text{ref}}) = S_g(T_{\text{meas}}) + \int_{T_{\text{meas}}}^{T_{\text{ref}}} \frac{C_{p,g}}{T} dT = S_g(T_{\text{meas}}) + \int_{T_{\text{meas}}}^{T_{\text{ fus}}} \frac{C_{p,g}}{T} dT + \int_{T_{\text{ fus}}}^{T_{\text{ref}}} \frac{C_{p,g}}{T} dT$$ \hspace{1cm} (2)

$$S_{Cr}(T_{\text{ref}}) = S_{Cr}(T_{\text{ fus}}) + \int_{T_{\text{ fus}}}^{T_{\text{ref}}} \frac{C_{p,\text{Cr}}}{T} dT$$ \hspace{1cm} (3)

$$S_{Cr}(T_{\text{ fus}}) = S_L(T_{\text{ fus}}) - \Delta S_{\text{ fus}}(T_{\text{ fus}})$$ \hspace{1cm} (4)

$$S_L(T_{\text{ fus}}) = S_L(T_{\text{meas}}) + \int_{T_{\text{meas}}}^{T_{\text{ fus}}} \frac{C_{p,L}}{T} dT$$ \hspace{1cm} (5)

Substituting the RHS of Eq. (5) in Eq. (4), then the RHS of Eq. (4) in Eq. (3), and finally the RHS of both (2) and (3) in (1), Eq. (17) of the article is correctly obtained. The same procedure holds for $\Delta H_{\text{sub}}(T_{\text{ref}})$.

Reviewer #1. p. 13536, line 17: Replace “solid state pressures” by “solid state vapour pressures” (for clarity, since the vapour pressure is meant, not the pressure of/in a solid).

Author’s response. We adapted this here, as well as at p. 13530, lines 5 and 25, p. 13535, lines 17 and 20 and at other occurrences.

Reviewer #1. p. 13542, line 11: “Note that AS has a deliquescence RH (DRH) of 79.5% and an efflorescence RH (ERH) of 35% (Martin, 2000).” For clarity, write: “Note that pure AS particles have a ...”, since this is not necessarily true when other components are present (besides AS and water).

Author’s response. Sentence adapted.

Reviewer #1. Following sentence: “Below the ERH, only solid AS is present in the particulate phase.” could be misunderstood, since also below the DRH only solid AS may be present or otherwise a liquid, supersaturated solution, depending on the RH history of a particle (i.e., if previously dried below ERH or not). DRH is the stable equilibrium point (referring to the solubility limit of solute).

Author’s response. We modified the sentence into:

“The DRH is the equilibrium point below which solid AS is the thermodynamically stable phase and this corresponds to the solubility limit of AS in water. However, depending on the RH history of the particle, a metastable supersaturated solution may instead be present below the DRH. Below the ERH, only solid AS is present in the particulate phase.”

Reviewer #1. p. 13543, Eq. (25): As done in Eq. (2), Eq. (25) refers to the limiting case of pressure and mole fraction $\to 0$. Therefore, state the limits in the expression.

Author’s response. This is done.

Reviewer #1. p. 13546, line 6: “diols will be partially or completely in
the aqueous phase in clouds,”; should it read “gas phase” instead of “aqueous phase” here?

Author’s response. No, aqueous phase is meant. For example, 1,4-butane diol will be completely in the aqueous phase as its k_h of $3.5 \times 10^6 \text{ M/atm}$ is larger than the upper limit of k^*. 1,2-hexane diol has a k_h of $1.7 \times 10^5 \text{ M/atm}$ which is in the range that k^* can take. To be more clear, we changed the sentence into:

“According to the HLC derived in this and the previous work (Compernolle and Müller, 2014), diols will be partially (e.g. 1,2 hexane diol, depending on the droplet size) or completely (e.g. 1,4-butane diol) in the aqueous phase in clouds, ...”

Reviewer #1. Table 2: The pressure unit of atm is used, which is an obsolete unit. Atmos. Chem. Phys. asks authors to use SI units whenever possible, thus, use Pa (or kPa) for tabulated data. The same applies to Table 4.

Author’s response. In Table 2, we have converted the units to Pa. Regarding Table 4 however, we prefer to keep the 'M/atm' unit for Henry’s law constant, as it is more commonly used than the SI unit (Sander, 1999), and to keep consistency with our previous work (Compernolle and Müller, 2014) and the compilation of Sander (1999).

Reviewer #1. Table 4: State the temperature for which the quantities are listed.

Author’s response. “at 298.15 K” added in the caption.

1.3 Technical corrections

Reviewer #1.

• p. 13534, line 17: delete “(see Eq. 13)”.
• p. 13540, Eq. (20): RT should be math mode (RT).

Author’s response. The technical corrections have been implemented.

2 Reply to reviewer 2

2.1 General Comments

Reviewer #2. The authors report the calculation of Henry’s law constants (HLC) for several polyols from literature data for water activity and vapour pressure and calculated/estimated data for infinite dilution activity coefficients (IDACs), sublimation vapour pressures and activity coefficient ratios. These HLC values and those from a previous work are used to assess the partitioning of polyols, diacids and hydroxyacids into aqueous aerosol. The paper would be improved by a more detailed description of how exactly the authors did their calculations and more analysis of the effect of errors in their input values on the HLC values they calculate. This reviewer recommends that this paper is
published in Atmospheric Chemistry and Physics after the following issues have been resolved.

Author’s response. We thank the reviewer for the many suggestions to improve the manuscript. We include now more detail about the calculations, also including more references. A detailed error analysis concerning all relevant quantities is now included in an appendix.

2.2 Specific Comments

Reviewer #2. Introduction:-In their previous paper (Compernolle and Muller 2014) the authors provide an excellent critique of the available ‘experimental’ HLC values for diacids and hydroxyl polyacids from the literature. Although the data for these polyols is much more limited than that for the polyacids, it would be a useful addition to the introduction if the authors could summarise and critique the literature data for HLC values for polyols in this paper in a similar way.

Author’s response. To provide more context, we add now a short paragraph:

“HLC data on polyols is limited. Data is available e.g. in the often-cited compilation of Sander (1999). In this compilation however, most values are estimated by a group-contribution method, while only for three molecules experimental values are included, and some of the data was evaluated as unreliable.”

Reviewer #2. p. 13531-line 6:- References needed for E-AIM

Author’s response. We changed the sentence into:

“... making use of a model presented at the site E-AIM (Extended AIM Aerosol Thermodynamics Model), available at http://www.aim.env.uea.ac.uk/aim/aim.php, (see e.g. Clegg and Seinfeld; Friese and Ebel, 2010) to calculate the acid dissociation.”

Reviewer #2. p. 13531-Eq 2:- what is the significance of the superscript ‘px’? What is its meaning?

Author’s response. The ‘px’ subscript was introduced by Sander (1999) (to which we refer) to specify that vapour pressure p is used for the gas phase concentration, and mole fraction x for the aqueous phase concentration. This is now specified in the text:

“The px superscript specifies that vapour pressure p is used for the gas phase concentration, and mole fraction x for the aqueous phase concentration.”

Reviewer #2. p. 13531-line 23:- Might be helpful to remind the reader $C_w = 55.5$ Moles/Litre.

Author’s response. We appended “(equal to 55.5 mol/L at 298.15 K)”

Reviewer #2. p. 13532- Eq 5-7:- A reference for this use of the Van’t Hoff equation is required.

Author’s response. We inserted a reference to the handbook of Atkins and de Paula (2006).

Reviewer #2. p. 13532-Eq 5. An ‘R’ is missing from in front of the derivative.
Author’s response. This has been inserted. Likewise for equations (6), (7), (11) and (12).

Reviewer #2. p. 13532-Eq 8. A reference is required for the derivation of this equation?

Author’s response. A reference to our previous paper (Compernolle and Muller 2014), where this equation is derived, is included.

Reviewer #2. p. 13533-Eq 10-12. A reference is required for the derivation of these equations.

Author’s response. References and some extra explanation is provided:
“Eq. (11) is the Clausius-Clapeyron equation for sublimation (Atkins and de Paula, 2006). Eq. (12) can be derived by combining Eqs. (8), (6) and the van’t Hoff relation for the activity of the solid (see e.g. Nordström and Rasmuson, 2008) “

Reviewer #2. p. 13534 line 1:- Methods to estimate activity coefficients considerably pre-date the references quoted here. The original paper defining UNIFAC (Fredenslund et al. 1975) should be included in this set of references.

Author’s response. This reference is included.

Reviewer #2. p. 13534-Section 3.1:- lines 3 to end of page:- The authors need to clarify how exactly they derived their values for IDAC and the activity coefficient ratio as discussed in Section 3.3.

In its present form this section is very confusing. Eq. 13 is an integral form of the Gibbs-Duhem relationship which can provide an IDAC for the solute. Did the authors use Eq. 13 to get the IDAC values for any of their compounds (if the methods given in Appendix A in Compernolle and Muller 2014 were followed then probably not)? Activity coefficient expressions such as Margules, Van Laar, Wilson, or UNIQUAC obey the Gibbs-Duhem relationship (ie. Eq 13) and, once the relevant parameters have been fitted to the data, the IDAC value can be obtained directly. Is there an advantage to using Eq 13 to get the IDAC values rather than fitting the available aw data to (say) the Margules equation and obtaining the IDAC values from the Margules equation directly? Do the authors combine an activity coefficient expression with Eq. 13 in some way to get the IDAC values? In which case they should explain in more detail how they do this. If the authors do not use Eq. 13 to calculate IDAC values then perhaps it should be removed to avoid confusion. Either way the authors should make it much clearer how they calculated their IDAC values. If Eq. 13 is retained then Mansoori 1980 should be quoted as a reference (as this provides the derivation) and the authors should provide an explanation of what ’t’ is. If an activity coefficient expression was used to calculate the IDAC values then which equation was used for each compound should be provided either in this section or in Table 1. Also Table 1 should include some information about the composition range of the data that was fitting to the activity coefficient expression.

Also the use and validity of Eq. 14 is unclear. Do the authors have a reference or any other evidence that this equation is valid? The whole point of using something like the Margules equation (or Eq. 13) is that the same equation (with the same fitted parameters) is used across the whole composition range
to ensure that Gibbs-Duhem is obeyed. If the authors use one equation for part of the composition range and a different equation for the rest then Gibbs-Duhem will not be satisfied. However fitting one set of data to one equation and a second set to a different equation would be fine (using different Margules parameters which would give two different IDAC values— as seen in Table 1) so is Eq 14 really describing the method used by the authors to fit two or more sets of data for the same organic solute?

Author’s response. We tried to be concise in our description; we regret if this led to confusion. We removed some explanation from Section 3.1 (e.g. Eq. (14) and its discussion). Instead, we inserted now a more detailed explanation in the Appendix. It is integrated in the error analysis, as the derived uncertainty in IDAC depends on the a_w data and how these are used. We prefer to keep the Gibbs-Duhem Equation (Eq. 13) as it is generally valid, both if the integral is solved numerically or analytically, while e.g. the Margules equation has a more limited scope. Instead of t we use now x_w as integration variable, to improve clarity. The reference to Mansoori (1980) is included. The activity coefficient expressions (Margules, Van Laar, etc.) are given in the Appendix, and also the specific parameterisations. The composition range is not included per experiment, but described in the appendix in a general way: mole fraction of 0.1-0.95 for the Marcolli data, 0.93-0.996 for the other data.

Regarding the reservations that the reviewer has about Eq. (14). Let us restate here the integral form of the Gibbs-Duhem equation (e.g. Mansoori, 1980).

$$\ln \gamma_s^\infty = \int_0^1 \frac{\ln \gamma_w(x_w)}{(1-x_w)^2} dx_w$$

If sufficient fine-grained data would be available over the whole composition range, it would be most straightforward to solve the integral numerically. However, this is not the case here. An alternative is to fit the $\ln \gamma_w$ data with a function $f(x_w)$, and then applying the integration on this function. If $f(x_w)$ is e.g. a Margules expression the integration is well known and $\ln \gamma_s^\infty$ can be directly evaluated from the fitting parameters of $f(x_w)$, but in general $f(t)$ could be an arbitrary function; it should merely provide a good fit to the $\ln \gamma_w$ data. In many cases, a single activity expression (Margules, Van Laar,...) was enough to fit all data.

It is of course true that

$$\int_0^1 \frac{f(x_w)}{(1-x_w)^2} dx_w = \int_0^{\tilde{x}_w} \frac{f(x_w)}{(1-x_w)^2} dx_w + \int_{\tilde{x}_w}^1 \frac{f(x_w)}{(1-x_w)^2} dx_w$$

Suppose now that none of the activity expressions we use can give a good fit of all $\ln \gamma_w$ data over the entire range. However, as $f(x_w)$ can be a general function, there is nothing that prevents us from defining

$$f(x_w) = f^{(1)}(x_w) \text{ if } t < \tilde{x}_w$$
$$f(x_w) = f^{(2)}(x_w) \text{ if } t > \tilde{x}_w$$
with \(f^{(1)}(x_w), f^{(2)}(x_w) \) different \(\ln \gamma \) expressions. This leads us to Eq. (14):

\[
\ln \gamma_s = \int_0^x \frac{f^{(1)}(x_w)}{(1 - x_w)^2} dx_w + \int_x^1 \frac{f^{(2)}(x_w)}{(1 - x_w)^2} dx_w
\]

Of course if e.g. \(f^{(1)} \) is a Margules expression and \(f^{(2)} \) is a Van Laar expression, then the parameters of either expression do not correspond directly to \(\ln \gamma_s \). But that does not prevent us from evaluating both integrals.

We hope this makes clear the approach we followed. As noted above, we've put now a more detailed explanation in the Appendix.

Reviewer #2. p. 13535 line 5-9: Using two sets of data to get two different IDAC values for the smaller diols gives an idea of the sensitivity of the IDAC values to errors in the aw data. However, as the authors correctly point out, as the IDAC values increase for the more hydrophobic diols the uncertainty will be larger and for some of these diols there is only one value for IDAC because there is a single set of aw data. It might be suspected for (say) 1,7 heptane diol or 1,2 hexane diol, that any fitted parameters in an activity coefficient expression may be poorly constrained and consequently the IDAC values sensitive to small errors in aw. Could the authors do a sensitivity analysis using one of the above compounds and applying- 1) a small random error (do the authors providing the experimental data quote an error for their aw values?), and 2) a small systematic error to the aw data to see what effect this has on the calculated IDAC value.

Author’s response. This is a good suggestion. In the newly-included error analysis in the appendix, systematic and random errors are applied to the \(a_w \) data and the impact on IDAC investigated. Moreover, also the impact of choice of the fitting function is analysed.

Reviewer #2. p. 13535 line 25 to p. 13536 line 10: Equations 15-17 need a reference. Also it might help to make your nomenclature in these equations clearer if you state that \(\Delta S_{\text{sub}} \) and \(\Delta H_{\text{sub}} \) are weak functions of temperature.

Author’s response. The temperature correction is now stated as Kirchhoff’s law, with a reference to Atkins and de Paula (2006). “with \(\Delta H_{\text{sub}} \) and \(\Delta S_{\text{sub}} \) weak functions of temperature” is added after Eq. (16).

Reviewer #2. p. 13537: Discussion of the results for sublimation pressures.

p. 13537 lines 1-2: The authors should provide some figures about the agreement for fusion data between different data sources (were they all within 5% of each other or 3% or 1%?).

Author’s response. Comparison of fusion data of the polyols with 4 or more OH groups is now included in a paragraph. Also an error analysis regarding the impact of uncertainty in fusion data on \(k_b \) is included in the Appendix.

Reviewer #2. The authors make a convincing case that the integrals involving the heat capacity integrals are important to the calculation of \(p_{\text{Cr}}^0 \), but they have nothing to say about the effect of error in the heat capacity values and the \(\Delta H/\Delta S \) values in Eq. 16 and 17 on the calculation of \(p_{\text{Cr}}^0 \). The authors should do a sensitivity calculation for some of the compounds in Table 2 (in particular for sorbitol or mannitol where the extrapolation is large) where the
effect of (say) a 5% error (or if the data suggests a more representative estimate of the error use that) in heat capacity values and the $\Delta H / \Delta S$ values and its impact on p^0_{Cr} can be evaluated. From this the authors should be able to draw some conclusions about the relative importance of errors in these quantities and how this varies with the temperature difference ($T_{\text{meas}} - T_{\text{ref}}$).

Author’s response. In the error analysis in the appendix, uncertainties on p^0_{Cr} are derived based on an intercomparison of $p_0^0 \Delta H_{\text{vap/sub}}, C_p, T_{\text{fus}}$ and ΔH_{fus} between different data sources, and a sensitivity test is performed based on this. We also investigated the impact of stereo-chemistry on C_p, L, and $C_{p, Cr}$ (as in some cases we had to use C_p of a stereo-isomer) and tried to quantify the error on $C_{p, g}$ (made difficult because this quantity is estimated). For this intercomparison exercise, new data is included, e.g. from Lopes Jesus et al. (2005); Parks and Huffman (1926); Parks and Anderson (1926). As can be expected, for a large ($T_{\text{meas}} - T_{\text{ref}}$) difference the error is the largest.

Reviewer #2. The authors should include T_{fus} values in Table 2 and also, rather than a single point for T_{meas}, they should indicate the temperature range of the data which they have used to derive their ΔH_{sub} and ΔH_{vap} at T_{meas}.

Author’s response. In Table 2, we have replaced T_{meas} with the temperature range. The T_{fus} values we did not include in this Table, but in a Table in the error analysis section in the Appendix.

Reviewer #2. p. 13537 line 21-22:- ‘The high temperature p^0_L and p^0_{Cr} data of erythritol and pentaerythritol is comparable among the data sources. . .’ this is too vague. In what way are these three sets of data comparable [...]?

