Missing SO$_2$ Oxidant in the Coastal Atmosphere? –
Observations from High Resolution Measurements of OH and Atmospheric Sulfur Compounds

H. Berresheim, M. Adam, C. Monahan, C. O’Dowd,
School of Physics & Centre for Climate and Air Pollution Studies,
National University of Ireland Galway, Ireland

J.M.C. Plane,
School of Chemistry, University of Leeds, United Kingdom,

B. Bohn, and F. Rohrer*
Institute for Energy and Climate Research (IEK-8), Research Center Jülich, Germany.

Revised version submitted to Atmospheric Chemistry and Physics (ACP)

*corresponding author
Abstract

Diurnal and seasonal variations of gaseous sulfuric acid (H$_2$SO$_4$) and methane sulfonic acid (MSA) were measured in N.E. Atlantic air at the Mace Head atmospheric research station during the years 2010 and 2011. The measurements utilized selected ion / chemical ionization mass spectrometry (SI/CIMS) with a detection limit for both compounds of 4.3×10^4 cm$^{-3}$ at 5 min signal integration. The H$_2$SO$_4$ and MSA gas-phase concentrations were analysed in conjunction with the condensational sink for both compounds derived from 3 nm – 10 µm (aerodynamic diameter) aerosol size distributions. Accommodation coefficients of 1.0 for H$_2$SO$_4$ and 0.12 for MSA were assumed leading to estimated atmospheric lifetimes of the order of 7 min and 25 min, respectively. With the SI/CIMS instrument in OH measurement mode alternating between OH signal and background (non-OH) signal evidence was obtained for the presence of one or more unknown oxidants of SO$_2$ in addition to OH. Depending on the nature of the oxidant(s) their ambient concentration may be enhanced in the CIMS inlet system by additional production. The apparent unknown SO$_2$ oxidant was additionally confirmed by direct measurements of SO$_2$ in conjunction with calculated H$_2$SO$_4$ concentrations. The calculated H$_2$SO$_4$ concentrations were consistently lower than the measured concentrations by a factor 4.7 ± 2.4 when considering the oxidation of SO$_2$ by OH as the only source of H$_2$SO$_4$. Both the OH and the background signal were also observed to increase significantly during daytime aerosol nucleation events, independent of the ozone photolysis frequency, J(O1D), and were followed by peaks in both H$_2$SO$_4$ and MSA concentrations. This suggests a strong relation between the unknown oxidant(s), OH chemistry, and the atmospheric photolysis and photo-oxidation of biogenic iodine compounds. As to the identity of the atmospheric SO$_2$ oxidant(s), we have been able
to exclude ClO, BrO, IO, and OIO as possible candidates based on *ab initio* calculations. Nevertheless, IO could contribute significantly to the observed CIMS background signal. A detailed analysis of this CIMS background signal in context with recently published kinetic data currently suggests that Criegee intermediates (CI’s) produced from ozonolysis of alkenes play no significant role for SO$_2$ oxidation in the marine atmosphere at Mace Head. On the other hand, SO$_2$ oxidation by small CI’s such as CH$_2$OO produced photolytically or possibly in the photochemical degradation of methane is consistent with our observations. In addition, H$_2$SO$_4$ formation from dimethylsulfide oxidation via SO$_3$ as intermediate instead of SO$_2$ also appears to be a viable explanation. Both pathways need to be further explored.