Author’s response. To clarify this, we added the following part to the sentence:

‘; if the p^0 parameterisations presented in these works are evaluated at mid-points between their respective T_{meas}, differences ranging from 4% up to 40% are obtained.”

Reviewer #2. [...] and if they are so similar why do they give different ΔH_{vap} or ΔH_{sub} and different estimates for p^0_{Cr} at 298.15K? Doesn’t this highlight one of the difficulties with this method (as defined by equations 15-17) of deriving sublimation pressures at 298.15K from high temperature vapour pressure data. The high temperature data needs to be very accurate and over a substantial temperature range to provide an accurate slope of the vapour (or sublimation) pressure. [...]

Author’s response. It is true that the uncertainty in ΔH_{vap} or ΔH_{sub} dominates the error in p^0_{Cr} at 298.15K (and also in k_h), at least for the polyols with 4 or more hydroxyl groups. This is now shown in the error analysis in the Appendix, and discussed in Section 6.1. However, one must also take into account that the old studies of Nitta (1950, 1951) and Bradley (1953) were done over a smaller temperature interval, and for much less data points, compared to the Barone (1990) study. Therefore, we think the slopes of Nitta and Bradley are less reliable, and their data is not retained for the final k_h calculation.

Reviewer #2. [...] The authors should discuss the limitations and advantages of their method against alternative methods for calculating values for p^0_{Cr} For example it is known that for some vapour pressure estimation methods that
require normal boiling point \((T_b)\) as an input (eg. Nannoolal et al. 2008) the vapour pressure correlation is relatively accurate and most of the error (for low volatility compounds) comes from the estimation of \(T_b\).

Hence an alternative method to obtain \(p_C^0\) would be to use one of the standard vapour pressure estimation methods; fix the boiling point to give the experimental vapour pressure or sublimation pressure at \(T_{\text{meas}}\); and estimate the subcooled liquid vapour pressure at 298.15K which can then be converted to the crystal sublimation pressure using the equation for the ratio of the solid/supercooled liquid fugacities (Prausnitz et al 1986), with the simplification that the gas phase is ideal and \(T_{\text{fus}}\) is a good approximation to the triple point temperature. This is the same equation as Eq. 1 in Compernolle et al., 2011.

Author’s response.

We have reservations concerning this alternative approach proposed by the reviewer. While the Nannoolal et al. (2008) vapour pressure method (and similarly, the Moller et al. (2008) vapour pressure method) are successful especially for monofunctional compounds, there can be issues for highly polyfunctional compounds. From the theses describing the development of both methods (Nannoolal, 2006; Moller, 2007, p. 127), it is clear that only compounds were considered where a normal boiling point is available. This excludes the polyols with 4 or more OH groups. Therefore, these methods may not be well-suited to calculate the vapour pressure of these kind of compounds. In fact, the original version of the Moller method contained a bug that we pointed out (Compernolle et al., 2010), showing up only for highly polyfunctional compounds, and giving very unrealistic values. While this bug has been corrected since then, it does indicate that the method was not devised for highly polyfunctional compounds.

We did some test calculations using the vapour pressure estimation methods available on-line at the site of E-AIM (http://www.aim.env.uea.ac.uk/aim/aim.php) for the polyols with 4 or more hydroxyl groups. The three methods provided (Nannoolal et al., 2008; Moller et al., 2008; Myrdal and Yalkowsky, 1997) all calculate \(p_L^0\) and require a normal boiling point \(T_b\) as input. As suggested by the reviewer, we adjusted \(T_b\) until the high-temperature data of \(p_L^0\) Barone et al. (1990) could be reproduced. Then, the \(p_L^0\) (298.15K) was calculated using this boiling point. The results are given in a separate appendix. The method of Myrdal and Yalkowsky (1997) gave much higher \(p_L^0\) (298.15K) than the other two methods, e.g. for sorbitol it was higher by a factor 200–400. The final \(p_L^0\) (298.15K) result of the Nannoolal method and of the Moller method are in closer agreement (e.g. for sorbitol within a factor 2), however, the \(T_b\) value that had to be used was very different (for sorbitol: 674 K for the Nannoolal method, 789 K for the Moller method). This also points to problems with this methodology.

Reviewer #2. p. 13538:- Section 3.3:- Similar issues to those raised in Section 3.1. Do the authors need to quote Eq. 18? Was it used to calculate the ratio of the activity coefficients? If not should it be removed it to avoid confusion to the reader? From figure 1 and the text in this section it is clear that the \(a_w\) data was correlated using the Margules equation. The form of the Margules equation should be provided, either in this section, or in Section
3.1. If Eq. 18 is to be retained can the derivation of Eq. 18 from Eq. 10 in Compernolle and Muller 2014 be provided (perhaps in an Appendix).

Author’s response. The Margules equation (along with other activity coefficient expressions) is now presented in the Appendix. To be more explicit on how we derived the activity coefficient ratios, we include now in the text:

“The precise procedure is described in Appendix A of Compernolle and Muller (2014) and the resulting parameters are shown in Fig. 1.”

We prefer to keep Eq. (18) because it is generally valid. We don’t see the added value of a separate derivation of Eq. (18). It was already presented in Eq. (15) of Compernolle and Muller (2014) and can be derived in one step from Eq. (10) of Compernolle and Muller (2014), simply by evaluating \(\ln \gamma_s \) at infinite dilution and at saturation, and then taking the difference.

Reviewer #2. The authors need to comment on the impact of likely errors in their input data on the activity coefficient ratio. How sensitive is the activity coefficient ratio to errors in the solubility limit? How reliable are the solubility limits provided with the \(a_w \) data? Would small errors in the \(a_w \) data have a significant impact upon the calculated activity coefficient ratio?

Author’s response.

Reliability of solubility limits and impact on activity coefficient ratio

Solubility limits were not taken from the same source as the \(a_w \) data, because it was not always clear if \(a_w \) was measured up to the solubility limit. Rather, we took the solubility limit from works where solubility was the focus (see Table 3). Based on the uncertainties that are reported, and by comparing solubility limits for the same compounds from different data sources, it can be concluded that the error on solubility measurement is generally very small. A discussion on this is included in the error analysis in the appendix. Moreover, these small uncertainties in \(x_{sat}^s \) do not affect the integration region in Eq. (18) significantly, and therefore also not the activity coefficient ratio.

Impact of \(a_w \) errors on activity coefficient ratio

If the solubility limit is low, the activity coefficient ratio is necessarily close to unity and will not be affected much by errors in \(a_w \). The situation is of course different if the solubility is large, and therefore the integration region in Eq. (18) becomes large. We applied random shifts to the \(a_w \) data, based on the precision of the data. This resulted in small uncertainties for the activity coefficient ratio. This is also included in the error analysis in the appendix.

Reviewer #2. p. 13538 line 16-17: ‘For adonitol and arabinitol ... the simple but successful one parameter Margules fittings of Chirife et al.’ This is a bit subjective (on what basis is it successful?). Can the authors please delete ‘simple but successful’.

Author’s response. This is deleted.

Reviewer #2. p. 13538 line19 ‘... but reasonable assumptions [for the activity coefficient ratio] could be made.’ This demands more explanation, which you provide in Table 3, so suggest you insert ‘(see Table 3)’ after ‘made’.

Author’s response. Reference to the table inserted.
Reviewer #2. p. 13539 line 1:- The first line should read “Using Eqs. (4), (5), (8) and (9).”

Author’s response. It should have been “Using Eqs. (4), (5), (8) and (10)”. This is now corrected.

Reviewer #2. p. 13540 Eq. 20:- need a reference for the derivation of this equation.

Author’s response. The equation has been explicitly derived instead.

Reviewer #2. p. 13540 line 10:- need a reference for the range of k* in clouds. Also for the calculation of k* for clouds and aerosol- what temperature is used?

Author’s response. The k* range is derived from the LWC range for cloud and aerosol given at p. 13539, and the reference temperature 298.15 K. This is now indicated in the text.

Reviewer #2. p. 13541 Eq. 21/22:- Need references for the derivation of these equations (or provide their derivation in an Appendix). Also the form of Eq 21 should be made clearer by putting brackets around f p,s //(1-f p,s).

Author’s response. The steps needed to derive these equations from Eq. 2 have been mentioned and the brackets have been added.

Reviewer #2. p. 13542 line 9-10:- What is the range of x AS used and what were the corresponding RH values?

Author’s response. x AS was varied between 0.43 and 0, corresponding to an RH between 30 and 100%. This is now mentioned in the text.

Reviewer #2. p. 13542 line 26-28:- Sentence beginning:- 'Glycerol . . .' needs to be reworded. . . Suggest:- 'At RH=90% glycerol, with three hydroxyl groups, is 95% in the gas phase while sorbitol, with six hydroxyl groups, is still 50% in the particulate phase at RH=44%.' The authors should comment that this may be due to glycerol being much more volatile than sorbitol.

Author’s response. We changed the sentence into:

“At RH=90% glycerol, with three hydroxyl groups, is 95% in the gas phase while sorbitol, with six hydroxyl groups, is still 50% in the particulate phase at RH=44%. This is due to the large difference (8 orders of magnitude) of their k h values.”

Reviewer #2. p. 13545:- Section 6.1:- in this section the authors discuss some of the uncertainties in their HLC values. However they really need to have discussed in the earlier part of the work the expected uncertainties in key inputs to HLC values such as solid state pressures and IDAC values to make this meaningful. Once they have provided some information on the sources and magnitude of likely errors for their p 0 Cr, values and IDAC then the authors should be able to comment authoritatively on the impact on their HLC of different sources of error for different compounds. In its present form without the error estimates to back up the statements in this section are quite devoid of meaning.

Author’s response. We have now performed a more quantitative error analysis in the appendix, deriving uncertainties for a w, γ∞ s, p 0 L, p 0 Cr, x sat s , γ∞ s /γ sat s, ΔH sub or ΔH vap, T fus, ΔH fus, C p, Cr, C p,L and C p,g.

Based on this, we are able to make a more solid discussion of the errors. We rewrote the discussion of this section:

12
“An error analysis is performed in Appendix A. The compounds that are liquid at room temperature (most diols and glycerol) have a relatively low uncertainty in k_h (relative standard error 6-28%). For some compounds, further improvement is possible with more precise p_L^0 data and/or more fine-grained and precise a_w data in the dilute region.

The compounds that are solid at room temperature, especially the polyols with four or more hydroxy groups, bear a much larger uncertainty in k_h (relative standard error 34-82%). This is mainly due to the use of high-temperature liquid or solid state vapour pressures. More specifically, it is due to the uncertainty in ΔH_{vap} or ΔH_{sub} in combination with the extrapolation over a large temperature interval. For the hexols, also the uncertainty in heat capacity becomes important, although we note that the error in $C_{p,g}$ is speculative as this property is estimated. Measuring the (solid or liquid state) vapour pressure closer to room temperature will lower these uncertainties.

As noted above, the $C_{p,g}$ values are estimated. Improvement here is possible by using $C_{p,g}$ derived from experiment or from ab initio calculations rather than using a group contribution method. For nonane diol and decane diol, only solubilities from a secondary reference (Merck Millipore) could be retrieved, for which it is difficult to estimate the reliability. New solubility measurements are desirable to obtain a more reliable k_h estimate.”

Reviewer #2. Tables: The authors should provide the chemical structures for the compounds in Tables 2 and 3.

Author’s response. We have inserted a new table with an overview of the polyols with 3 or more hydroxyl groups, together with their molecular structure. For the diols, we did not do this, as straightforward IUPAC names are used in the text. Note that some info from Table 2 (number of OH groups, synonyms) is transferred to this new table.

2.3 Technical Corrections

Reviewer #2. p. 13532-line15:- insert ‘solute’ after ‘liquid’ to improve clarity.

Author’s response. ‘solute’ inserted.

Reviewer #2. p. 13533-line 2:- The sentence should read ‘In the case that the solubility is small. . .’

Author’s response. Sentence adapted.

Reviewer #2. p. 13536 line 2 and line 6:- The authors might consider using ‘temperature correction’ rather than ‘transformation’ to improve clarity.

Author’s response. Sentence adapted.

Reviewer #2. p. 13538 line 15:- suggest ‘underestimates γ_w of these polyol/water mixtures.’

Author’s response. Sentence adapted.

Reviewer #2. p. 13541 line 12:- to improve clarity insert ‘polyol’ so that it reads ‘... the amount of polyol solute is infinitesimally small.’

Author’s response. As in the subsequent lines we treat also diacids and hydroxy acids, we put instead: ’... the amount of organic solute is infinitesimally small.’
3 Reply to reviewer 3

3.1 General

Reviewer #3. This is a good contribution for assessing the Henry’s law constants of polyols some of which are of strong interest in atmospheric chemistry. Some of the derived Henry constants are extremely high, especially for the sugar-related compounds. Here, I am missing a discussion in view of other available Henry constants and an evaluation as the final outcome of this discussion. I think some of the data listed here are not compared towards other, existing data and I feel the manuscript should be revised accordingly. Otherwise a contribution fitting well to ACPD and thoroughly done.

Author's response. We thank the reviewer for this positive evaluation.
In section 6.2 a comparison with the literature was already done. We have not found any other experimental HLC data for these molecule types. Given that in the (necessarily limited) comparison with the literature the data was mostly within a factor 2 or 3, we think that the agreement is reasonable. This is now reflected more clearly in the text. We added at page 13545, line 24:
“In conclusion, for five out of six HLC values, we have a reasonable agreement with literature values.”

3.2 Details:

Reviewer #3. Abstract, line 5: What does ‘intermediary results’ stand for here?

Author’s response.
We meant that in the process of deriving the Henry’s law constants, also other quantities have been derived. We replaced the sentence with

“While deriving HLC and depending on the case, also infinite dilution activity coefficients (IDACs), solid state pressures or activity coefficient ratios are obtained as intermediate results.”

4 Other changes

Unfortunately two mistakes regarding units were present in the discussion paper.

Correction 1. Bradley and Cotson (1953) reported their vapour pressure measurements of pentacerythritol in cm Hg, while we assumed incorrectly that it was in mm Hg. Therefore, the derived p_0^{HC}(T_{ref}) should have been 9.2×10^{-13} atm (or 9.3×10^{-8} Pa), instead of $9.2E-14$ atm. This is now corrected in Table 2. As a consequence, we rewrote the text starting from p. 13537, line 21:

“However, due to differences in ΔH_{vap} or ΔH_{sub}, the extrapolated p_0^{HC} (298.15 K) is a factor 7 to 50 higher if the older data of Nitta et al. (1950, 1951); Bradley and Cotson (1953) is used, compared to when the more recent data of Barone et al. (1990) is used. In the older studies the enthalpy was determined using much less data points (6-11, compared to 25-30 for the data of Barone et al. (1990), and specifically for the data of Nitta et al. (1950, 1951), over a quite
narrow temperature interval (∼12 K, compared to 30-40 K for the other studies). Therefore, we consider the p_0^{Cr}, derived from the high-temperature data of Barone et al. (1990) as more reliable."

Correction 2. By mistake we inserted the solubility mass fraction of pentaerythritol (Cheon, 2005), without converting to mole fraction. This made following corrections necessary:

- x_s^{sat} in Table 3 is now 0.00946 instead of 0.067.
- Due to the low solubility, $\gamma_s^\infty / \gamma_s^{\text{sat}}$ can be approximated as 1 (Table 3). The UNIFAC-MP calculation gives now 0.97.
- k_h becomes 7.4×10^{12} instead of 6.7×10^{13} (Table 4). In Figs. 2b, c, the curve belonging to pentaerythritol has moved closer to that of erythritol.

References

Henry’s law constants of polyols

S. Compernolle and J.-F. Müller

Belgian Institute for Space-Aeronomy, 1180 Brussels, Belgium

Correspondence to: S. Compernolle (steven.compernolle@aeronomie.be)
Abstract

Henry’s law constants (HLC) are derived for several polyols bearing between 2 and 6 hydroxyl groups, based on literature data for water activity, vapour pressure and/or solubility. Depending on the case, also infinite dilution activity coefficients (IDACs), solid state vapour pressures or activity coefficient ratios are obtained as intermediary results. An error analysis on the intermediate quantities and the obtained HLC is included. For most compounds, these are the first values reported, while others compare favourably with literature data in most cases. Using these values and those from a previous work (Compernolle and Müller, 2014), an assessment is made on the partitioning of polyols, diacids and hydroxy acids to droplet and aqueous aerosol.

1 Introduction

Henry’s law constant (HLC) describes the partitioning of a compound between the gas phase and a liquid, highly dilute solution. In the atmosphere, such dilute solutions, with water as the solvent, can be reached in cloud droplets. Aqueous aerosols are another example where liquid water is important, but in this case the solvent must be regarded as multicomponent, with significant inorganic and/or organic contributions. In a previous work (Compernolle and Müller, 2014) we determined additional HLC data for diacids and hydroxy polyacids, from water activities, solubilities and vapour pressures, employing thermodynamic relationships. We follow the same approach in this work, but with a focus on polyols: compounds with two or more hydroxyl groups, but no other functional group. Polyols such as 2-methyl tetrals were identified as important secondary organic aerosol (SOA) constituents (Claeys et al., 2004). HLC data on polyols is limited. Data is available e.g. in the often-cited compilation of Sander (1999). In this compilation however, most values are estimated by a group-contribution method, while only for three molecules experimental values are included, and some of the data was evaluated as unreliable.
In Sect. 2, we first briefly review the thermodynamic relationships employed to derive HLC \((k_h)\) and the associated enthalpy of gas phase dissolution \((\Delta H^\infty_{\text{L\rightarrow aq}})\) of a gas phase species \((\Delta H^\infty_{\text{g\rightarrow aq}})\). In Sect. 3 we derive intermediary results, namely infinite dissolution activity coefficients (IDACs), solid state vapor pressures and activity coefficient ratios, which are necessary components in deriving HLC but not as such available in the literature for all compounds. Next (Sect. 4), we present \(k_h\) and \(\Delta H^\infty_{\text{L\rightarrow aq}}\) \(\Delta H^\infty_{\text{g\rightarrow aq}}\) using the data from the previous Section and other literature data. An error analysis is presented in Appendix A. In Sect. 5, we discuss the implications for partitioning to cloud droplets and aqueous ammonium sulfate aerosol, making use of the activity coefficient model AIOMFAC (Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients) (Zuend et al., 2011). We extend this also to dicarboxylic acids and hydroxy polyacids, making use of the model presented at the site E-AIM (Extended AIM Aerosol Thermodynamics Model), available at http://www.aim.env.uea.ac.uk/aim/aim.php (see e.g. Clegg and Seinfeld, 2006; Friese and Ebel, 2010) to calculate the acid dissociation.