1. Introduction

It has been well established that homogeneous oxidation of tropospheric gases is generally dominated by reactions with the hydroxyl (OH) radical during daylight hours and - in regions with significant nitrogen oxide, NOx, concentrations - with the nitrate (NO$_3$) radical in the absence of sunlight [Stone et al., 2012]. Reactions of molecular oxygen, ozone, or peroxy radicals such as HO$_2$ and RO$_2$ (R = organic rest molecule) are comparatively slow, with few exceptions, such as NO + HO$_2$ which recycles OH [e.g., Atkinson et al., 2004]. Heterogeneous oxidation (on the surface of aerosol particles and in cloud and fog droplets) is dominated either by reactions with dissolved ozone, hydrogen peroxide, or molecular oxygen, the latter pathway being catalyzed by transition metal ions [Harris et al., 2013; Berresheim and Jaeschke, 1986]. However, recent studies have revived an interest in the formation and fate of atmospheric Criegee intermediates (radical species produced from reactions of ozone
with alkenes [Calvert et al., 2000; Criegee, 1975]) which to this day have eluded
direct measurements in the atmosphere since Cox and Penkett [1971] first suggested
their potentially important role. Field and laboratory measurements [Berndt et al.,
2014; Stone et al., 2014; Taatjes et al., 2014; Berndt et al., 2012; Mauldin et al., 2012;
Welz et al., 2012] as well as theoretical and modelling studies [Sarwar et al., 2014;
Boy et al., 2013; Vereecken et al., 2012] now suggest that the reactivity of these types
of radicals towards compounds such as SO₂ may have been underestimated by at least
two orders of magnitude (see also the recent review by Taatjes et al. [2014]).
Therefore, in addition to OH - or possibly even rivalling OH chemistry - Criegee
intermediates may, under certain conditions, be significant contributors to
atmospheric sulfuric acid formation and the production of hygroscopic sulfate
particles which can be activated as cloud condensation nuclei (CCN).

Selected ion – chemical ionization mass spectrometry (SI/CIMS) has been pioneered
by Eisele and coworkers [Tanner and Eisele, 1995; Eisele and Tanner, 1993, 1991] for
high time resolution measurements of OH, H₂SO₄, MSA(g) (gaseous methane
sulfonic acid), and other compounds in the troposphere. A large number of field
studies both on the ground as well as airborne have been successfully conducted using
this technique and significantly improved our understanding of tropospheric chemistry
[e.g., Stone et al., 2012; Huey, 2007; Heard and Pilling, 2003]. In some of these
studies it has already been conjectured that SI/CIMS may also provide information
about the presence of atmospheric oxidants other than OH by analyzing the
background signal recordings obtained in the OH measurement mode. Specifically,
the identity of those “background X-oxidant(s)” was speculated to be Criegee
intermediates because of their observed reactivity towards SO₂ in the measurement system [e.g., Berresheim et al., 2002].

In the present paper we have analyzed two years of SI/CIMS measurements made at Mace Head, Ireland, for significant occurrences of such background signals indicating the presence of one or more unknown SO₂ oxidants in coastal air which could contribute to H₂SO₄ formation (in addition to OH) during day- and nighttime. Furthermore, balance calculations of ambient H₂SO₄ levels using measured SO₂, OH, and aerosol particle concentrations have been compared with measured H₂SO₄ levels. This allowed us to approximate corresponding contributions to ambient H₂SO₄ levels from oxidation of SO₂ by oxidants other than OH and estimate their relative importance with respect to OH reactivity.

2. Experimental

A principle scheme of the Mace Head CIMS instrument and its operation is shown in Figure 1. Similar to previously described systems [Berresheim et al., 2013; 2000; Mauldin et al., 2012; 1998] the aerodynamically shaped main air inlet extrudes retractably through the wall of the building, here towards the open ocean with a marine wind sector of 190°-300°. In the following text, “marine sector” data includes only the subset of data consistent with the marine wind sector, NO levels < 50 pptv, and/or black carbon concentrations < 50 ng m⁻³. From the main air flow (approximately 2.5 m³ hr⁻¹) the central region is sampled at 12 slpm through a 1.9 cm diameter sample flow tube. Two pairs of oppositely arranged capillary stainless steel injectors (the front pair sitting upflow, the rear pair downflow at 5.2 cm distance from
each other) protrude into the sample flow tube. Depending on the operational mode (OH signal measurement, OH background measurement, or H$_2$SO$_4$ and MSA(g) measurement) selected flows of SO$_2$, propane (C$_3$H$_8$), and N$_2$ (as make-up gas) are added through the injectors to the sample flow.

For measuring an OH signal isotopically heavy 34SO$_2$ (98.8%, Eurisotop, Saint-Aubin, France) is introduced through the front injectors and mixed into the sample air flow resulting in a SO$_2$ mixing ratio of approximately 8 ppmv. At this setting, the OH lifetime (1/e definition) in the sample flow is 6 ms. The ambient OH concentration introduced into the CIMS system is completely converted to H$_2$34SO$_4$ by its reaction with 34SO$_2$ within the available reaction time of $\tau_{\text{reac,OH}} = 78$ ms before reaching the rear injectors. Approximately 1% of the resulting product, H$_2$34SO$_4$, is converted via chemical ionization at atmospheric pressure by NO$_3^-$ reactant ions into H$_3$34SO$_4^-$ product ions which are then focussed and guided by electrical potentials (along with remaining NO$_3^-$ ions) through a 80 μm aperture into the vacuum mass spectrometry region. The reactant ions are produced in a sheath flow of purified ambient air with added HNO$_3$ passing by a radioactive 241Am alpha emitter (activity: 4.1 MBq; Eckert & Ziegler, Berlin, Germany). Detection of the H$_3$34SO$_4^-$ signal at m/z 99 following quadrupole mass filtering yields the equivalent concentration of OH in ambient air.

Applying the same method of ionization, ambient sulfuric acid, H$_2$SO$_4$, and methane sulfoic acid, CH$_3$SO$_3$H, in which sulfur occurs as 32S at a fraction of 0.95 [Krouse and Grinenko, 1991] are detected at m/z 97 and m/z 95, respectively. Time resolution for measuring all three masses is typically 30 s. In general, measurement signals are integrated to 5 min with corresponding detection limits of 1.3×10^5 cm$^{-3}$ for OH and 4.3×10^4 cm$^{-3}$ for both H$_2$SO$_4$ and MSA(g), respectively [Berresheim et al., 2013;
Mauldin et al., [1998]. Further details including calibration procedures can be found in Berresheim et al. [2000]. The operational cycle of the CIMS instrument was typically set to measure ambient OH and H$_2$SO$_4$ for 5 min during each half hour, followed by 25 min measurements of ambient H$_2$SO$_4$ and MSA(g).

Propane (99.95%, Air Liquide, UK) is introduced into the sample flow through the rear injectors (establishing a mixing ratio of approximately 430 ppmv in the sample flow) to scavenge any OH which might be recycled from peroxy radicals via reaction with nitric oxide, NO. On average, nighttime OH measurements showed no statistical difference between the background signal and the OH signal suggesting any potential interference by trace contaminants in the propane to be negligible. Due to similar rate constants for SO$_2$ and propane with respect to their reaction with OH (both ca. 1×10$^{-12}$ cm3 s$^{-1}$ at 298 K; Atkinson et al. [2004]) any (recycled) OH molecules are completely scavenged by propane instead of SO$_2$ from this point, i.e., downflow from the rear injectors. Due to the very low NO mixing ratios in marine air at Mace Head [Berresheim et al., 2013] contributions to the measurement signal from the recycling of OH are expected to be negligible.

The background (BG) signal in the OH measurement mode is evaluated by switching the propane flow from the rear to the front injectors. This prevents formation of H34SO$_4^-$ ions resulting from 34SO$_2$ + OH reaction in the system. Theoretically, any background counts observed at m/z 99 under these conditions should only reflect the 4.2% fraction of 34S occurring in ambient H$_2$SO$_4$. If a significantly higher BG count is observed this might indicate the presence of a compound with stronger electron affinity than HNO$_3$ ending up as a product ion at m/z 99. However, experiments conducted without 34SO$_2$ in the system never showed any evidence for the existence
of such a compound. Therefore, observations of significant BG signals (above the ambient 4.2% H34SO\textsubscript{4} signal) suggested the presence of one or more unknown oxidants (X-oxidants) converting 34SO\textsubscript{2} to H\textsubscript{2}34SO\textsubscript{4} in the CIMS system without appreciably reacting with propane. Indeed this interpretation was corroborated by stopping the SO\textsubscript{2} injection to the sample flow and observing a corresponding reduction in the m/z 99 BG signal. Furthermore, with SO\textsubscript{2} in the system, the propane flow through the front injector was successively increased from relatively low values up to the operational setting for measuring the BG signal. Before reaching this setting the signal was found to tail off to a background level corresponding to the complete removal of OH. Increasing the propane flow did not further alter the BG signal. Also, no significant BG signal was observed during calibration runs in which OH concentrations on the order of 107 - 108 cm-3 were produced from UV photolysis of water vapor in ambient sample air, thus further corroborating the absence of any artefact process contributing to this signal.