Note that in this work, non-IUPAC names are used for polyols with 3 or more hydroxyl groups. Their structures are presented in Table 1.

2 Thermodynamic relationships between HLC and other quantities

For HLC, several definitions exist. We will follow here the convention used by Sander (1999).

\[
k_h \equiv \lim_{c_s,p_s \to 0} \frac{c_s}{p_s}
\]

with \(c_s\) the solute molar concentration of the solution and \(p_s\) its partial pressure above it. Note that we assume ideal gas behaviour for the solute. With this convention, a larger \(k_h\) means a higher partitioning of the solute to the solution. At some point, we will employ also another definition of HLC, following again the notation of Sander (1999),

\[
k^p_{x \rightarrow h} \equiv \lim_{x_s,p_s \to 0} \frac{x_s}{p_s}
\]
with x_s the solute mole fraction. The px superscript specifies that vapour pressure p is used for the gas phase concentration, and mole fraction x for the aqueous phase concentration.

The relation between both quantities is

$$\frac{k_h}{k_h^{px}} = c_{sol}$$

(3)

with c_{sol} the total molar concentration of the solution, (or solvent, since we assume that the solute is infinitely diluted). In case the solvent is pure water, we write $c_{sol} = c_w$ (equal to 55.5 mol/L at 298.15 K).

If the solute is a liquid at the temperature of interest and the solvent is water, k_h can be obtained by Eq. (4)

$$k_h = \frac{c_w}{\gamma^\infty p_L^0}$$

(4)

with γ^∞ the infinite dilution activity coefficient (IDAC) of the solute (mole fraction based and with the symmetric convention $\gamma^\infty = 1$ for pure liquid solute) and p_L^0 its liquid–pure liquid state vapour pressure. The corresponding enthalpy change (of dissolution of an infinitesimal amount of gas phase species ($\Delta H_{g\rightarrow aq}^\infty$)) can be derived from the van’t Hoff equation (see e.g. Atkins and de Paula, 2006) and (neglecting the small temperature dependence of c_w) is equal to

$$-\frac{d\ln k_h}{d(1/T)} = \Delta H_{g\rightarrow aq}^\infty$$

$$= \Delta H_{L\rightarrow aq}^\infty - \Delta H_{vap}$$

$$\Delta H_{L\rightarrow aq}^\infty = \frac{d\ln \gamma^\infty}{d(1/T)}$$

$$\Delta H_{vap} = -\frac{d\ln p_L^0}{d(1/T)}$$

with ΔH_{vap} related to the enthalpy of vaporisation and $\Delta H_{L\rightarrow aq}^\infty (\Delta H_{vap})$ and the enthalpy of solution of the liquid solute at infinite dilution $\Delta H_{L\rightarrow aq}^\infty$ using Hess’s law.
\(- R \frac{d \ln k_h}{d(1/T)} = \Delta H_{g \rightarrow aq}^\infty \)
\[\approx \Delta H_{L \rightarrow aq}^\infty - \Delta H_{vap} \] (5)

since the dissolution of a gas in a solvent can be considered as first a condensation of the gas to the pure liquid (corresponding to \(- \Delta H_{vap}\)) followed by a dissolution of this liquid in the solvent (corresponding to \(\Delta H_{L \rightarrow aq}^\infty\)). \(\Delta H_{vap}\) and \(\Delta H_{L \rightarrow aq}^\infty\) can themselves be derived from the van’t Hoff equation or, for Eq. (7), from the Clausius-Clapeyron equation (Atkins and de Paula, 2006).

\[\Delta H_{L \rightarrow aq}^\infty = R \frac{d \ln \gamma^\infty}{d(1/T)} \] (6)

\[\Delta H_{vap} = - R \frac{d \ln p_0^L}{d(1/T)} \] (7)

If the solute is a solid at room temperature, as is generally the case for polyols with more than three hydroxyl groups, the following equation can be applied instead of Eq. (4) (see Compernolle and Müller, 2014, for the derivation).

\[k_h = \frac{\gamma^{sat} c_w x^{sat}}{\gamma^\infty \frac{p_0^L}{p_{Cr}}} \] (8)

with \(x^{sat}\) the solute mole fraction at the solubility limit and \(\gamma^{sat}\) the corresponding activity coefficient. In the case that the solubility is small, \(\gamma^\infty / \gamma^{sat} \approx 1\) and Eq. (8) reduces to

\[k_h \approx c_w \frac{x^{sat}}{p_{Cr}} \] (9)
The corresponding enthalpy change of dissolution of gas phase species, derived from the van’t Hoff equation, can be related to (again neglecting the temperature dependence of c_w) is equal to:

\[
\Delta H_{g\rightarrow aq}^\infty = -R \frac{d \ln k_h}{d(1/T)}
\]

\[
= \Delta H_{Cr\rightarrow aq}^\infty - \Delta H_{sub}
\]

\[
\Delta H_{Cr\rightarrow aq}^\infty = -\frac{d \ln \gamma_{x, sat}^\infty}{d(1/T)}
\]

\[
\Delta H_{sub} = -\frac{d \ln p_0^0}{d(1/T)}
\]

with ΔH_{sub} the sublimation enthalpy and $\Delta H_{Cr\rightarrow aq}^\infty (\Delta H_{sub})$ and the enthalpy of solution of the solid at infinite dilution $\Delta H_{Cr\rightarrow aq}^\infty$ using Hess’s law (Atkins and de Paula 2006),

\[
\Delta H_{g\rightarrow aq}^\infty = -R \frac{d \ln k_h}{d(1/T)}
\]

\[
\equiv \Delta H_{Cr\rightarrow aq}^\infty - \Delta H_{sub}
\]

\[
\equiv \Delta H_{Cr\rightarrow aq}^\infty - \Delta H_{sub}
\]

\[
\Delta H_{sub} = -R \frac{d \ln p_0^0}{d(1/T)}
\]

\[
\Delta H_{Cr\rightarrow aq}^\infty = -R \frac{d \ln \gamma_{x, sat}^\infty}{d(1/T)}
\]

\[
\equiv \Delta H_{fus} + \Delta H_{L\rightarrow aq}^\infty
\]
Eq. (11) is the Clausius-Clapeyron equation for sublimation (Atkins and de Paula, 2006). Eq. (12) can be derived by combining Eqs. (8), (6) and the van’t Hoff relation for the activity of the solid a_s^{Cr} (see e.g. Nordström and Rasmuson, 2008).

\[
\frac{d \ln \gamma_{s}^{\text{sat}} x_{s}^{\text{sat}}}{d(1/T)} = \frac{d \ln a_{s}^{\text{Cr}}}{d(1/T)} = -\frac{\Delta H_{\text{fus}}}{R}
\]

(13)

The data required for Eqs. (4), (5), (8) and (10) is not always available as such in the literature. In Sect. 3, data for IDACs, solid state pressures and activity coefficient ratios is derived.

3 Intermediate results

3.1 Infinite dilution activity coefficients

In case the compound is a liquid at room temperature, Eq. (4) applies and the IDAC is required. Estimation methods to calculate activity coefficients exist (e.g. Peng et al., 2001; Marcolli and Peter, 2005; Compernolle et al., 2009; Zuend et al., 2011) (e.g. Fredenslund et al., 1975; Peng et al., 2001; Marcolli and Peter, 2005; Compernolle et al., 2009; Zuend et al., 2011) but experimental data is preferred. Suleiman and Eckert (1994) provide IDAC data for diols, but only for compounds with up to four carbon atoms. For many other polyols, the IDAC of the solute is not reported, but instead data is available on the water activity a_w^{∞} over the entire concentration range in function of mixture composition. In that case, γ_{s}^{∞} can be obtained by the integral form of the Gibbs-Duhem relation (Prausnitz et al., 1999), (here stated in its integral form) (Prausnitz et al., 1999, Mansoori, 1980).

\[
\ln \gamma_{s}^{\infty} = \int_{0}^{1} \frac{\ln \gamma_{w}(t) \ln \gamma_{w}(x_{w})}{(1-t)^2 (1-x_{w})^2} dt x_{w}
\]

(14)
with \(\gamma_w = a_w / x_w \) the activity coefficient of water and \(x_w \) the water mole fraction. Note that we added the subscript “s” to \(\gamma^\infty \) to distinguish clearly the activity coefficient of the solute and the activity coefficient of water.

If sufficiently precise, fine-grained \(a_w \) data over the whole composition range would be available, numeric integration of the integral in Eq. (14) would be the most straightforward. If this is not the case, an alternative is to fit the \(\ln \gamma_w \) data with an activity coefficient expression \(f \) can be used, e.g. Margules, Van Laar, Wilson or UNIQUAC (Prausnitz et al., 1999; Carlson and Colburn, 1942), to fit the \(\ln \gamma_w \) data of a binary system—(see Appendix [A2] for the expressions).

Marcolli and Peter (2005) provide \(a_w \) data for 14 diols and two triols over the whole composition range—a broad composition range (\(x_w \) typically between 0.1 and 0.95), but the data is rather coarse grained. This is especially critical in the dilute region; from Eq. (14) it can be concluded that a small change in \(\ln \gamma_w \) leads to a comparatively large change in \(\ln \gamma_s \) (see Eq. (14)). Therefore, where possible, we included also more fine grained data in the dilute region (Borghesani et al., 1989; Romero and Páez, 2006). Sometimes it was difficult to fit both types of data sets well with a single activity coefficient expression. In such a case, we applied the following:

\[
\ln \gamma^\infty_s = \int_0^{\tilde{x}_w} f^{(1)}(t) \frac{dt}{(1-t)^2} + \int_{\tilde{x}_w}^1 f^{(2)}(t) \frac{dt}{(1-t)^2}
\]

with \(f^{(1)}, f^{(2)} \) two \(\ln \gamma(t) \) expressions, one fitted to the data of Marcolli and Peter (2005), the other to the data applicable to the dilute region [\(\tilde{x}_w, 1 \)]. Both for Eqs. (14) and (A10), the activity coefficient expressions with the lowest standard deviation vs. experimental \(\ln \gamma_w \) were chosen. The results are provided in Table 2. For the cases where Eq. (A10) was applied, Eq. (14) was also applied to the data of Marcolli and Peter (2005), in (Borghesani et al., 1989; Romero and Páez, 2006, \(x_w \) typically between 0.93 and 0.996). In Table 2, the resulting \(\gamma^\infty \) are presented. For 8 diols we present also the \(\gamma^\infty \) estimation without taking the available dilute region data into account, i.e. based on the Marcolli and Peter (2005) data only. This can then be compared with the \(\gamma^\infty \) based on all data. In most cases, the difference in the resulting IDAC is rather small (see Appendix A2).
icates that even in those cases where only the coarse grained data of Marcolli and Peter (2005) is available, the derived γ_s^{∞} are still quite reliable, at least for the smaller γ_s^{∞}. However, for the more hydrophobic diols (1,2-pentane diol, 1,2-hexane diol, 1,7-heptane diol), where γ_s rises quickly.

Often, we were able to fit an activity expression to all $\ln \gamma_w$ data. In other cases, where the broad ranged but coarse grained data of Marcolli and Peter (2005) was combined with the more fine grained data in the dilute region and no fine grained a_w data is available, the uncertainty will be larger, we had to split the integral in Eq. (14) in two parts. More details on the procedure to derive γ_s^{∞} are provided in Appendix A2. Also included in Appendix A2 is an uncertainty analysis in the derived γ_s^{∞} values by applying systematic and random shifts to the a_w data, by testing alternative activity expressions and by comparing γ_s^{∞} derived with and without dilute region data.

γ_s^{∞} for pentane and hexane diols, derived from surface tension data, are reported by Romero et al. (2007); Páez et al. (2011). These are considerably higher than the data presented in Table 2. However, as explained by Brocos et al. (2007), very accurate surface tension data is a prerequisite to derive γ_s^{∞}; γ_s^{∞} of diols, derived from surface tension data, are all overestimated compared to the literature data in their analysis. Moreover, it is not clear to us if the applied approximation (the Volmer surface equation of state, see Gracia-Fadrique et al. 2002) is valid in this case.

3.2 Solid state vapour pressures

Liquid The liquid state vapour pressure of organic compounds can be estimated (e.g. Pankow and Asher, 2008; Nannoolal et al., 2008; Compernolle et al., 2011), but for polyfunctional compounds the result is often not accurate. Solid state vapour pressure is even more difficult to estimate, due to the crystal contribution as this depends on the molecular arrangement in the crystal structure which is compound-specific. Therefore, experimental data is preferred. Solid state and/or liquid state vapour pressure data for polyols with four or more hydroxyl groups is available (Barone et al., 1990; Bradley and Cotson, 1953; Nitta et al., 1950, 1951), but obtained at temperatures considerably above room temperature. The solid state vapour pressure
at $T_{\text{ref}} = 298.15$ K is given by

$$\ln p_0^0 (T_{\text{ref}}) = 1/R \left(\Delta S_{\text{sub}} (T_{\text{ref}}) - \frac{1}{T_{\text{ref}}} \Delta H_{\text{sub}} (T_{\text{ref}}) \right)$$ \hspace{1cm} (15)$$

If at the temperature of measurement T_{meas}, the compound is a solid, the following transformation is applied:

$$\Delta S_{\text{sub}} (T_{\text{ref}}) = \Delta S_{\text{sub}} (T_{\text{meas}}) + \int_{T_{\text{meas}}}^{T_{\text{ref}}} \frac{C_{p,g} - C_{p,\text{Cr}}}{T} dT$$ \hspace{1cm} (16)$$

$$\Delta H_{\text{sub}} (T_{\text{ref}}) = \Delta H_{\text{sub}} (T_{\text{meas}}) + \int_{T_{\text{meas}}}^{T_{\text{ref}}} (C_{p,g} - C_{p,\text{Cr}}) dT$$

with ΔH_{sub} and ΔS_{sub} weak functions of temperature. If at T_{meas} the compound is a liquid, the transformation fusion point must be taken into account, and the temperature correction is applied:

$$\Delta S_{\text{sub}} (T_{\text{ref}}) = \Delta S_{\text{vap}} (T_{\text{meas}}) + \int_{T_{\text{meas}}}^{T_{\text{fus}}} \frac{C_{p,g} - C_{p,\text{L}}}{T} dT + \Delta S_{\text{fus}} (T_{\text{fus}}) + \int_{T_{\text{fus}}}^{T_{\text{ref}}} \frac{C_{p,g} - C_{p,\text{Cr}}}{T} dT$$ \hspace{1cm} (17)$$

$$\Delta H_{\text{sub}} (T_{\text{ref}}) = \Delta H_{\text{vap}} (T_{\text{meas}}) + \int_{T_{\text{meas}}}^{T_{\text{fus}}} (C_{p,g} - C_{p,\text{L}}) dT + \Delta H_{\text{fus}} (T_{\text{fus}}) + \int_{T_{\text{fus}}}^{T_{\text{ref}}} (C_{p,g} - C_{p,\text{Cr}}) dT$$

with $C_{p,g}, C_{p,\text{L}}, C_{p,\text{Cr}}$ the constant pressure heat capacities for respectively gas, liquid and crystalline phase, T_{fus} the melting temperature, $\Delta S_{\text{fus}}, \Delta H_{\text{fus}}$ the entropy and enthalpy of fusion, and $\Delta S_{\text{vap}}, \Delta H_{\text{vap}}$ the entropy and enthalpy of vaporisation. In most cases, the high temperature p_0^0 data is not measured at one temperature but in a temperature interval. T_{meas} then corresponds to the centre of this interval.
Fusion data was taken from Barone et al. (1990); Tong et al. (2007, 2010a, 2009); Badea et al. (2014). Experimental heat capacity data for solid and liquid was taken from Tong et al. (2007, 2008, 2009, 2010a, b); Zhang and Yang (1989); Della Gatta et al. (1999), while for the gas it was calculated by the method of Benson (1976), available in from the NIST Chemistry Webbook (Stein and Brown). In Table 3, the derived solid state vapour pressures and sublimation enthalpies at room temperature are presented. There is Fusion data of Tong et al. (2007, 2008, 2010a, 2009) on one hand and of Barone et al. (1990) on the other hand could be compared for erythritol, xylitol, adonitol, sorbitol, and mannitol. There is generally a good agreement between the fusion data (both data sets: \(T_{\text{fus}} \) was always within 6 K and \(\Delta H_{\text{fus}} \)) between different data sources within 4\%, with the exception of xylitol where the deviation is 11\%. Interchanging both data sets had an impact of a factor 1.3 on \(p^0_{\text{Cr}} \) at room temperature at most. Where available, the more recent data of Tong et al. was preferred over that of Barone et al. (1990).

\(C_{p,L} \) and \(C_{p,\text{Cr}} \) were not always available. In that case, the data of a stereo-isomer was taken instead. For In Appendix A5.2, it is shown that liquid phase heat capacities, this can be justified by (i) the similar \(C_{p,L} \) of xylitol and adonitol, and (ii) of polyol stereo-isomers are very close. This is in agreement with the similar \(\Delta S_{\text{vap}} \) and \(\Delta H_{\text{vap}} \) of stereo-isomers stereo-isomers reported by Barone et al. (1990), indicating and indicate similar thermodynamic properties of the liquid phase. Regarding \(C_{p,\text{Cr}} \), differences between stereo-isomers are larger (see Appendix A5.2) but still the approximation of using a stereo-isomer seems reasonable.

Neglecting the integrals involving the heat capacity differences in Eqs. (16) and (17) can lead to serious error: while for the tetrols the change is only minor, there is a factor 5 to 7 increase in \(p^0_{\text{Cr}} (298.15 \text{K}) \) for the pentols and most hexols, and a factor 40 increase for sorbitol. Estimating \(C_{p,g} \) with the method of Joback and Reid (1987) instead of the method of Benson (1976) led to changes in \(p^0_{\text{Cr}} (298.15 \text{K}) \) smaller than a factor two. Note that these two methods do not take the intramolecular hydrogen bonding into account. The group contribution \(C_{p,g} \) estimation method of Paraskevas et al. (2013); Sabbe et al. (2008), based on quantum chemical data, does include corrections for intramolecular hydrogen bonds. However, it is not clear how to apply these correction terms for species with 3 or more hydroxyl groups. Using one HOCCO term
(NNI5 in the terminology of [Paraskevas et al. (2013)]) per hydroxyl group for the linear polyols, one obtains a factor 2 to 3 higher \(p^0_{Cr}(298.15\,\text{K}) \) for the pentols and hexols, compared to the case where this term is neglected.

In most cases the high temperature \(p^0_L \) or \(p^0_{Cr} \) data is obtained from a single reference (Barone et al., 1990); only for erythritol and pentaerythritol is a comparison possible between different data sources. The high temperature \(p^0_L \) or \(p^0_{Cr} \) data of erythritol and pentaerythritol is roughly comparable among the different data sources (Barone et al., 1990; Bradley and Cotson, 1953; Nitta et al., 1951, 1950), but if the \(p^0 \) parameterisations presented in these works are evaluated at mid-points between their respective \(T_{meas} \) differences ranging from 4\% up to 40\% are obtained. However, due to differences in \(\Delta H_{vap} \) or \(\Delta H_{sub} \), the extrapolated \(p^0_{Cr}(298.15\,\text{K}) \) is a factor 7 to 50 higher if the data of Nitta et al. (1950, 1951) is used. In these latter cases the enthalpy is determined using much less data points (6–11, compared to 25–30 for the data of Barone et al. (1990)), and specifically for the data of Nitta et al. (1950, 1951), over a quite narrow temperature interval (\(\sim 12\,\text{K} \)). The data of Bradley and Cotson (1953); Barone et al. (1990) is determined over a 30 to 40, compared to 30–40\,\text{K} interval and is therefore considered more reliable for the other studies). Therefore, we consider the \(p^0_{Cr} \) derived from the high-temperature data of Barone et al. (1990) as more reliable.

Uncertainties in the derivation of \(p^0_{Cr}(T_{ref}) \) are analysed in Appendix A5. The largest uncertainties are encountered for the polyols with 4 or more hydroxyl groups; due to the large difference between \(T_{meas} \) and \(T_{ref} \), relatively small changes in \(\Delta H_{vap} \) or \(\Delta H_{sub} \) lead to large changes in \(p^0_{Cr}(T_{ref}) \). Uncertainty in heat capacity becomes important for the hexols. Uncertainty in fusion data is relatively unimportant.
3.3 Activity coefficient ratios

The ratio \(\frac{\gamma_s^\infty}{\gamma_s^{\text{sat}}} \) can be obtained from water activity data in the subsaturation range (Compernolle and Müller, 2014).

\[
\ln \frac{\gamma_s^\infty}{\gamma_s^{\text{sat}}} = \frac{1 - x_s^{\text{sat}}}{x_s^{\text{sat}}} \ln \gamma_w(\tilde{x}_w) + \int_{\tilde{x}_w}^{1} \frac{\ln \gamma_w(t) \ln \gamma_w(x_w)}{(1-t)^2 (1-x_w^2)} \, dt \, x_w
\]

(18)

\[\tilde{x}_w = 1 - x_s^{\text{sat}} \]

The polyols with more than three hydroxyl groups considered here are solid at room temperature. Their water activity is only measured up to the solubility limit, if measured at all. Similarly to our previous work (Compernolle and Müller, 2014), activity coefficient expressions (Margules, Van Laar, Wilson (see e.g. Prausnitz et al., 1999; Carlson and Colburn, 1942)) were fitted to \(a_w \) data in the subsaturation range, and the fitting parameters were used to obtain the solute activity coefficient ratio \(\gamma_s^\infty / \gamma_s^{\text{sat}} \). The precise procedure is described in Appendix A of Compernolle and Müller (2014), the resulting parameters are shown in Fig. 1. This was done for erythritol, xylitol, sorbitol and mannitol (Fig. 1). The UNIFAC (UNIQUAC Functional-Group Activity Coefficient) method of Marcolli and Peter (2005) (UNIFAC-MP, identical to AIOMFAC for polyol-water systems) underestimates \(\gamma_w \) of these polyol/polyol/water mixtures.

For adonitol and arabinitol, we calculated \(\gamma_s^\infty / \gamma_s^{\text{sat}} \) from the simple but successful one-parameter Margules fittings of Chirife et al. (1984) (see Appendix A4). The results are presented in Table 4. For nonane diol, decane diol, pentaerythritol and dulcitol, no \(a_w \) data was found, but reasonable assumptions for \(\gamma_s^\infty / \gamma_s^{\text{sat}} \) could be made (see Table 4). As expected, the polyols with a lower solubility (erythritol, mannitol) have \(\gamma_s^\infty / \gamma_s^{\text{sat}} \) close to unity. We included estimations of the activity coefficient ratio by UNIFAC-MP. This method gave lower \(\gamma_s^\infty / \gamma_s^{\text{sat}} \) as compared to our results.
4 Henry’s law constants and enthalpies of gas dissolution

Using Eqs. (4), (5), (9) and (10), the data provided in the previous Tables, as well as literature data, the Henry’s law constants and gas dissolution enthalpies can be derived. The values are tabulated in Table 5.

The expected order hexols > pentols > tetrol > tetrols > tritol > triol > diol > diols in k_h is generally followed. Diols have k_h between 10^5 and 10^7 M atm$^{-1}$. The diols with longer hydrophobic chains have considerably lower k_h than their α,ω counterparts (e.g. an order of magnitude difference between 1,2- and 1,5-pentanediol). For the linear polyols, k_h and $\Delta H^\infty_{g\rightarrow aq}$ are roughly comparable among the different stereo-isomers. Clearly, the large differences in x_{sat} and $p_0^{C_r}$ of the hexols are mainly due to their different crystal structure, which does not affect k_h. Although pentaerythritol has the same number of hydroxyl groups as erythritol, its k_h is 10^{-7} times larger. Probably the tetragonal arrangement of the hydroxyl groups of pentaerythritol facilitates bonding with the water molecules.

5 Impact on gas-particle partitioning

Similarly as for the diacids and hydroxy polyacids (Compernolle and Müller, 2014), we assess the importance of the partitioning to the particulate phase for polyols in clouds and aqueous aerosol, approximating the liquid phase as a dilute aqueous solvent. Moreover, we also perform a sensitivity test, aiming at determining the particulate fraction of polyols, diacids and hydroxy polyacids in the case of an aqueous ammonium sulfate aerosol. We note that this discussion, based on Henry’s law, is only applicable if the organic compound is present in a tiny amount, and this may not be justified for all situations encountered in the lower atmosphere.

5.1 Pure water as the solvent

For clouds, the liquid water content (LWC) varies between typically 0.1 and 1 g m$^{-3}$, and for aqueous aerosols between 10^{-6} and 10^{-4} g m$^{-3}$ (Ervens et al., 2011). The particulate fraction
of organic solute is equal to

\[f_{p,s} \equiv \frac{n_{p,s}}{n_{p,s} + n_{g,s}} \]

(19)

with \(n_{p,s}, n_{g,s} \) the moles of solute in particulate and gas phase respectively. Using the ideal gas law, Eq. (19) can be transformed into

\[f_{p,s} = \frac{1}{1 + \frac{n_{g,s}}{n_{p,s}}} = \frac{1}{1 + \frac{p_s V_{ai}}{RT c_s V_p}} \]

(20)

with \(V_{ai} \) a unit volume of air and \(V_p \) the particle volume. If partitioning between gas and aqueous phase is governed solely by Henry’s law (Eq. (1)), and the solvent is considered pure water, \(f_{p,s} \) can be calculated from Eq. (20) becomes

\[f_{p,s} = \frac{1}{k^*/k_h + 1} \frac{1}{k^*/k_h + 1} \text{, with } k^* k^* = \frac{V_{ai}}{V_s RT} \frac{1}{LWC RT RT} \]

(21)

with \(\rho_w \) the density of pure water. For clouds, \(k^* \) From the LWC range given above, and fixing \(T \) to the reference temperature of 298.15 K, it follows that for clouds, \(k^* \) varies between \(4 \times 10^4 \) and \(4 \times 10^5 \) M atm\(^{-1}\). From Table \[5 \] it can be deduced that all polyols with three or more hydroxyl groups will be almost completely partitioned to the aqueous phase. Diols will be completely or partially in the aqueous phase, depending on the case. For aqueous aerosol, if one (falsely) assumes the aerosol phase to be pure water, \(k^* \) it is obtained from the LWC range given above that at the reference temperature \(k^* \) varies between \(4 \times 10^8 \) and \(4 \times 10^{10} \) M atm\(^{-1}\). With this assumption, diols will not partition appreciably to the aqueous phase, glycerol will partition to some extent, and only at the highest water content, while all polyols with four or more hydroxy groups should reside almost completely in the particulate phase.

5.2 Aqueous ammonium sulfate aerosol as the solvent

An aqueous aerosol is not a dilute aqueous solution, but is instead a concentrated mixture of organics and/or inorganics. HLC determined for a pure water solvent are less applicable to such
mixtures. We present here a sensitivity test for a simple aerosol mixture of water and ammonium sulfate \((\text{NH}_4)_2\text{SO}_4, \text{AS})\). Note however that this test is only applicable to a situation with a tiny amount of organics. If e.g. a separate organic phase is present, less hydrophylic compounds may partition substantially to the particles, even if the HLC based analysis suggests otherwise.

It is more convenient to use here the alternative HLC definition \(k_{h}^{px}\) instead (Eq. 2). \(k_{h}^{px}\) can be equated to

\[
k_{h}^{px} = \lim_{n_{g,s},n_{p,s} \to 0} \frac{n_{p,s}/n_{p,tot}}{V_{air}/RT} = \frac{f_{p,s}}{1-f_{p,s}} \frac{V_{air}}{n_{p,tot}RT}
\]

with \(n_{g,s}\) and \(n_{p,s}\) as the number of moles of solute in gas and particulate phase respectively, and \(n_{p,tot}\) as the total number of moles of the solution and \(V_{air}\) a unit volume of air. Conversely, the particulate. As the particulate solute mole fraction is equal to \(n_{p,s}/n_{p,tot}\), and using the ideal gas law, Eq. (2) can be transformed into

\[
f_{p,s}k_{h}^{px} = \frac{1}{1 + \frac{1}{k_{h}^{px}RT} n_{p,tot}} \lim_{n_{g,s},n_{p,s} \to 0} \frac{n_{p,s}/n_{p,tot}}{n_{g,s}/V_{air}/RT} = \left(\frac{f_{p,s}}{1-f_{p,s}} \right) \frac{V_{air}}{n_{p,tot}RT}
\]

In the last step Eq. (19) was used. Eq. (22) can be rearranged to

\[
f_{p,s} = \frac{1}{1 + \frac{1}{k_{h}^{px}RT} n_{p,tot}}
\]

Note that in the particular case of the AS–water system

\[
n_{p,tot} = n_{p,w} + 3n_{p,AS} + n_{p,s} = n_{p,w} + 3n_{p,AS}
\]

as each molecule of AS dissociates in three ions, and the amount of solute is infinitesemally organic solute is infinitesimally small.
The organic solutes considered are the polyols discussed in this work, and the diacids and hydroxy polyacids treated in our previous work (Compernolle and Müller, 2014). k_h^{px} of a solute for a solvent consisting of water and a mole fraction x_{AS} of dissolved AS can be calculated from

\[
k_h^{px} (x_{AS}) = k_h^{px} (x_{AS} = 0) \frac{\gamma_s^\infty (x_{AS} = 0)}{\gamma_s^\infty (x_{AS})} = k_h^{px} (x_{AS} = 0) \frac{1}{\gamma_s^*}
\]

with γ_s^* the activity coefficient of the organic solute using the asymmetric convention (i.e. $\gamma^* = 1$ if the solute is infinitely diluted in pure water). $k_h^{px} (x_{AS} = 0)$ was taken from Table 5 or Table 3 of Compernolle and Müller (2014) (recommended values only), after the appropriate conversion.

$k_h^{px} = c_w k_h \cdot \gamma_s^\infty (x_{AS})$ and $\gamma_s^\infty (x_{AS} = 0)$ were calculated with the model AIOMFAC (Zuend et al., 2011), available online (http://www.aiomfac.caltech.edu). This model calculates activity coefficients taking interactions between water, organics and inorganics into account. A very small organic mole fraction ($x_{org} = 10^{-10}$) was chosen to ensure that $\gamma_s^\infty (x_{AS})$ and $\gamma_s^\infty (x_{AS} = 0)$ represent IDACs. As a consequence, the impact of the organic solute on the activities of water and the ions is negligible. Although the activities are estimated and not measured, we note that activity data sets of several AS–water–organic mixtures (organic being a polyol, diacid or hydroxy polyacid) are used to determine AIOMFAC’s parameters (Zuend et al., 2011).

Given a particular x_{AS}, the water activity and hence the relative humidity (RH) are fixed by the AIOMFAC model. Note that AS has x_{AS} was varied between 0.43 and 0, corresponding to a RH range between 30 and 100%. Note that pure AS particles have a deliquescence RH (DRH) of 79.5 % and an efflorescence RH (ERH) of 35 % (Martin, 2000). The DRH is the equilibrium point below which solid AS is the thermodynamically stable phase and this corresponds to the solubility limit of AS in water. However, depending on the RH history of the particle, a metastable supersaturated solution may instead be present below the DRH. Below the ERH, only solid AS is present in the particulate phase.

The particulate fraction $f_{p,s}$ of the organic solute depends on the amount of solvent (water + AS) per volume of air. A fixed AS mass concentration of 4 µg m$^{-3}$ was chosen, typical for inorganic aerosols at mid-latitudes over continents (http://vista.cira.colostate.edu/improve/). As a consequence, upon increasing RH from the ERH to 90 %, the LWC varies between 10^{-6} and 10^{-5} g m$^{-3}$, a typical range for aqueous aerosol.
Polyols. Due to their low k_h, diols do not partition significantly to aqueous aerosol and hence are not included in this analysis. Stereo isomers of xylitol and sorbitol were also not included, given their similar k_h and the fact that AIOMFAC does not distinguish between stereo isomers. For the polyols, AIOMFAC predicts an activity increase with lowering RH (or equivalently increasing the salt concentration) (Fig. 2a). The effect increases with the number of hydroxyl groups. However, this is more than compensated by the concomitant increase in $k_h(x_{AS} = 0)$ (Table 5). The particulate fraction of polyols decreases with decreasing RH both due to the increase in solute activity, and the decrease of total absorbing mass. Glycerol, at RH=90%, has left the particulate phase for is 95 already at RH=90 (Fig. 2b). On the other hand, % in the gas phase while sorbitol, with six hydroxyl groups, is still for 50% in the particulate phase at RH=44%. This is due to the large difference (8 orders of magnitude) of their k_h values.

Linear diacids. Diacids with two (oxalic) up to ten (sebacic) carbon atoms are considered. Let us neglect acid dissociation for the moment. AIOMFAC’s interaction parameters are negative (stabilising) between the carboxylic acid group COOH on the one hand, and the ions NH$_4^+$ and SO$_4^{2-}$ on the other hand. For the group CH$_2$, these interaction parameters are positive (destabilising). As a consequence, the activity of the linear diacids with 4 carbon atoms or more increases with decreasing RH. The activity of oxalic acid, on the other hand, decreases with decreasing RH, while the activity of malonic acid stays roughly constant. Even without taking acid dissociation into account, it is clear that these diacids partition appreciably to the particulate phase (Fig. 2b). Note that for malonic acid, we chose the lower of the recommended k_h values from Table 3 of Compernolle and Müller (2014); the higher value would lead to f_p near unity even without acid dissociation.