The total reaction time \(\tau_{\text{reac,}X}\) available to this unknown X-oxidant to react with SO\textsubscript{2} in the system forming H\textsubscript{2}SO\textsubscript{4} is the time starting when a unit volume of the sample flow passes the position of the first injector pairs until it reaches the end of the atmospheric pressure ionization region, i.e., the 80 \(\mu\)m aperture (see Figure 1). That time in our system corresponds to 0.45 s, or approximately half a second, which is about six times longer than \(\tau_{\text{reac,OH}}\). Therefore, the relative importance of X in comparison to the atmospheric SO\textsubscript{2} oxidation efficiency of OH may have to be downscaled dependent on the properties of X and its potential formation and/or regeneration during the reaction time. Moreover, the atmospheric importance of X
further depends on the $X + SO_2$ rate constant. This will be examined in detail in the following section.

Photolysis frequencies of ozone, $J(O^1D)$, and of nitrogen dioxide, $J(NO_2)$, were measured since September 2010 on top of a 10 m tower next to the laboratory building. Both were exchanged with recalibrated systems on a semi-annual basis. Details of the measurement principles and performance of the radiometers have been given by Bohn et al. [2008]. SO_2 was measured in May-August 2011 with a Thermo Systems 43i instrument using a heated sample inlet Teflon tubing (40 °C) to avoid SO_2 losses due to water condensate. Based on a cycle of 30 min signal and 30 min zero measurements (with an added active charcoal filter) we calculated a 2σ detection limit of 25 pptv for one hour time integration.

3. Results and Discussion

3.1. Seasonal cycles and atmospheric lifetimes of H_2SO_4 and MSA(g)

Figure 2 shows the mean seasonal cycle of the daily maximum H_2SO_4 concentration in the marine sector at Mace Head which typically occurred between 1000-1400 UTC local time, depending on cloud cover. In general, H_2SO_4 showed a clear diel variation closely correlated with the OH concentration (Fig. 3, top). The reason for this correlation was the relatively homogeneous mixing ratio of the major precursor, SO_2, in the marine atmosphere, as shown for a three months period in Figure 4 (top), and the relatively short lifetime of H_2SO_4 caused by uptake onto aerosol surfaces. This so called condensational sink (CS) showed also low variability on most days (Fig. 4,
The mean SO_2 mixing ratio in the open ocean sector was 160 (± 50) pptv during these summer months. The average atmospheric lifetime of H_2SO_4 with respect to CS was estimated from scanning mobility particle sizer (SMPS) and aerodynamic particle sizer (APS) measurements using the approach of Fuchs and Sutugin [1971] and Pandis and Seinfeld [1998] to be on the order of 7 minutes assuming an accommodation coefficient of 1.0 [Kolb et al., 2010; Hanson, 2005; Boy et al., 2005], a diffusion coefficient for $H_2SO_4(2 H_2O)$ of 0.075 atm cm2 s$^{-1}$ at 75-85% relative humidity [Hanson, 2005], a mean free path of 105 nm for $H_2SO_4(2 H_2O)$ (corresponding to the Fuchs and Sutugin parameterization), and a hygroscopic growth factor of 1.7 (max. 2.0; 90% RH vs. ≤40% RH) [Bialek et al., 2012]. The variability of CS shown in Figure 4 was mainly driven by particle counts, not relative humidity which mostly ranged between 75-85%. Overall, we estimate that CS values can be uncertain by at least a factor of two, mainly due to the uncertainties in the count rates of the SMPS and APS instruments and of the hygroscopic growth factor.

For Mace Head we assume that except perhaps in winter the predominant source for H_2SO_4 in the marine atmosphere is ultimately biogenic [Lin et al., 2012; Seguin et al., 2010], i.e., the emission and oxidation of dimethyl sulfide (DMS) by OH which yields – via further oxidation of intermediate compounds – the gaseous end products H_2SO_4, dimethyl sulfone ($CH_3SO_2CH_3$, DMSO$_2$), and methane sulfonic acid (CH_3SO_3H, MSA) [Berresheim et al., 1995; 1993a]. As described in the previous section, the two acid compounds are detectable by SI/CIMS using the same instrumental setting as for the OH measurement. Corresponding seasonal cycles of aerosol MSA and non-sea salt sulfate, nss-SO_4, have been measured at Mace Head using high-resolution time-of-flight aerosol mass spectrometry (HR-TOF-MS). Both aerosol compounds as well
as their concentration ratio show a clear seasonal maximum in summer [Ovadnevaite et al., 2014].