Hydroxy polyacids. Citric and tartaric acid exhibit a modest activity increase upon decrease of the RH. On the other hand, they have extremely high $k_h(x_{AS} = 0)$ values (Compernolle and Müller, 2014). Therefore, they will reside almost completely in the particulate phase from RH = 100% to the ERH.
Impact of acid dissociation. The effective HLC, \(k_{h}^{px,\text{eff}} \), of a polyacid is larger than \(k_{h}^{px} \) due to acid dissociation. For a diacid one has

\[
k_{h}^{px,\text{eff}} = \lim_{\substack{x_{H_{2}A} \to 0 \atop x_{HA^{-}} \to x_{A^{2-}}}} \frac{x_{H_{2}A} + x_{HA^{-}} + x_{A^{2-}}}{p_{H_{2}A}}
\]

(26)

with \(x_{H_{2}A} \), \(x_{HA^{-}} \) and \(x_{A^{2-}} \) the mole fractions of the undissociated acid, monodissociated acid and twice dissociated acid respectively. Acid dissociation is governed by the acid dissociation constants

\[
K_{a,1} = \frac{\gamma_{H^{+}} x_{H^{+}} + \gamma_{HA^{-}} x_{HA^{-}}}{\gamma_{H_{2}A} x_{H_{2}A}}
\]

(27)

\[
K_{a,2} = \frac{\gamma_{H^{+}} x_{H^{+}} + \gamma_{A^{2-}} x_{A^{2-}}}{\gamma_{HA^{-}} x_{HA^{-}}}
\]

with \(K_{a,i} \) mole fraction based acid dissociation constants, and \(\gamma^{*} \) mole fraction based activity coefficients, with the asymmetric convention (i.e. becoming unity at infinite dilution in pure water). Combining Eqs. (26) and (27) leads to

\[
k_{h}^{px,\text{eff}} = k_{h}^{px} \left(1 + K_{a,1} \frac{\gamma_{H_{2}A}^{*}}{\gamma_{HA^{-}}^{*} \gamma_{H^{+}} x_{H^{+}}} + K_{a,1} K_{a,2} \frac{\gamma_{H_{2}A}^{*}}{\gamma_{A^{2-}}^{*} \gamma_{H^{+}} x_{H^{+}}} \left(\frac{1}{\gamma_{H^{+}} x_{H^{+}}} \right)^{2} \right)
\]

(28)

AIOMFAC does not calculate activity coefficients of ionised organic acids. To describe the ionisation in the water–AS–diacid system, we used the models provided at the site of E-AIM (http://www.aim.env.uea.ac.uk/aim/aim.php). Specifically, model IV was used, which is an implementation of the parameterisations of Friese and Ebel (2010) and (for the diacids) of Clegg and Seinfeld (2006). Solid formation was prevented, and the dissociation equilibria \(H_{2}O/OH^{-} \), \(NH_{4}^{+}/NH_{3} \), \(HSO_{4}^{-}/SO_{4}^{2-} \) were taken into account. At the vanishingly small acid concentration used, E-AIM calculates the same \(\gamma_{H_{2}A}^{*}, \gamma_{HA^{-}}^{*} \) and \(\gamma_{A^{2-}}^{*} \) regardless of the identity of the diacid. This is not realistic; one expects a larger \(\gamma^{*} \) value for a diacid with more CH\(_2\) groups. Therefore, \(\gamma_{H_{2}A}^{*} \), equal to \(\gamma_{s}^{*} \) in Eq. (25), is still calculated by AIOMFAC, to take into account
the destabilising CH₂–ion interaction. $\gamma_{H^+} x_{H^+}$, $\frac{\gamma_{H_2A^*}}{\gamma_{HA}}$ and $\frac{\gamma_{H_2A^*}}{\gamma_{A^2}}$ in Eq. (28) are determined by the E-AIM calculation. Note that due to the vanishingly small acid concentration, $\gamma_{H^+} x_{H^+}$ is determined by the amounts of water and AS only. Acid dissociation constants were taken from E-AIM or Apelblat (2002). Oxalic and malonic acid are predicted to be completely in the aqueous phase from RH = 100 % to the ERH, while the particulate fraction of the other diacids are clearly enhanced (Fig. 2c), compared to the calculation without acid dissociation (Fig. 2b).

6 Discussion and conclusions

6.1 Assessing main uncertainties

HLC of polyols with 2–6 hydroxy groups are derived in this work, using experimental data and thermodynamic relationships. This study complements a previous work (Compernolle and Müller, 2014) where the focus was on diacids and hydroxy polyacids. For the

An error analysis is performed in Appendix A. The compounds that are liquid at room temperature (most diols and glycerol) have a relatively low uncertainty in k_b (relative standard error 6–28%, see Table 7). For some compounds, further improvement is possible with more precise p^0 data and/or more fine-grained and precise a_w data in the dilute region.

The compounds that are solid at room temperature, especially the polyols with four or more hydroxy groups, the largest source of uncertainty is probably bear a much larger uncertainty in k_b (relative standard error 34–82%, see Table 8). This is mainly due to the use of solid state pressures extrapolated high-temperature liquid or solid state vapour pressures. More specifically, it is due to the uncertainty in ΔH_{vap} or ΔH_{sub} in combination with the extrapolation over a large temperature interval. Room temperature measurements of solid state pressure will lead to more precise k_b values. Alternatively, improvement For the hexols, also the uncertainty in heat capacity becomes important, although we note that the error in $C_{p,a}$ is speculative as this property is estimated. Measuring the (solid or liquid state) vapour pressure closer to room temperature will lower these uncertainties.
As noted above, the $C_{p,g}$ values are estimated. Improvement here is possible by using $C_{p,g}$ derived from experiment or from ab initio calculations in Eqs. (16) and (17), rather than using a group contribution method. For some more hydrophobic diols studied here (1,2-pentane diol, 1,2-hexane diol, 1,7-heptane diol), the largest uncertainty probably lies in the derived γ_s^∞. More fine-grained α_w data in the dilute region could accommodate for this. For nonane diol and decane diol, only solubilities from a secondary reference (Merck Millipore) could be retrieved; new, for which it is difficult to estimate the reliability. New solubility measurements are desirable to obtain a better more reliable k_h estimate.

6.2 Comparison with literature

HLC compilations of polyols are provided by e.g. Sander (1999) and Saxena and Hildemann (1996). However, most values in these studies are estimated. Bone et al. (1983) provide HLC measurements for 1,2-ethane diol and 1,3-propane diol (Table 5). Their values are lower but reasonably close (within a factor of 2) to ours. While the majority of HLC values of polyols provided by Saxena and Hildemann (1996) are estimated, a few are derived from vapour-liquid equilibrium data. For 1,2-propane diol, 2,3-butane diol and glycerol, their HLC values are within a factor 3, but for 1,4-butane diol the difference is more than an order of magnitude. In conclusion, for five out of six HLC values, we have a reasonable agreement with literature values.

The estimated values presented by Saxena and Hildemann (1996) are obtained by a group-contribution method (Suzuki et al. 1992) (values not reproduced in Table 5). For the diols, overestimations by \sim 1 order of magnitude compared to our values are common. For the compounds with three or more hydroxyl groups, the overestimation ranges between 3 (glycerol) and 8 (mannitol) orders of magnitude, showing the limitations of such an estimation method.

6.3 Atmospheric implications

According to the HLC derived in this and the previous work (Compernolle and Müller 2014), diols will be partially or completely (e.g. 1,2 hexane diol, depending on the droplet size) or
completely (e.g. 1,4-butane diol) in the aqueous phase in clouds, while polyols with three or more hydroxyl groups, diacids and hydroxy polyacids will be completely in the aqueous phase. Regarding aqueous aerosol, the sensitivity test performed here using aqueous AS aerosol indicates that polyols with four or more hydroxyl groups are significantly or totally in the particulate phase, depending on the RH. The same holds for the longer linear diacids (succinic and higher). The shorter linear diacids (oxalic and malonic), and the hydroxy polyacids (citric and tartaric) are completely in the particulate phase both at lower and higher RH, due to (i) their relatively high acid dissociation constants and/or (ii) stabilizing or only mildly destabilizing interactions with AS and/or (iii) very high k_{ih} values. Note that this analysis is only applicable for aqueous AS aerosol in the limiting case of a small concentration of organics. If e.g. a separate organic phase is present in the aerosol, partitioning to this phase should be taken into account as well.

Bao et al. (2012) measured gas particle partitioning of diacids at a site in Japan in different seasons. According to this study, both particulate and gaseous fractions are significant, and RH influences the partitioning. Xie et al. (2014) measured gas particle partitioning of 2-methyl tetrols at a site in Denver and found about equal particulate and gaseous fractions. Our sensitivity test, based on a simple AS–water aerosol system, cannot be quantitatively compared with these studies, but does show that partitioning to the particulate phase is important for diacids and tetrols.

Acknowledgements. This work was supported by the project BIOSOA (SD/CS/05A, 2011–2014) funded by the Belgian Science Policy Office.

Appendix A: Error analysis

In this section we identify the main uncertainties contributing to the k_{ih} values, as well as the overall uncertainty. From the error propagation rule (Bevington 2003), and Eqs. (4) and (8),
the standard error (SE) on k_h can be derived:

$$\frac{SE[k_h]}{k_h} \approx \sqrt{\left(\frac{SE[p^0_L]}{p^0_L} \right)^2 + \left(\frac{SE[\gamma_s^\infty]}{\gamma_s^\infty} \right)^2} \quad (A1)$$

$$\frac{SE[k_h]}{k_h} \approx \sqrt{\left(\frac{SE[p^0_{Cr}]}{p^0_{Cr}} \right)^2 + \left(\frac{SE[x_s^{sat}]}{x_s^{sat}} \right)^2 + \left(\frac{SE[\gamma_s^\infty]}{\gamma_s^\infty} \right)^2} \quad (A2)$$

In Eq. (A2), the covariance between x_s^{sat} and $\gamma_s^\infty/\gamma_s^{sat}$ is neglected. Such covariance exists in principle, as x_s^{sat} enters the formula for deriving $\gamma_s^\infty/\gamma_s^{sat}$ (Eq. (18)). However, due to the low error on x_s^{sat} (see Section A3), this can be neglected. Note that it also follows from the error propagation rule ([Bevington] 2003) that $\frac{SE[u]}{u} = SE[\ln u]$.

We tried to obtain the uncertainties from the original studies. This is hindered by the fact that these errors are not always reported, or it is not always made clear what they exactly represent (e.g. once or twice the standard deviation). Discrepancies between results of different research groups are often larger than the reported errors of individual studies. Our error analysis is mostly based on this inter-laboratory error.

From Eqs. (A1) and (A2), it is clear that relative standard errors (i.e. $SE[u]/u$) are relevant. They are cited in the text as percentages. To estimate how much data of two data sources 1 and 2 disagree, we calculated the root mean squared relative difference (RMSRD)

$$\text{RMSRD} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(\frac{u_{1,i} - u_{2,i}}{u_{1,i} + u_{2,i}} \right)^2} \quad (A3)$$

with u representing a physical quantity and i running over N data points (obtained by varying e.g. the temperature, the water content, or the molecule type). If we can consider the data of
source 1 as more reliable than of source 2, the RMSRD is used to assign a relative standard error to source 2. Otherwise the RMSRD is assigned as relative standard error to both data sources.

Sometimes the absolute error is more relevant. To quantify the difference between two data sources, we use therefore the mean deviation (MD) and the root mean squared difference (RMSD)

\[
MD = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (u_{1,i} - u_{2,i})}
\]

\[
RMSD = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (u_{1,i} - u_{2,i})^2}
\]

An example where the absolute error is more relevant is for water activity data \(a_w\) in function of water content, which is used as input to calculate \(\gamma_{s}^\infty\) and \(\gamma_{s}^\infty / \gamma_{s}^{\text{sat}}\) (Sections A2 and A3). Of course \(a_w\) of both data sources was evaluated at the same water content, with interpolation of data points if necessary.

A1 Liquid vapour pressure

Verevkin and co-workers (Verevkin 2007, 2004, Verevkin et al. 2009, Toktonov 2009) provide the bulk of \(p_0^i\) data for diols used in Table 5 (8 compounds in total). They report that their measurements are ’reliable within 1-3%’ and point to a good consistency with other literature data. An additional advantage is that the measurements are performed at or near room temperature. We consider the data of this group the most reliable for diols -based on our experience with other vapour pressure data of this group, e.g. on aldehydes (Verevkin et al., 2003) and mono-alcohols (Kulikov et al., 2001, Verevkin and Schick, 2007) - and will use it as a benchmark for other \(p_0^i\) data of diols. Regarding the triol glycerol,
Cammenga et al. (1977) reports an accuracy of 'somewhat less' than 0.6% and the authors state consistency with other work. Their measurements also include room temperature. We consider this work as reliable as well. We assign to all \(p^0_L \) data with label 'a' and 'd' in Table 5 a relative standard error of 2%.

\(p^0_L \) data of four diols used in Table 5 is from the compilation Engineering Sciences Data Unit Ltd (1995). Comparing \(p^0_L \) data of a set of 8 diols with measurements of Verevkin and co-workers (which we consider more reliable), we find a RMSRD of 25%. This is therefore assigned as relative standard error to all diols in Table 5 with label 'b'.

For 1,7-heptane diol, we have two data sources: Knauth and Sabbah (1990a) and Piacente et al. (1993). Comparing room-temperature data of six diols from Knauth and Sabbah on one hand (Knauth and Sabbah 1990b, c) and from Verevkin and co-workers on the other hand (Verevkin 2007, 2004, Verevkin et al. 2009, Toktonov 2009), we obtain again a RMSRD of 25% and assign this as the relative standard error to \(p^0_L \). The data of Piacente et al. (1993) could not be directly compared with those of Verevkin and co-workers because both groups did not measure the same diols. We assign the same relative standard error of 25% to their \(p^0_L \) data by lack of alternative.

A2 Infinite dilution activity coefficient

The infinite dilution activity coefficient is calculated from \(a_w \) data using Eq. (14). If these data were sufficiently fine-grained, precise and cover the entire \(x_w \) range from 0 to 1, a numerical integration of the integral in Eq. (14) would be appropriate. However, if this is not the case, it might be better to fit the \(a_w \) data with a reasonable model. The following models for \(\ln \gamma_w \) were considered in this work: Margules, Van Laar, Wilson and UNIQUAC (Carlson and Colburn 1942, Prausnitz et al. 1999), as they were derived from physical considerations. These models are reproduced below.
Margules: \(f(x_1, A_{12}, A_{21}) = (A_{12} + 2(A_{21} - A_{12})x_1) x_2^2 \) (A6)

Van Laar: \(f(x_1, A_{12}, A_{21}) = A_{12} \left(\frac{A_{21}x_2}{A_{12}x_1 + A_{21}x_2} \right)^2 \) (A7)

Wilson: \(f(x_1, A_{12}, A_{21}) = -\ln(x_1 + A_{12}x_2) + x_2 \left(\frac{A_{12}}{x_1 + A_{12}x_2} - \frac{A_{21}}{A_{21}x_1 + x_2} \right) \) (A8)

UNIQUAC: \(f(x_1, A_{12}, A_{21}) = \ln \frac{\Phi_1}{x_1} + \frac{z}{2} q_1 \ln \frac{\theta_1}{\Phi_1} + \Phi_2 \left(l_1 - \frac{r_1}{r_2} l_2 \right) \)
\[-q_1 \left[\ln \left(\theta_1 + \theta_2 e^{-A_{21}/T} \right) + \theta_2 \left(\frac{e^{-A_{21}/T}}{\theta_1 + \theta_2 e^{-A_{21}/T}} - \frac{e^{-A_{12}/T}}{\theta_2 + \theta_1 e^{-A_{12}/T}} \right) \right] \] (A9)

with \(x_1 \) the mole fraction of the first component (here water), \(x_2 = 1 - x_1 \) the mole fraction of the second component (here the solute), and \(A_{12}, A_{21} \) the parameters to fit. To determine \(A_{12}, A_{21} \), a least square regression was done, minimizing the difference between experimental and modelled \(\ln \gamma_w \). For a detailed overview of the quantities used in the UNIQUAC equation, we refer to Prausnitz et al. (1999). Errors in \(\gamma_w \) arise from uncertainty and sparsity in the \(a_w \) data, but also from a suboptimal model choice. This is especially important if no data in the highly dilute concentration range is available.

All the \(\gamma_w \) derived in this work are based -partially or totally- on the \(a_w \) from Marcolli and Peter (2005). This work presents \(a_w \) data, relatively coarse-grained, with a \(x_w \) range typically between 0.1 and 0.95. The main limitation of this data source is that no data in the highly dilute range is available. We present here first an error analysis for all the 14 diols from Table 2, but using the data of Marcolli and Peter (2005) only. The four activity coefficient expressions were all tested, and the one that fitted the data best was chosen. The results are presented in Table 6.
Marcoll and Peter (2005) report that the \(a_w\) data are 'accurate within \(\pm 0.015\)', as specified by the employed instrument, but this does not make clear if the error is random and/or systematic, or if this range corresponds to e.g. one or two standard deviations. If we assume that the selected fitting model is correct and any systematic error in \(a_w\) is absorbed in the fitting parameters, then any remaining deviation between modelled and experimental values should be due to the random error in the experiment (Bevington, 2003). Standard deviations between modelled and observed \(a_w\) vary between 0.003 and 0.009 (Table 6). We draw repeatedly random errors from a normal distribution with a standard deviation of 0.0075 (corresponding to \(2\sigma = 0.015\)), using the python scipy.stats module (Jones et al., 2001) and applied these to the \(a_w\) data. This resulted in a distribution of \(\gamma^\infty\) values. A relative standard error between 2\% and 14\% on \(\gamma^\infty\) is obtained in this way. We note however, that this error depends also on the selected model, i.e. \(\gamma^\infty\) based on Margules models tend to be the least sensitive to the random shifts, while \(\gamma^\infty\) based on Van Laar and Wilson models are the most sensitive.

Systematic errors in \(a_w\) can be estimated by comparing with other data sources (Romero and Páez, 2006; Borghesani et al., 1989). The \(a_w\) data of Marcolli and Peter (2005) are typically higher than from the other data sources, with a MD of 0.005. We applied systematic shifts of \(\pm 0.005\) on the \(a_w\) data of Marcolli and Peter (2005). This had a minor impact on \(\gamma^\infty\), between 2\% and 6\%.

We note that we had expected that the largest \(\gamma^\infty\) (from 1,7-heptane diol and 1,2-hexane diol) would exhibit the largest sensitivity on these random and systematic shifts. This turned out not to be true, however.

Errors due to a suboptimal model choice are more difficult to quantify. Per compound, the other three activity coefficient models (apart from the 'best' one) were also considered. If the fitting was considerably worse, the model was rejected because it was probably not appropriate. If the fitting gave essentially the same \(\gamma^\infty\) result, it was also not retained, because in that particular case the models were not truly different. In this way, for 7 diols \(\gamma^\infty\) from an alternative model were selected (presented in Table 6). The RMSRD between \(\gamma^\infty\) of the 'best' model and 'alternative' model was 12\%. The most important reason for the discrepancy between the
activity coefficient models was their behaviour at the highly dilute region, were no data was used to constrain them.

For 8 diols in Table 2 also data from two other sources (Borghesani et al. 1989; Romero and Páez 2006) was available. Note that Borghesani et al. (1989) do not provide the data points but only fitted expressions. These two data sources are very precise; e.g. Romero and Páez (2006) report a relative uncertainty in \(a_w \) of 0.005% or less. They are also in good agreement with each other; the difference in \(a_w \) is typically 0.001 or less. These data cover the highly dilute region \((x_w \text{ typically in the range between 0.93 and 0.996})\) and therefore allows to largely correct for the error due to a suboptimal model choice. Using these data as well, more accurate estimations of \(\gamma^\infty \) were made (Table 2). Comparing those with the \(\gamma^\infty \) derived only from the Marcolli and Peter (2005) data, a RMSRD of 13% was obtained, in good agreement with our above estimate of the error due to a suboptimal model choice. Therefore, we assign to all \(\gamma^\infty \) where only data from Marcolli and Peter (2005) are used, a standard error of 13%.

Practically, the derivation of \(\gamma^\infty \) when multiple data sources are available was done in the following way. The integral in Eq. (14) was split up in two parts

\[
\ln \gamma^\infty \approx \int_{t=0}^{\tilde{x}_w} \frac{\ln \gamma_w(x_w)}{(1-x_w)^2} \, dx_w + \int_{t=\tilde{x}_w}^{1} \frac{\ln \gamma_w(x_w)}{(1-x_w)^2} \, dx_w \tag{A10}
\]

\(\tilde{x}_w \) marks the start of the highly dilute region for which data of Borghesani et al. (1989; Romero and Páez (2006) is available. For the region \([0, \tilde{x}_w] \) we employed for \(\ln \gamma_w \) the corresponding activity coefficient expression from Table 6. For the region \([\tilde{x}_w, 1] \), the data from Borghesani et al. (1989; Romero and Páez (2006) was integrated. This was attained either by a numeric integration, or by fitting an activity coefficient expression over this small region, or -if only data of Borghesani et al. (1989) was available- the analytic expression given in this study was used. We assign to these more accurate estimations of \(\gamma^\infty \) a small standard error of 5%.
For the two triols in Table 2 the data of Marcolli and Peter (2005) and of Ninni et al. (2000); Scatchard et al. (1938) was combined. There is a good agreement between the data; e.g. Ninni et al. (2000) report that for glycerol, there is only 0.1% relative deviation between their \(a_w\) data and those of Scatchard et al. (1938). Also here we assign a small standard error of 5% on \(\gamma_s\).

A3 Solubility

As some solubility data of the polyols is from literature compilations, uncertainties are not always available. But when reported, they are typically very low. For xylitol, Wang et al. (2013) reported an error of no more than 0.5% on \(x_s^{\text{sat}}\). For pentaerythritol, a 0.3% error can be derived from the study of Cheon et al. (2005) and 0.15% from the study of Chianese et al. (1995). Higher errors are found when comparing different studies. For erythritol, Hao et al. (2005) report a 4% uncertainty by comparing with literature data. For pentaerythritol, we found by comparing data of Cheon et al. (2005), Chianese et al. (1995) and Mullin (2001) that the RMSRD on room temperature \(x_s^{\text{sat}}\) is 5%. Compared to the estimated errors on solid state pressure (see Section A5), these errors are very minor. We assign a standard error of 5% to all solubility values, except for those of 1,9-nonane diol and 1,10-decane diol. For these latter two compounds, there are two issues. First, the data is from a secondary reference (Merck Millipore [http://www.merckmillipore.com/]) from which it is difficult to assess the reliability. Second, the solubility is not reported at the reference temperature of 298.15 K but at 293.15 K instead. The temperature dependence of solubility can be described by a van’t Hoff relation (Atkins and de Paula, 2006)

\[
\frac{d \ln x_s^{\text{sat}}}{d(1/T)} = -\frac{\Delta H_{\text{Cr} \rightarrow \text{aq}}^{\text{vH}}}{R}
\]

(A11)

\(\Delta H_{\text{Cr} \rightarrow \text{aq}}^{\text{vH}}\) is not known for these two diols. For mono-alcohols it can be either positive or negative and is (in absolute value) in the range 0–30 kJ/mol.
(based on data from Mackay et al., 2006). Based on this, we estimate roughly the standard error on x_s^{sat} at 298.15 K as 15%.

A4 Activity coefficient ratio

The activity coefficient ratio $\gamma_s^\infty / \gamma_s^{\text{sat}}$ is calculated from a_w data. The error on $\gamma_s^\infty / \gamma_s^{\text{sat}}$ depends on the solubility. If the solubility is very low, $\gamma_s^\infty / \gamma_s^{\text{sat}}$ will necessarily be very close to unity and the uncertainty on $\gamma_s^\infty / \gamma_s^{\text{sat}}$ will vanish (see Eq. 18). For all compounds with $x_s^{\text{sat}} < 0.1$ we neglect the error. Xylitol, adonitol, arabinitol and sorbitol have relatively high solubilities ($x_s^{\text{sat}} \approx 0.2$) and $\gamma_s^\infty / \gamma_s^{\text{sat}}$ considerably deviating from 1 (Table 4). For xylitol and sorbitol, precise a_w data is available (Ninni et al., 2000, Comesaña et al., 2001, Bower and Robinson, 1963); e.g. Ninni et al. (2000) report a reproducibility of ± 0.001 a_w units. There is a good agreement between the data sources. For sorbitol, there is a near perfect agreement between the data sets of Comesaña et al. (2001) and Bower and Robinson (1963) (no significant MD, and a RMSD of 0.0005). The RMSD between the a_w data of Ninni et al. (2000) on one hand, and the data of Comesaña et al. (2001) and Bower and Robinson (1963) on the other hand, for both xylitol and sorbitol, is 0.003. This is similar to the standard deviation between modelled a_w and experimental a_w (0.0015 for sorbitol, 0.003 for xylitol). Therefore, we applied random shifts from a normal distribution with a standard deviation of 0.003 to the a_w data. This resulted in a 5% uncertainty on $\gamma_s^\infty / \gamma_s^{\text{sat}}$ for sorbitol and a 2.5% uncertainty for xylitol. We adopted 5% as a relative standard error for $\gamma_s^\infty / \gamma_s^{\text{sat}}$ of xylitol and sorbitol (Table 8).

Chirife et al. (1984) presented one-parameter fittings of the form $\ln \gamma_w = \exp (-Ax_s)$, from which $\gamma_s^\infty / \gamma_s^{\text{sat}}$ can be derived. Using Eq. 18, one has

$$\ln \frac{\gamma_s^\infty}{\gamma_s^{\text{sat}}} = -Ax_s^{\text{sat}} (2 - x_s^{\text{sat}})$$

(A12)

For adonitol and arabinitol, these are the only data available. $\gamma_s^\infty / \gamma_s^{\text{sat}}$ values derived in this way are likely more uncertain than the values given above for sorbitol and xylitol. For these two
compounds, we compared our own $\gamma^\infty / \gamma^\text{sat}$ values (in Table 4) with the values obtained using the one-parameter fittings of Chirife et al. (1984) and found a RMSRD of 16%. Therefore, we assign a relative standard error of 16% to the $\gamma^\infty / \gamma^\text{sat}$ of adonitol and arabinitol (Table 8).

A5 Derivation of sublimation data

Starting from high-temperature solid state pressure data, and heat capacity data, the solid state pressure p^0_{Cr} at $T_{\text{ref}} = 298.15$ K is given by

$$\ln p^0_{\text{Cr}}(T_{\text{ref}}) = A + B,$$ \hspace{1cm} (A13)

where

$$A = \ln p^0_{\text{Cr}}(T_{\text{meas}}) - \frac{1}{R} \left(\frac{1}{T_{\text{ref}}} - \frac{1}{T_{\text{meas}}} \right) \Delta H_{\text{sub}}(T_{\text{meas}})$$ \hspace{1cm} (A14)

and

$$B = \frac{1}{R} \int_{T_{\text{meas}}}^{T_{\text{ref}}} \left(C_{p,g} - C_{p,\text{Cr}} \right) \left(\frac{1}{T} - \frac{1}{T_{\text{ref}}} \right) \, dT$$ \hspace{1cm} (A15)
In case the high-temperature data corresponds to liquid vapour pressure p_0^L, the relation is

$$\ln p_0^C (T_{ref}) = A + B + C,$$ \hspace{1cm} (A16)

$$A = \ln p_0^L (T_{meas}) - \frac{1}{R} \left(\frac{1}{T_{meas}} - \frac{1}{T_{ref}} \right) \Delta H_{vap} (T_{meas})$$ \hspace{1cm} (A17)

$$B = \frac{1}{R} \int_{T_{meas}}^{T_{fus}} (C_{p,g} - C_{p,L}) \left(\frac{1}{T} - \frac{1}{T_{ref}} \right) dT + \frac{1}{R} \int_{T_{fus}}^{T_{ref}} (C_{p,g} - C_{p,Cr}) \left(\frac{1}{T} - \frac{1}{T_{ref}} \right) dT$$ \hspace{1cm} (A18)

$$C = -\frac{1}{R} \left(\frac{1}{T_{ref}} - \frac{1}{T_{fus}} \right) \Delta H_{fus} (T_{fus})$$ \hspace{1cm} (A19)

Uncertainties on terms A (involving high temperature vapour pressure data), B (involving heat capacity data) and, depending on the case, C, (involving fusion data) will contribute to the error on $\ln p_0^C (T_{ref})$: \hspace{1cm}

$$\frac{SE [p_0^C (T_{ref})]}{p_0^C (T_{ref})} = SE [\ln p_0^C (T_{ref})] = SE [A] + SE [B] + SE [C]$$ \hspace{1cm} (A20)

In the next sections these three uncertainties are analysed.

A5.1 High temperature p_0^C and p_0^L data

To simplify the discussion, in this section, $p^0, \Delta S$ and ΔH stand for either $p_0^C, \Delta S_{sub}$ and ΔH_{sub} or $p_0^L, \Delta S_{vap}$ and ΔH_{vap} respectively, depending on if the compound is a solid or a
liquid at T_{meas}. Term A is then given by

$$A = \ln p^0(T_{\text{meas}}) - \frac{1}{R} \left(\frac{1}{T_{\text{ref}}} - \frac{1}{T_{\text{meas}}} \right) \Delta H(T_{\text{meas}})$$ \hspace{1cm} (A21)

The standard error of A, from the error propagation rule \cite{Bevington2003} (neglecting the uncertainty in T_{meas}), is equal to

$$\text{SE}(A) = \sqrt{\left(\frac{\text{SE}[p^0(T_{\text{meas}})]}{p^0(T_{\text{meas}})} \right)^2 + \left[\frac{\text{SE}[\Delta H(T_{\text{meas}})]}{R} \left(\frac{1}{T_{\text{ref}}} - \frac{1}{T_{\text{meas}}} \right) \right]^2}$$ \hspace{1cm} (A22)

In the study of \cite{Knauth1990a}, $p^0(T_{\text{meas}})$ and $\Delta H(T_{\text{meas}})$ are measured separately and at one fixed temperature. In the other studies, however (\cite{Nitta1951, Bradley1953, Barone1990, Nitta1950, Piacente1993, Piacente1994}), ΔH was derived from a linear regression of $\ln p^0$ vs. $1/T$. Over the relatively small temperature interval, the temperature dependence of ΔH can be neglected (Clausius-Clapeyron relation, see e.g. \cite{Atkins2006}). Eq. (A22) still applies, if p^0_L is taken at the centre of the measurement interval (\cite{Ramsey1997}). T_{meas} then corresponds to the centre of the temperature interval (see Table 3) and is presented in Table 8. Most high temperature p^0 data is from Piacente and co-workers, covering both diols and polyols with 4 or more hydroxyl groups (\cite{Piacente1993, Piacente1994, Barone1990}).

As before (see Section A1), we estimate $\frac{\text{SE}[p^0(T_{\text{meas}})]}{p^0(T_{\text{meas}})}$ as 0.25 for the data of Knauth and Sabbah (1990a) and Piacente et al. (1993, 1994). By comparing ΔH data on diols from Knauth and Sabbah (1990a) and Piacente et al. (1994), we find a RMSD of 3.5 kJ/mmol, which we adopt as $\text{SE}[\Delta H(T_{\text{meas}})]$ for both data sources. As is often the case when comparing different data sources, this error is higher than the errors reported in the individual studies themselves (typically 1-2 kJ/mmol). For large differences between T_{ref} and T_{meas}, $\text{SE}(A)$ is determined mainly by uncertainty in the enthalpy term. This is the case for the polyols with 4 or more hydroxyl groups. The largest $\text{SE}(A)$, about 0.6, is obtained for the hexols (Table 8).
Most data on polyols with 4 or more hydroxyl groups is from Piacente and co-workers (Barone et al., 1990). There are a few other, much older studies (Nitta et al., 1950, 1951; Bradley and Cotson, 1953) on erythritol and pentaerythritol, with ΔH values strongly deviating (15-30 kJ/mol lower) from the data of Barone et al. (1990). These large discrepancies cannot be understood from the reported precisions, or from the error of 3.5 kJ/mol adopted above. We think that this points to problems with one or more of the experimental studies, rather than to a typical experimental uncertainty. We judge the data of Piacente and co-workers as the more reliable, for the following reasons. (i) A relatively good agreement in ΔH of diols with Knauth and Sabbah (1990a) (Piacente et al., 1993, 1994). (ii) Piacente and co-workers also present p^0 measurements on diols using another technique, and with comparable results (Piacente et al., 1993). (iii) Consistency, in the sense that the high temperature p^0 data of stereo-isomers of polyols are comparable, as one would expect (Barone et al., 1990). (iv) Compared to the older studies, those of Piacente and co-workers employ more data points and a larger temperature interval. Obviously, more p^0 measurements on polyols with 4 or more hydroxyl groups are desirable.

A5.2 Heat capacity data

Assuming that the error on heat capacity is temperature independent, one derives from Eq. (A15) for the standard error on term B (if no fusion point is involved)

$$
\text{SE} [B] = \frac{1}{R} \left[\ln \frac{T_{\text{ref}}}{T_{\text{meas}}} - \frac{1}{T_{\text{ref}}} (T_{\text{ref}} - T_{\text{meas}}) \right] \sqrt{\text{SE} [C_{p,g}]^2 + \text{SE} [C_{p,\text{Cr}}]^2}
$$

(A23)

If there is a fusion point, starting from Eq. (A18), the standard error on term B becomes

$$
\text{SE} [B] = \frac{1}{R} \left[\ln \frac{T_{\text{fus}}}{T_{\text{meas}}} - \frac{1}{T_{\text{fus}}} (T_{\text{fus}} - T_{\text{meas}}) \right] \sqrt{\text{SE} [C_{p,g}]^2 + \text{SE} [C_{p,L}]^2 + \text{SE} [C_{p,\text{Cr}}]^2}
$$

(A24)
Most $C_{p,L}$ and $C_{p,\text{Cr}}$ data we use is from Tong and co-workers (Tong et al., 2007, 2008, 2009, 2010b, a), as it covers a wide range of polyols and temperatures. Quoted errors on the experimental values of $C_{p,L}$ and $C_{p,\text{Cr}}$ are very low, e.g. 0.2% for those of Tong and co-workers. This corresponds to about 0.5 J/(Kmol) error on the heat capacity value. However, the discrepancy between data of different groups is much larger. We compared the data of Tong and co-workers with other data where possible: for erythritol (Lopes Jesus et al., 2005, Spaght et al., 1931), sorbitol (Lian et al., 1982) and mannitol (Lian et al., 1982, Spaght et al., 1931). Based on the RMSD of the data, we assign $\text{SE}[C_{p,L}] = \text{SE}[C_{p,\text{Cr}}] = 20$ J/(Kmol), much larger than the reported errors. By taking identical errors for $C_{p,L}$ and $C_{p,\text{Cr}}$ (there is not enough data to treat them separately), Eq. (A24) simplifies to Eq. (A23).

In a few cases (arabinitol, dulcitol, liquid state mannitol) we did not found heat capacity data in the appropriate temperature range and we took heat capacity data of a stereo-isomer instead (see Table 3). To test the validity of this assumption, we compared heat capacity data at or above room temperature of stereo-isomers from the same research group. Regarding the liquid state, $C_{p,L}$ data of the stereo-isomers erythritol and threitol (Lopes Jesus et al., 2005), and of the stereo-isomers xylitol and adonitol (Tong et al., 2007, 2010b) differ by less than 2 J/(Kmol). This justifies the approximations $C_{p,L}$ (arabinitol) \approx $C_{p,L}$ (xylitol), $C_{p,L}$ (dulcitol) \approx $C_{p,L}$ (sorbitol) and $C_{p,L}$ (mannitol) \approx $C_{p,L}$ (sorbitol) applied in this work. Regarding the solid state, we compared $C_{p,\text{Cr}}$ of stereo-isomers erythritol and threitol (Lopes Jesus et al., 2005), xylitol and adonitol (Tong et al., 2007, 2010b), mannitol and sorbitol (Tong et al., 2010a, 2008, Lian et al., 1982), only taking into account the data at $T > T_{\text{ref}}$ (as this is the most relevant for our work) and found a RMSD of 9 J/(Kmol). This is larger than for the liquid state but still smaller than the discrepancies between different works on the same molecule. Moreover, for the low-temperature (88–291 K) $C_{p,\text{Cr}}$ data for the stereo-isomers dulcitol and mannitol (Parks and Huffman, 1926, Parks and Anderson, 1926), the RMSD was only 2 J/(Kmol). Therefore, also the approximations $C_{p,\text{Cr}}$ (arabinitol) \approx $C_{p,\text{Cr}}$ (xylitol) and $C_{p,\text{Cr}}$ (dulcitol) \approx $C_{p,\text{Cr}}$ (mannitol) seem to be justified.
Regarding \(C_{p,g} \), the error is difficult to quantify as this value is not measured but obtained by the Benson group contribution method. Poling et al. (2001) quote a relative error of 1% for this method, but as polyols are underrepresented in the fitting set of this method, this is probably not realistic. The method of Domalski and Hearing (1993) is a very close relative to the Benson group contribution method (although limited to room temperature), yielding very similar results for \(C_{p,g} \). Importantly, this method also estimates \(C_{p,L} \) and \(C_{p,Cr} \). Comparing \(C_{p,Cr} \) for erythritol, xylitol and sorbitol from Tong and co-workers with estimations by the method of Domalski and Hearing (1993) yields a RMSD of 20 J/(Kmol). We make now the assumption that this error is applicable to \(C_{p,g} \) as well. Hence we assign \(SE[C_{p,g}] = 20 \) J/(Kmol).