The mean seasonal cycle of peak MSA(g) mixing ratios recorded during the same daily time slot as for H_2SO_4 and summarized as monthly means is also shown in Figure 2. Similar to H_2SO_4 and the aerosol sulfur compounds, the highest gas phase MSA(g) levels in the marine atmosphere were observed during the summer months which corroborates the biogenic origin of H_2SO_4 measured in this sector. Adopting a sticking coefficient of 0.12 for the aerosol scavenging of MSA(g) [De Bruyn et al., 1994] we obtained an average atmospheric lifetime of approximately half hour (25 min) for this compound. As for H_2SO_4 this is somewhat shorter than previously estimated from measurements off the north-western coast of the United States [Berresheim et al., 1993b], however, still within the same order of magnitude.

Ammann et al. [2013] have questioned the earlier results obtained by De Bruyn et al. [1994] and Schweitzer et al. [1998] for the MSA(g) accommodation coefficient and suggested preferring a value close to one as reported in the most recent study by Hanson [2005]. However, in our view, adopting a unity value would be in contradiction to common observations of a relatively slower decline of atmospheric MSA(g) levels in comparison to H_2SO_4 in late afternoon and evening hours which has been well documented in previous field studies [e.g., Eisele and Tanner, 1993] and in our present study. Furthermore, as shown already in a previous campaign at Mace Head [Berresheim et al., 2002], ambient MSA(g) levels typically increased with decreasing relative humidity, including at nighttime. Both observations support that the vapor pressure of MSA(g) is significantly higher compared to H_2SO_4 [e.g., Kreidenweis and Seinfeld, 1988].
3.2. H$_2$SO$_4$ mass balance and missing SO$_2$ oxidant in the marine atmosphere

From 2 May to 12 August, 2011, an intensive campaign was conducted at Mace Head including measurements of SO$_2$. The results allowed the calculation of H$_2$SO$_4$ concentrations based on its production by SO$_2$ oxidation by OH and removal due to condensation on existing aerosol surface (CS, condensational sink rate) assuming steady state:

\[
[H_2SO_4]_{calc} = \frac{k_{OH}[SO_2][OH]}{CS} \tag{1}
\]

Comparison with measured H$_2$SO$_4$ concentrations showed a significant underestimation using eq. (1), bearing in mind the uncertainty in CS can be a factor of two. For the available 38 days with concurrent H$_2$SO$_4$, J(O^1D), CS, and SO$_2$ observations, the mean ratio, i.e., \([H_2SO_4]_{meas}/[H_2SO_4]_{calc}\), was 4.7 ± 2.4 during the midday periods 1000-1400 UTC taking calculated OH values from the relation OH-J(O^1D) (see below). The results for 26 days with direct OH observations out of these 38 are 5.0 ± 2.4 based on the sparse direct OH observations and 4.8 ± 2.5 based on the denser OH values calculated from J(O^1D). All of these results are considerably higher than the mean of 2.4 reported by Mauldin et al. [2012] for a boreal forest site in Finland. An extreme example from 18 June, 2011, is shown in Figure 5a. On average, the measured H$_2$SO$_4$ concentrations on this day were a factor of 7 higher than the values calculated by eq. (1) and the background signal shows a strong diel cycle in phase with that of OH. Here we have filled the gaps in our OH measurements by using J(O^1D) as proxy based on the J(O^1D)-OH relationship established in Berresheim
et al. [2013] to obtain calculated H_2SO_4 for each of the measured H_2SO_4 values (continuous red line in top of Fig. 5a). The results demonstrate the close tracking of the measured data and thus, the usefulness of this proxy application. In addition, the open symbols show the corresponding values based on the actual measured (5 min averaged) OH signals from that day (count rates shown in bottom of Fig. 5a). As can be seen, the latter procedure results in an average discrepancy factor of 5.6 ± 1.2 which agrees well with the above factor of 7.0 within given uncertainties.

Four-day NOAA HYSPLIT air mass back-trajectories for 18 June, 2011, (http://ready.arl.noaa.gov/HYSPLIT.php) in conjunction with MODIS satellite imagery (http://neo.sci.gsfc.nasa.gov) of chlorophyll pigments in surface seawater pointed towards high biogenic sulfur (DMS) contributions to the advected air derived from phytoplankton blooms between Greenland and Iceland. On the other hand, no significant changes were observed in ambient SO_2 levels on the same day. Even higher H_2SO_4 and also MSA(g) concentrations (both in the mid-10^7 cm$^{-3}$ range) were measured on 11 June, 2011, with similar air mass trajectories and SO_2 levels as on 18 June, resulting in a measured/calculated H_2SO_4 ratio of 9. A notable difference between both days was the occurrence of low tide at noon on 18 June whereas high tide prevailed at noon on 11 June, respectively.

A contrasting example is shown in Figure 5b for 10 May, 2011, with a ratio of only 1.8 which in view of the overall uncertainties discussed earlier suggests a nearly closed H_2SO_4 balance based on the SO_2 +OH pathway alone. Weather conditions on that day were strongly anticyclonic with no indication of major contributions from biologically active open ocean regions and with overall low solar insolation, i.e., lack
of significant photochemistry. The OH background signal did not significantly vary
during the day in contrast to the OH concentration itself which despite low insolation
still showed a pronounced diel cycle. However, as shown in Figure 6 (e.g., red line),
on the vast majority of marine sector days during the 2010 and 2011 measurement
periods both the background signal and the OH signal varied in tune with each other
which strongly suggests a photolytic source for the unknown compound(s) producing
the BG signal.

Clearly a major source of H₂SO₄ in addition to OH oxidation of SO₂ was missing in
the balance calculation based on eq. (1). A similar discrepancy between measured and
calculated H₂SO₄ concentrations in the coastal atmosphere of Mace Head was
reported previously by Berresheim et al. [2002]. They speculated that the missing
source might be DMS oxidation with partial production of SO₃ instead of SO₂ as
intermediate, which then readily forms H₂SO₄ with water vapour [Lin and Chameides,
1993]. This possibility would also agree with kinetic pathways hypothesized for the
DMS + OH oxidation in which CH₃SO₂ and CH₃SO₃ are formed as intermediates,
both of which decompose thermally to SO₂ and SO₃, respectively [Berresheim et al.,
1995]. Studies at an Antarctic coastal location with strong marine DMS emissions
[Jefferson et al., 1998; Davis et al., 1998] reported similar inconsistencies between
measured H₂SO₄ levels and SO₂ mixing ratios required to close the mass balance
based on SO₂ + OH as the only source, even when assuming a very low H₂SO₄
accommodation coefficient of 0.5. Our results shown in Figures 5a and 5b may be
consistent with a significant contribution by marine biogenic DMS emissions to
H₂SO₄ levels at Mace Head via intermediate production of a precursor other than SO₂.
And this influence may even supersede potential regional contributions from
emissions which are dependent on tidal cycles as discussed earlier for the cases of 11 and 18 June, 2011. However, current uncertainties in our knowledge of DMS oxidation chemistry prevent a quantitative assessment of this potential H$_2$SO$_4$ source.

Alternatively, biogenic emissions of, e.g., organic halogens from the regional coastal environment during low tide may produce highly reactive atmospheric compounds that in addition to OH could play a significant role in atmospheric H$_2$SO$_4$ formation. Another class of compounds that have recently been suggested are stabilized Criegee intermediates (sCI) which have been re-evaluated with respect to their potential oxidation of atmospheric SO$_2$ by Liu et al. [2014], Stone et al. [2014], Welz et al. [2012] and Mauldin et al. [2012]. In the following two sections we investigate the potential importance of SO$_2$ reactions with some halogen and sCI radicals as sources of H$_2$SO$_4$ in addition to the DMS→SO$_3$ and SO$_2$ +OH pathways in marine air at Mace Head. The nitrate radical, NO$_3$, is not expected to be of any importance for nighttime SO$_2$ oxidation at Mace Head, at least not in air from the marine sector [Berresheim et al., 2013].