For the diols, where \(T_{meas} \) is relatively close to \(T_{ref} \), \(SE[B] \) is small (1-7%), but for the compounds with 4 or more hydroxyl groups it becomes more important, over 40% for the hexols (see Table 8).

A5.3 Fusion data

In this section the error due to the term \(C = -\frac{1}{R} \left(\frac{1}{T_{ref}} - \frac{1}{T_{fus}} \right) \Delta H_{fus} (T_{fus}) \) in Eq. (A16) is estimated. From the error propagation rule the standard error can be derived as

\[
SE(C) = \sqrt{SE(T_{fus})^2 \left(\frac{\Delta H_{fus}}{T_{fus}^2 R} \right)^2 + SE(\Delta H_{fus})^2 \left[\frac{1}{R} \left(\frac{1}{T_{ref}} - \frac{1}{T_{fus}} \right) \right]^2}
\] (A25)

Fusion data was collected from Tong et al. (2007, 2008, 2009, 2010a); Barone et al. (1990); Badea et al. (2014); Knauth and Sabbah (1990a). The selected \(T_{fus} \) are presented in Table 8. Reported errors in these works are typically 0.1 K for \(T_{fus} \) and 0.1-0.3 kJ/mol for \(\Delta H_{fus} \). However, comparing the data between the different references reveals larger uncertainties: a standard deviation of 2.8 K for \(T_{fus} \) and 2.2 kJ/mol for \(\Delta H_{fus} \). Using these errors, \(SE(C) \) ranges from 0.13 for nonane diol to 0.33 for dulcitol (see Table 8).

A6 Overall discussion of errors
Table 7 gives an overview of the estimated relative standard errors on \(p^0_L \), \(\gamma^\infty \) and the derived relative standard error on \(k_{fh} \). This applies to the compounds which are liquid at room temperature, i.e. most diols discussed in this work and glycerol. The relative standard error on \(k_{fh} \) ranges between 6% and 30%.

Table 8 gives the different error contributions when the compound is solid at room temperature, and the resulting relative standard error on \(k_{fh} \). In all cases, \(SE(A) \) is the dominant error contribution. For all polyols with 4 or more hydroxyl groups, this is caused by the large difference between \(T_{ meas } \) and \(T_{ ref } \) and the uncertainty on \(\Delta H_{ fus } \). The estimated relative standard error on \(k_{fh} \) ranges between 30% and 80%.

Appendix B: Alternative method to estimate \(p^0_{Cr}(T_{ref}) \) data from high-temperature \(p^0_L \) data

As is clear from section A, using high-temperature \(p^0 \) data at \(T_{ meas } \) far above \(T_{ ref } \) contributes the largest uncertainty to the derived room temperature \(p^0_{Cr} \) and \(k_{fh} \) data. One of the reviewers suggested an alternative approach. It can be described as follows:

1. Select a vapour pressure estimation method that uses a boiling point as input (e.g. Nannoolal et al. 2008).

2. Adjust the boiling point such that the experimental high-temperature \(p^0_L \) data at \(T_{ meas } \) is reproduced.

3. With this setting, estimate the subcooled \(p^0_L \) at \(T_{ ref } \).

4. Use triple point or fusion point data to calculate \(p^0_{Cr} \) at \(T_{ ref } \) (Prausnitz et al. 1999; Compernolle et al. 2011, Eq. (1)).

We applied this procedure up to step 3. The selected vapour pressure estimation methods are those of Nannoolal et al. (2008); Moller et al. (2008); Myrdal and Yalkowsky (1997), available at the site E-AIM (http://www.aim.env.uea.ac.uk/aim/aim.php), and applied to the
compounds erythritol, xylitol and sorbitol. The boiling point was adjusted until the p_L^0 data at T_{meas} of Barone et al. (1990) could be reproduced, and p_L^0 at T_{ref} calculated. The results are presented in Table 9. The method of Myrdal and Yalkowsky (1997) gives much higher $p_L^0(T_{\text{ref}})$ estimations than the other two methods; for sorbitol it is more than two orders of magnitude higher. The $p_L^0(T_{\text{ref}})$ estimations using the methods of Nannoolal et al. (2008) and of Moller et al. (2008) are within a factor 2. However, the adjusted boiling point varies strongly between both methods (almost 100 K for sorbitol), indicating also problems here.

From the theses describing these two methods (Nannoolal 2006; Moller 2007) it can be deduced that to derive these methods, only compounds were selected where also a normal boiling point is available. This excludes the polyols with 4 or more hydroxyl groups. Therefore, these methods may not be well-suited to calculate the vapour pressure of these kind of compounds. In fact, the original version of the method of Moller et al. (2008) contained a bug that we pointed out (Compernolle et al. 2010), showing up only for highly polyfunctional compounds, and giving very unrealistic p_L^0 values. While this bug has been corrected since then, it does indicate that the method was not devised for highly polyfunctional compounds.

In conclusion, we don’t think this approach is a good alternative to obtain p_L^0 at T_{ref}.

References

Bastos, M., Nilsson, S.-O., Ribeiro da Silva, M. D., Ribeiro da Silva, M. A., and Wadsö, I.: Thermo-
dynamic properties of glycerol enthalpies of combustion and vaporization and the heat capacity at
298.15 K. Enthalpies of solution in water at 288.15, 298.15, and 308.15 K, J. Chem. Thermodyn., 20,

Benson, S. W.: Thermochemical Kinetics: Methods for the Estimation of Thermochemical Data and Rate

Bevington, P. R.: Data reduction and error analysis for the physical sciences, New York: McGraw-Hill,

Bone, R., Cullis, P., and Wolfenden, R.: Solvent effects on equilibria of addition of nucleophiles
to acetaldehyde and the hydrophilic character of diols, J. Am. Chem. Soc., 105, 1339–1343,

Borghesani, G., Pedriali, R., and Pulidori, F.: Solute-solute-solvent interactions in dilute aqueous solu-
tions of aliphatic diols. Excess enthalpies and gibbs free energies, J. Solution Chem., 18, 289–300,
1989.

Bower, V. E. and Robinson, R. A.: Isopiestic vapor pressure measurements of the ternary system:
1963.

Bradley, R. S. and Cotson, S.: The vapour pressure and lattice energy of hydrogen-bonded crystals.
Part II. α- and β-anhydrous oxalic acid and tetragonal pentaerythritol, J. Chem. Soc., 1684–1688,

mixture activity coefficients from surface tension measurements throughout the entire concentration

Cammenga, H. K., Schulze, F. W., and Theuerl, W.: Vapor pressure and evaporation coefficient of gly-

Table 1. Molecular structures of polyols with three or more hydroxyl groups, discussed in this work using non-IUPAC names.

<table>
<thead>
<tr>
<th>name</th>
<th># OH</th>
<th>structure</th>
<th>name</th>
<th># OH</th>
<th>structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>glycerol</td>
<td>3</td>
<td></td>
<td>arabinitol<sup>b,c</sup></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>erythritol</td>
<td>4</td>
<td></td>
<td>sorbitol</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>pentaerythritol</td>
<td>4</td>
<td></td>
<td>mannitol<sup>e</sup></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>xylitol</td>
<td>5</td>
<td></td>
<td>dulcitol<sup>d,e</sup></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>adonitol<sup>a,c</sup></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a also named ribitol, ^b also named arabitol, ^c stereo isomer of xylitol, ^d also named galactitol, ^e stereo isomer of sorbitol.
Table 2. Infinite dilution activity coefficients derived in this work, the sources of water activity they are based on, and comparison with literature.

<table>
<thead>
<tr>
<th>molecule</th>
<th>γ_s^∞</th>
<th>a_w source</th>
<th>γ_s^∞ (lit.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2-ethane diol</td>
<td>0.75, 0.69g</td>
<td>a, b</td>
<td>0.8</td>
</tr>
<tr>
<td>1,2-propane diol</td>
<td>1.25, 1.08g</td>
<td>a, b</td>
<td>1.0</td>
</tr>
<tr>
<td>1,3-propane diol</td>
<td>1.23, 1.25g</td>
<td>a, b</td>
<td>1.2</td>
</tr>
<tr>
<td>1,2-butane diol</td>
<td>3.00, 3.74g</td>
<td>a, b, c</td>
<td>2.0</td>
</tr>
<tr>
<td>1,3-butane diol</td>
<td>2.14, 1.97g</td>
<td>a, b, c</td>
<td>2.2</td>
</tr>
<tr>
<td>1,4-butane diol</td>
<td>2.27, 2.12g</td>
<td>a, b, c</td>
<td>2.8</td>
</tr>
<tr>
<td>2,3-butane diol</td>
<td>2.10, 1.77g</td>
<td>a, b, c</td>
<td>1.6</td>
</tr>
<tr>
<td>1,5-pentane diol</td>
<td>5.99, 5.26g</td>
<td>a, b</td>
<td></td>
</tr>
<tr>
<td>1,2-pentane diol</td>
<td>11.9</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1,4-pentane diol</td>
<td>3.8</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>2,4-pentane diol</td>
<td>2.8</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1,2-hexane diol</td>
<td>26.3</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>2,5-hexane diol</td>
<td>5.7</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1,7-heptane diol</td>
<td>27.9</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>glycerol</td>
<td>0.52</td>
<td>a, d, e</td>
<td></td>
</tr>
<tr>
<td>1,2,4-butanetriol 4-butane triol</td>
<td>0.45</td>
<td>a, d</td>
<td></td>
</tr>
</tbody>
</table>

a Marcolli and Peter (2005)
b Borghesani et al. (1989)
c Romero and Páez (2006)
d Ninni et al. (2000)
e Scatchard et al. (1938)
f Suleiman and Eckert (1994)
g The second value is obtained by applying Eq. [14] to the data of Marcolli and Peter (2005) only.
Table 3. Solid state pressure and enthalpy of sublimation of polyols, obtained from Eqs. (15), (16) and/or (17), at T_{ref} = 298.15 K, and reference to the data used to obtain them. $C_{p,g}$ is estimated by the method of Benson (1976).

<table>
<thead>
<tr>
<th>molecule</th>
<th>$\frac{p_{Cr}(T_{ref})}{\text{OH-Pa}}$</th>
<th>$\Delta H_{\text{sub}}(T_{ref})$ atm-kJ mol$^{-1}$</th>
<th>p_L^0, ΔH_{vap} (L)a or p_{Cr}^0, ΔH_{sub} (Cr)</th>
<th>T_{meas}, T_{interval} K</th>
<th>T_{fus}, ΔH_{fus} or $C_{p,L}$ (L)a</th>
<th>$C_{p,L}$ (Cr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>nonane-diol</td>
<td>2.1×10^{-3}</td>
<td>1.4×10^{-8} 148</td>
<td>Lb</td>
<td>Lb 323</td>
<td>g Cr^k, Li</td>
<td></td>
</tr>
<tr>
<td>decane-diol</td>
<td>2.4×10^{-3}</td>
<td>2.3×10^{-8} 148</td>
<td>Lc</td>
<td>Lc 360 347–373</td>
<td>g Cr^k, Lo</td>
<td></td>
</tr>
<tr>
<td>erythritol</td>
<td>2.1×10^{-4}</td>
<td>1.4×10^{-9} 151</td>
<td>Crb</td>
<td>Crb 342</td>
<td>Crk</td>
<td></td>
</tr>
<tr>
<td>penta-erythritol</td>
<td>1.7×10^{-4}</td>
<td>1.7×10^{-9} 161</td>
<td>Lc</td>
<td>Lc 364 351–377</td>
<td>g Cr^k, Lo</td>
<td></td>
</tr>
<tr>
<td>xylitol</td>
<td>4.7×10^{-7}</td>
<td>4.6×10^{-12} 155</td>
<td>Ld</td>
<td>Ld 412 397–428</td>
<td>h L, Crh</td>
<td></td>
</tr>
<tr>
<td>adonitol</td>
<td>3.6×10^{-6}</td>
<td>3.5×10^{-11} 136</td>
<td>Cre</td>
<td>Cre 386 379–392</td>
<td>h L, Crh</td>
<td></td>
</tr>
<tr>
<td>arabinitol</td>
<td>4.7×10^{-9}</td>
<td>7.4×10^{-14} 166</td>
<td>Crd</td>
<td>Crd 436 416–456</td>
<td>h L, Crh</td>
<td></td>
</tr>
<tr>
<td>sorbitol</td>
<td>3.5×10^{-7}</td>
<td>3.4×10^{-12} 135</td>
<td>Cre</td>
<td>Cre 404 397–410</td>
<td>h L, Crh</td>
<td></td>
</tr>
<tr>
<td>mannitol</td>
<td>9.3×10^{-8}</td>
<td>9.2×10^{-14} 147</td>
<td>Crf</td>
<td>Crf 394 380–408</td>
<td>h L, Crh</td>
<td></td>
</tr>
<tr>
<td>dulcitol</td>
<td>5.7×10^{-7}</td>
<td>7.4×10^{-13} 162</td>
<td>Ld</td>
<td>Ld 433 406–460</td>
<td>h L, Crh</td>
<td></td>
</tr>
<tr>
<td>adonitol</td>
<td>5.2×10^{-8}</td>
<td>2.7×10^{-13} 166</td>
<td>Ld</td>
<td>Ld 443 418–465</td>
<td>h L, Crh</td>
<td></td>
</tr>
<tr>
<td>arabinitol</td>
<td>5.2×10^{-8}</td>
<td>2.1×10^{-13} 166</td>
<td>Ld</td>
<td>Ld 440 414–466</td>
<td>h L, Crh</td>
<td></td>
</tr>
<tr>
<td>sorbitol</td>
<td>6.3×10^{-11}</td>
<td>3.6×10^{-16} 198</td>
<td>Ld</td>
<td>Ld 477 452–502</td>
<td>h L, Crh</td>
<td></td>
</tr>
<tr>
<td>mannitol</td>
<td>6.6×10^{-13}</td>
<td>6.6×10^{-18} 206</td>
<td>Ld</td>
<td>Ld 477 458–501</td>
<td>h Cr^h, Lm</td>
<td></td>
</tr>
<tr>
<td>dulcitol</td>
<td>6.1×10^{-13}</td>
<td>1.9×10^{-18} 210</td>
<td>Ld</td>
<td>Ld 482 464–500</td>
<td>h Cr^h, Lm</td>
<td></td>
</tr>
</tbody>
</table>

1 No $C_{p,cr}, C_{p,L}$ data was found for arabinose. The data for arabinose was taken instead. m No $C_{p,L}$ data was found for mannitol and dulcitol in the literature; the $C_{p,L}$ data for sorbitol was taken instead. n No $C_{p,cr}$ data was found for dulcitol in the desired temperature range. Low temperature (≤ 292.8 K) data is comparable to that of mannitol, therefore, $C_{p,cr}$ of mannitol was taken instead. o No $C_{p,L}$ data for decane diol was found in the literature. It was estimated by the method of Domalski and Hearing (1993).
Table 4. Mole fraction solubilities x_{s}^{sat} and activity coefficient ratios $\gamma_{s}^{\infty}/\gamma_{s}^{\text{sat}}$ derived from a_w data. Estimations of $\gamma_{s}^{\infty}/\gamma_{s}^{\text{sat}}$ by UNIFAC-MP are also given.

<table>
<thead>
<tr>
<th>molecule</th>
<th>x_{s}^{sat}</th>
<th>$\gamma_{s}^{\infty}/\gamma_{s}^{\text{sat}}$</th>
<th>a_w data source</th>
<th>$\gamma_{s}^{\infty}/\gamma_{s}^{\text{sat}}$ MP</th>
</tr>
</thead>
<tbody>
<tr>
<td>nonane diol</td>
<td>1×10^{-3}a</td>
<td>1.0^a_p</td>
<td>–</td>
<td>1.06</td>
</tr>
<tr>
<td>decane diol</td>
<td>7.6×10^{-5}a</td>
<td>1.0^a_p</td>
<td>–</td>
<td>1.01</td>
</tr>
<tr>
<td>erythritol</td>
<td>0.074b</td>
<td>0.84</td>
<td>h,k,i</td>
<td>0.75</td>
</tr>
<tr>
<td>pentaerythritol</td>
<td>$0.0670.00946^c$</td>
<td>$0.8^i_{n}1.0^q$</td>
<td>–</td>
<td>$0.70;0.97$</td>
</tr>
<tr>
<td>xylitol</td>
<td>0.18^e</td>
<td>0.56</td>
<td>h,j</td>
<td>0.32</td>
</tr>
<tr>
<td>adonitol</td>
<td>0.15^d</td>
<td>0.66^l</td>
<td>l</td>
<td>0.37</td>
</tr>
<tr>
<td>arabinitol</td>
<td>0.20^d</td>
<td>0.60^l</td>
<td>l</td>
<td>0.30</td>
</tr>
<tr>
<td>sorbitol</td>
<td>0.196^g</td>
<td>0.45^p,o</td>
<td>h,j,m</td>
<td>0.18</td>
</tr>
<tr>
<td>mannitol</td>
<td>0.0209^f</td>
<td>0.96^o,n</td>
<td>h,m</td>
<td>0.80</td>
</tr>
<tr>
<td>dulcitol</td>
<td>0.0031^d</td>
<td>1.0^a_p</td>
<td>–</td>
<td>0.97</td>
</tr>
</tbody>
</table>

Solubilities: a Merck Millipore [http://www.merckmillipore.com/], at 20 °C, b Hao et al. [2005], c Cheon et al. [2005], d Cohen et al. [1993], e Wang et al. [2013], f Seidell [1941], g Mullin [2001].