3.3. Electronic structure calculations on halogen oxide reactions with SO$_2$

Other candidates besides OH acting as SO$_2$ oxidants might be halogen oxide radicals, however, to our knowledge respective rate constants are available in the literature only for the reactions of IO and ClO with SO$_2$ [Larin et al., 2000; DeMore et al., 1997], which are three and six orders of magnitude smaller compared to k_{SO_2+OH}, respectively. We have made ab initio transition state energy calculations for the reactions of SO$_2$ with ClO, BrO, IO, and OIO using quantum theory. The hybrid
density functional / Hartree-Fock B3LYP method was employed from within the
Gaussian 09 suite of programs [Frisch et al., 2009], combined with an appropriate
basis set for I [Glukhovtsev et al., 1995] and the standard 6-311+g(2d,p) triple zeta
basis sets for Br, Cl, O and S. The geometries, rotational constants, vibrational
frequencies and relative energies of the transition states are listed in Table 1.
Following geometry optimizations of the transition states for the reactions of ClO,
BrO, IO and OIO with SO$_2$, and the determination of their corresponding vibrational
frequencies and (harmonic) zero-point energies, energies relative to the reactants were
obtained. In the case of BrO and ClO + SO$_2$, more accurate transition state energies
were computed at the CBS-QB3 level [Montgomery et al., 2000]. At this level of
theory, the expected uncertainty in the calculated transition state energies should be
better than 0.07 eV [Foresman and Frisch, 1996]. Spin-orbit effects were ignored
since these are present both in the reactant halogen oxide and the transition state.
Figure 7 illustrates the transition state geometries for ClO, BrO, IO and OIO + SO$_2$.

Transition state theory (TST) calculations were then carried out using the calculated
molecular parameters in Table 1. Although the reaction between IO and SO$_2$ has a
small barrier (7.3 kJ mol$^{-1}$), the reaction has quite a tight transition state and the TST
calculation yields $k(200 - 400 \text{ K}) = 4.3 \times 10^{-14} \exp(-1150/T) \text{ cm}^3 \text{ s}^{-1}$. The resulting
value of $k(343 \text{ K}) = 1.6 \times 10^{-15} \text{ cm}^3 \text{ s}^{-1}$ is consistent with an experimental upper limit of
6\times10$^{-15}$ cm3 s$^{-1}$ determined at that temperature by Larin et al. [1998]. At a marine
boundary layer temperature of 293 K, the rate coefficient is only 8.5\times10$^{-16}$ cm3 s$^{-1}$.
This reaction would have to compete with OH + SO$_2$, which has a rate coefficient of $k
= 9 \times 10^{-13}$ cm3 s$^{-1}$. Although [IO] can be around 30 times larger than [OH] at midday
at Mace Head, the ratio of rate constants is 1/1050, so the OH reaction is about 35
times faster. However, the estimated SO$_2$ + IO rate constant is large enough to allow a
fraction of IO to be converted to H$_2$SO$_4$ inside the CIMS instrument and to contribute
to the background signal (see Section 3.4).

During nighttime at Mace Head, OIO builds up to a mixing ratio of a few parts per
trillion [Saiz-Lopez and Plane, 2004]. However, the very large barrier for the OIO +
SO$_2$ reaction (50.1 kJ mol$^{-1}$) means that this reaction is negligibly slow: k(200-400 K)
= 6.4×10$^{-13}$ exp(-6400/T) cm3 s$^{-1}$, and k(293 K) = 2.2×10$^{-22}$ cm3 s$^{-1}$.

BrO has been observed at a mixing ratio of several parts per trillion during the day at
Mace Head [Saiz-Lopez et al., 2004]. However, the reaction BrO + SO$_2$ also has a
significant barrier (20.4 kJ mol$^{-1}$), and so the reaction is much too slow in the MBL:

k(200-400 K) = 5.8×10$^{-14}$ exp(-2700/T) cm3 s$^{-1}$, and k(293 K) = 5.6×10$^{-18}$ cm3 s$^{-1}$.

Finally, the TST calculation for ClO + SO$_2$, which also has a significant barrier (24.1
kJ mol$^{-1}$), yields k = 5.2×10$^{-14}$ exp(-3100/T) cm3 s$^{-1}$. The theoretical rate coefficient at
298 K is therefore 1.5×1018 cm3 s$^{-1}$, which is in accord with an experimental upper
limit of 4×1018 cm3 s$^{-1}$ at this temperature [DeMore et al., 1997]. In summary we
conclude that none of the halogen oxides considered here exhibit sufficient turnover
rates with SO$_2$ in ambient air to account for the missing H$_2$SO$_4$ source.