Water activities: h Ninni et al. [2000], i Bonner and Breazeale [1965], j Comesaña et al. [2001], k Romero and Páez [2006], l Chirife et al. [1984] (one parameter fittings), m Robinson and Stokes [1961]; Bower and Robinson [1963].

For mannitol, only the a_w data of Robinson and Stokes [1961] was used, as the data of Ninni et al. [2000] led to $\gamma_w > 1$, which is probably wrong.

Due to the extrapolation involved (no a_w data at x_{sat}), this value is more uncertain.

No a_w data was found. $\gamma_{s}^{\infty}/\gamma_{s}^{\text{sat}} = 1$ was assumed because of the low solubility, i.e. Eq. [9] is considered valid.
Table 5. Henry’s law constants and gas dissolution enthalpies at 298.15 K for the polyols considered in this work, from Eqs. (4), (5), (9), (10). γ_s^∞ is taken from Table 2, p_L^0, ΔH_{sub} from Table 3 and $\gamma_s^\infty / \gamma_s^{\text{sat}}$ from Table 4.

<table>
<thead>
<tr>
<th>molecule</th>
<th>k_h M atm$^{-1}$</th>
<th>$\Delta H_g^{\infty \rightarrow \text{aq}}$ kJ mol$^{-1}$</th>
<th>Data source for Eqs. 4 and 5</th>
<th>p_L^0, ΔH_{vap} or $\Delta H_g^{\infty \rightarrow \text{aq}}$ (L)</th>
<th>k_h M atm$^{-1}$ (lit.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2-ethane diol</td>
<td>6.6×10^5</td>
<td>-72.9</td>
<td>a</td>
<td>Le</td>
<td>4.1×10^5</td>
</tr>
<tr>
<td>1,2-propane diol</td>
<td>2.7×10^5</td>
<td>-78.8</td>
<td>a</td>
<td>Lf</td>
<td>1×10^5</td>
</tr>
<tr>
<td>1,3-propane diol</td>
<td>1.6×10^6</td>
<td>-79.1</td>
<td>a</td>
<td>Le</td>
<td>9.2×10^5</td>
</tr>
<tr>
<td>1,2-butyne diol</td>
<td>2.1×10^5</td>
<td>-82.1</td>
<td>a</td>
<td>Lg</td>
<td></td>
</tr>
<tr>
<td>1,3-butyne diol</td>
<td>7.1×10^5</td>
<td>-84.5</td>
<td>a</td>
<td>Lg</td>
<td></td>
</tr>
<tr>
<td>1,4-butyne diol</td>
<td>3.5×10^6</td>
<td>-89.6</td>
<td>a</td>
<td>Lg</td>
<td>1×10^5</td>
</tr>
<tr>
<td>2,3-butyne diol</td>
<td>1.1×10^5</td>
<td>-82.2</td>
<td>b</td>
<td>Lg</td>
<td>4×10^4</td>
</tr>
<tr>
<td>1,2-pentane diol</td>
<td>1.4×10^5</td>
<td>-82.2</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-pentane diol</td>
<td>2.3×10^6</td>
<td>-82.2</td>
<td>b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,5-pentane diol</td>
<td>7.1×10^5</td>
<td>-103.5</td>
<td>b</td>
<td>Le</td>
<td></td>
</tr>
<tr>
<td>2,4-pentane diol</td>
<td>3.9×10^5</td>
<td>-82.2</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-hexane diol</td>
<td>1.7×10^5</td>
<td>-82.2</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,5-hexane diol</td>
<td>1.4×10^6</td>
<td>-82.2</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,7-heptane diol</td>
<td>4.6×10^6</td>
<td>-82.2</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,9-nonane diol</td>
<td>2.4×10^6</td>
<td>-82.2</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,10-decane diol</td>
<td>2.5×10^6</td>
<td>-82.2</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>glycerol</td>
<td>4.8×10^8</td>
<td>-92.6</td>
<td>d</td>
<td>Lh</td>
<td>6×10^8</td>
</tr>
<tr>
<td>erythritol</td>
<td>1.1×10^{12}</td>
<td>-133</td>
<td>Crd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pentaerythritol</td>
<td>6.7×10^{13}</td>
<td>-133</td>
<td>Crd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>xylitol</td>
<td>4.0×10^{13}</td>
<td>-147</td>
<td>Crd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>adonitol</td>
<td>4.7×10^{13}</td>
<td>-147</td>
<td>Crd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>arabinitol</td>
<td>6.8×10^{13}</td>
<td>-147</td>
<td>Crd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sorbitol</td>
<td>6.7×10^{16}</td>
<td>-184</td>
<td>Crd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mannitol</td>
<td>1.8×10^{17}</td>
<td>-184</td>
<td>Crd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dulcitol</td>
<td>9.1×10^{16}</td>
<td>-184</td>
<td>Crd</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Verevkin 2004, b Verevkin 2007, c Toktonov 2009, d For 1,2-propane diol p_L^0, ΔH_{sub} from Table 3 and $\gamma_s^\infty / \gamma_s^{\text{sat}}$ from Table 4.

e Engineering Sciences Data Unit Ltd 1995, f Benson 1976, but the effect is small. g Cammenpa et al. 1977.

Table 6. Activity coefficient methods that best fit the data of Marcolli and Peter (2005). For seven compounds, an alternative fitting is presented.

<table>
<thead>
<tr>
<th>molecule</th>
<th>fitting method</th>
<th>$A_{12,1}$</th>
<th>A_{31}</th>
<th>$\ln \gamma_\infty$</th>
<th>SD($\ln \gamma_\infty$)</th>
<th>SD (a_w)</th>
<th>Δ_{syst}</th>
<th>σ_{rand}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2-ethane diol</td>
<td>Margules</td>
<td>-0.13, -0.38</td>
<td>-0.38</td>
<td>0.0094</td>
<td>0.0033</td>
<td>± 0.02</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>1,2-propane diol</td>
<td>Margules</td>
<td>0.038, 0.078</td>
<td>0.078</td>
<td>0.0098</td>
<td>0.0053</td>
<td>± 0.03</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>1,3-propane diol</td>
<td>UNIQUAC</td>
<td>-144.83, 207.56</td>
<td>0.22</td>
<td>0.0064</td>
<td>0.0033</td>
<td>± 0.02</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>1,2-butane diol</td>
<td>Van Laar</td>
<td>0.40, 1.32</td>
<td>1.32</td>
<td>0.0085</td>
<td>0.0039</td>
<td>± 0.04</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>1,3-butane diol</td>
<td>Wilson</td>
<td>1.84, 0.22</td>
<td>0.68</td>
<td>0.0101</td>
<td>0.0053</td>
<td>± 0.05</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>1,4-butane diol</td>
<td>Wilson</td>
<td>2.00, 0.18</td>
<td>0.75</td>
<td>0.0083</td>
<td>0.0035</td>
<td>± 0.04</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>2,3-pentane diol</td>
<td>Margules</td>
<td>0.26, 0.57</td>
<td>0.57</td>
<td>0.0061</td>
<td>0.0030</td>
<td>± 0.03</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>1,5-pentane diol</td>
<td>Van Laar</td>
<td>0.37, 1.66</td>
<td>1.66</td>
<td>0.0126</td>
<td>0.0046</td>
<td>± 0.02</td>
<td>0.14</td>
<td></td>
</tr>
<tr>
<td>1,2-pentane diol</td>
<td>UNIQUAC</td>
<td>-60.77, 201.91</td>
<td>1.73</td>
<td>0.0127</td>
<td>0.0050</td>
<td>0.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-pentane diol</td>
<td>Wilson</td>
<td>1.70, 0.13</td>
<td>1.33</td>
<td>0.0107</td>
<td>0.0053</td>
<td>± 0.06</td>
<td>0.098</td>
<td></td>
</tr>
<tr>
<td>2,4-pentane diol</td>
<td>Margules</td>
<td>0.20, 1.04</td>
<td>1.04</td>
<td>0.0111</td>
<td>0.0073</td>
<td>± 0.03</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>1,2-hexane diol</td>
<td>Van Laar</td>
<td>0.63, 3.27</td>
<td>3.27</td>
<td>0.0041</td>
<td>0.0033</td>
<td>± 0.05</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>2,5-hexane diol</td>
<td>Van Laar</td>
<td>0.37, 1.74</td>
<td>1.74</td>
<td>0.0153</td>
<td>0.0080</td>
<td>± 0.06</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>1,7-heptane diol</td>
<td>Wilson</td>
<td>1.75, 0.07</td>
<td>1.90</td>
<td>0.0158</td>
<td>0.0089</td>
<td>0.02</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Optimized parameters to use in the activity coefficient expression for $\ln \gamma_w$.
b Standard deviation between modelled and observed $\ln \gamma_w$.
c Standard deviation between modelled and observed a_w.
d Range for $\ln \gamma_\infty$ obtained by applying systematic shifts of ± 0.005 to the a_w data.
e Standard deviation on $\ln \gamma_\infty$, obtained by applying random shifts from a normal distribution with $\sigma = 0.0075$ to the a_w data.
Table 7. Estimated relative standard errors on p_L^0, γ_s^∞ and the resulting relative standard error on k_h. See Sections A1 and A2.

<table>
<thead>
<tr>
<th>molecule</th>
<th>$\text{SE}(p_L^0)$</th>
<th>$\text{SE}(\gamma_s^\infty)$</th>
<th>$\text{SE}(k_h)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2-ethane diol</td>
<td>0.03</td>
<td>0.05</td>
<td>0.06</td>
</tr>
<tr>
<td>1,2-propane diol</td>
<td>0.03</td>
<td>0.05</td>
<td>0.06</td>
</tr>
<tr>
<td>1,3-propane diol</td>
<td>0.03</td>
<td>0.05</td>
<td>0.06</td>
</tr>
<tr>
<td>1,2-butane diol</td>
<td>0.03</td>
<td>0.05</td>
<td>0.06</td>
</tr>
<tr>
<td>1,3-butane diol</td>
<td>0.03</td>
<td>0.05</td>
<td>0.06</td>
</tr>
<tr>
<td>1,4-butane diol</td>
<td>0.03</td>
<td>0.05</td>
<td>0.06</td>
</tr>
<tr>
<td>2,3-butane diol</td>
<td>0.25</td>
<td>0.05</td>
<td>0.25</td>
</tr>
<tr>
<td>1,2-pentane diol</td>
<td>0.03</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>1,4-pentane diol</td>
<td>0.25</td>
<td>0.13</td>
<td>0.28</td>
</tr>
<tr>
<td>1,5-pentane diol</td>
<td>0.25</td>
<td>0.05</td>
<td>0.25</td>
</tr>
<tr>
<td>2,4-pentane diol</td>
<td>0.03</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>1,2-hexane diol</td>
<td>0.03</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>2,5-hexane diol</td>
<td>0.25</td>
<td>0.13</td>
<td>0.28</td>
</tr>
<tr>
<td>1,7-heptane diol</td>
<td>0.25</td>
<td>0.13</td>
<td>0.28</td>
</tr>
<tr>
<td>glycerol</td>
<td>0.03</td>
<td>0.05</td>
<td>0.06</td>
</tr>
</tbody>
</table>
Table 8. Estimated relative standard errors on \(x_{s_{\text{sat}}} \), \(\gamma_{s_{\text{sat}}}^{\infty} \), and the various parts of \(p_{Cr}^0 \), and the derived relative standard error on \(k_h \). See Sections A3, A4 and A5.

<table>
<thead>
<tr>
<th></th>
<th>SE(x_{s_{\text{sat}}})</th>
<th>SE(\gamma_{s_{\text{sat}}}^{\infty})</th>
<th>(T_{\text{fus}}) K</th>
<th>SE(C) K</th>
<th>SE(T_{\text{meas}}) K</th>
<th>SE(A)</th>
<th>SE(B)</th>
<th>SE(k_h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,9-nonane diol</td>
<td>0.16</td>
<td>0</td>
<td>318.7(^g)</td>
<td>0.13</td>
<td>323(^b)</td>
<td>0.27</td>
<td>0.01</td>
<td>0.34</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>360(^c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,10-decane diol</td>
<td>0.16</td>
<td>0</td>
<td>345.8(^g)</td>
<td>0.18</td>
<td>342(^b)</td>
<td>0.31</td>
<td>0.03</td>
<td>0.39</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>364(^c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>erythritol</td>
<td>0.05</td>
<td>0</td>
<td>390.25(^h)</td>
<td>0.23</td>
<td>412(^d)</td>
<td>0.46</td>
<td>0.2</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>386(^e)</td>
<td>0.41</td>
<td>0.1</td>
<td>0.42</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>436(^d)</td>
<td>0.51</td>
<td>0.28</td>
<td>0.58</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>404(^e)</td>
<td>0.45</td>
<td>0.17</td>
<td>0.48</td>
</tr>
<tr>
<td>pentaerythritol</td>
<td>0.05</td>
<td>0</td>
<td></td>
<td></td>
<td>394(^f)</td>
<td>0.42</td>
<td>0.14</td>
<td>0.44</td>
</tr>
<tr>
<td>xylitol</td>
<td>0.05</td>
<td>0.05</td>
<td>369.04(^h)</td>
<td>0.19</td>
<td>433(^d)</td>
<td>0.51</td>
<td>0.27</td>
<td>0.61</td>
</tr>
<tr>
<td>adonitol</td>
<td>0.05</td>
<td>0.16</td>
<td>369.08(^h)</td>
<td>0.20</td>
<td>443(^d)</td>
<td>0.52</td>
<td>0.31</td>
<td>0.66</td>
</tr>
<tr>
<td>arabinitol</td>
<td>0.05</td>
<td>0.16</td>
<td>379.4(^d)</td>
<td>0.21</td>
<td>440(^d)</td>
<td>0.52</td>
<td>0.29</td>
<td>0.65</td>
</tr>
<tr>
<td>sorbitol</td>
<td>0.05</td>
<td>0.05</td>
<td>366.5(^h)</td>
<td>0.18</td>
<td>477(^d)</td>
<td>0.59</td>
<td>0.44</td>
<td>0.76</td>
</tr>
<tr>
<td>mannitol</td>
<td>0.05</td>
<td>0</td>
<td>437.25(^h)</td>
<td>0.30</td>
<td>477(^d)</td>
<td>0.59</td>
<td>0.44</td>
<td>0.80</td>
</tr>
<tr>
<td>dulcitol</td>
<td>0.05</td>
<td>0</td>
<td>460.3(^d)</td>
<td>0.33</td>
<td>482(^d)</td>
<td>0.59</td>
<td>0.46</td>
<td>0.82</td>
</tr>
</tbody>
</table>

\(^a\) Fusion point and SE\((C) \) not relevant here as \(T_{\text{fus}} > T_{\text{meas}} \).

\(^b-h\) The same references as for Table 3 apply.
Table 9. p_L^0 calculations for erythritol, xylitol and sorbitol, with three vapour pressure estimation methods (Nannoolal et al., 2008; Moller et al., 2008; Myrdal and Yalkowsky, 1997) available at http://www.aim.env.uea.ac.uk/aim/aim.php.

<table>
<thead>
<tr>
<th>method</th>
<th>erythritol</th>
<th>xylitol</th>
<th>sorbitol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nannoolal</td>
<td>T_b/K adj.(^{a})</td>
<td>612</td>
<td>634</td>
</tr>
<tr>
<td></td>
<td>$p_L^0(T_{\text{ref}})/\text{Pa}$</td>
<td>2.2×10^{-5}</td>
<td>3.0×10^{-7}</td>
</tr>
<tr>
<td>Moller</td>
<td>T_b/K adj.(^{a})</td>
<td>649</td>
<td>705</td>
</tr>
<tr>
<td></td>
<td>$p_L^0(T_{\text{ref}})/\text{Pa}$</td>
<td>1.5×10^{-5}</td>
<td>2.6×10^{-7}</td>
</tr>
<tr>
<td>Myrdal-Yalkowsky</td>
<td>T_b/K adj.(^{a})</td>
<td>656</td>
<td>703</td>
</tr>
<tr>
<td></td>
<td>$p_L^0(T_{\text{ref}})/\text{Pa}$</td>
<td>9.7×10^{-5}</td>
<td>5.2×10^{-6}</td>
</tr>
</tbody>
</table>

\(^{a}\) Hypothetical boiling point, adjusted such that the experimental p_L^0 at T_{meas} (Barone et al., 1990) is reproduced. These experimental (T_{meas}/K, p_L^0/Pa) data points are (412, 8.6), (433, 5.5) and (477, 6.8) for erythritol, xylitol and sorbitol respectively.
Figure 1. The ln γ_w data for erythritol, xylitol, mannitol and sorbitol, compared with the fitting using the Margules formula, and UNIFAC-MP results. Note that the data of Comesaña et al. (2001) is at 20 °C rather than 25 °C, but from their data at 35 °C, it can be deduced that the temperature dependence of ln γ_w is small.
Figure 2. (a) Activity coefficient correction ($\log_{10} \gamma^*_s$) of the organic solute vs. RH for an AS–water particle, as calculated by AIOMFAC. (b) Particulate fraction of the organic solute vs. RH. Acid dissociation is not taken into account. Tartaric and citric acid have $f_p = 1$ over the entire presented range. (c), as (b), but taking acid dissociation into account using the on-line model of E-AIM (see text for more details). Oxalic, malonic, tartaric and citric acid have $f_p = 1$ over the entire presented range.