3.4. Could X be a Criegee radical produced from ozonolysis?

Previous measurements at Mace Head have shown clear diurnal cycles of light
alkenes (including isoprene) with a strong dependence on solar flux [Broadgate et al.,
2004; Lewis et al., 1999]. Assuming that “X” is indeed a Criegee intermediate produced from ozonolysis of alkenes and reacting with SO₂ both in the atmosphere and in the CIMS inlet system to produce additional H₂SO₄, we can estimate its relative contribution compared to the SO₂+OH reaction as follows. (In the following equations, the term sCI is used as a surrogate for sCI (stabilized Criegee intermediates) and CI (Criegee intermediates in general) species.)

As already pointed out in the Experimental section we have to account for additional formation of [sCI]cims from alkene + O₃ reactions over the total available residence time of 0.45 s in the atmospheric pressure reaction and ionization region of the CIMS instrument (see Fig. 1). By continuous reaction with SO₂ and ionization of the resulting H₂³⁴SO₄ molecules over the corresponding distance (32 cm) this leads to an accumulation of the H⁺³⁴SO₄⁻ background signal at m/z 99 assuming the sCI+SO₂ oxidation to be instantaneous at the high SO₂ concentration in the CIMS reactor tube. The enhancement factor EF relative to the ambient air sCI concentration, [sCI]amb, is

\[
EF_{H_2^{34}SO_4} = \frac{[sCI]_{amb} + \int_0^{t_{res}} \text{Prod}(sCI) \cdot dt}{[sCI]_{amb}} = 1 + \frac{t_{res}}{\tau_{sCI,amb}}
\] \hspace{1cm} (2)

This result is the consequence of the fact that both types of sCI, namely sCI present in ambient air ([sCI]amb = Prod(sCI)\(\times\)\(\tau_{sCI,amb}\)) and sCI produced inside the CIMS inlet are immediately converted to H₂³⁴SO₄ by added ³⁴SO₂ in the CIMS inlet system. Assuming a lifetime with respect to unimolecular decomposition of 0.2 s for sCI compounds resulting from ozonolysis of the monoterpenes α-pinene and limonene [Mauldin et al., supplement, 2012] and the dominant ambient reaction of sCI with water (\(k_{H_2O+sCI} = 1.4\times10^{-17} \text{ cm}^3 \text{ s}^{-1}\) (MCM 3.2 http://mcm.leeds.ac.uk/MCM/);
Saunders et al. [2003]; Jenkin et al. [2003]), \([\text{H}_2\text{O}] = 3.1 \times 10^{17} \text{ cm}^{-3}\) representing Mace Head conditions of \(T = 14 \, ^\circ\text{C}, 75\% \text{ relative humidity}\) the ambient lifetime of such stabilized Criegee intermediates is estimated to be 0.1 s. As already mentioned, approximately 1% of the \(\text{H}_2\text{SO}_4\) is ionized in the CIMS ionization region. Therefore, the production of sCI in this region indeed yields \(\text{H}_2\text{SO}_4\) via reaction with \(\text{SO}_2\), of which, however, only 0.5% is ionized, on average, as this process acts linearly.

Consequently, we have to modify eq. (2) to take into account the reduced ionization probability for \(\text{H}_2\text{SO}_4\) produced in the ionization region:

\[
\text{EF}_{\text{H}^{34}\text{SO}_4^-} = 1 + \frac{t_{\text{reac}}}{\tau_{\text{sCl,amb}}} + 0.5 \cdot \frac{t_{\text{ion}}}{\tau_{\text{sCl,amb}}}
\]

(3)

with \(t_{\text{res}} = 450 \text{ ms}, t_{\text{reac}} = 115 \text{ ms}, t_{\text{ion}} = 335 \text{ ms}, \tau_{\text{sCl,amb}}^{-1} = 1/0.2 \text{ s} + 4.3 \text{ s}^{-1} = 9.3 \text{ s}^{-1} \). This formalism is identical to that derived for a similar instrument by Berndt et al. [2012] (chemical ionization time-of-flight mass spectrometer with atmospheric pressure inlet; CI-API-TOF-MS). Thus, from eq. (3) it follows that \(^{34}\text{SO}_2\) oxidation by sCI contributes a background signal which represents an enhancement of the ambient sCI concentration by a factor \(\text{EF} = 3.6\). Therefore, if \(X\) is indeed a sCI compound (of the kind considered here), the measurement signal resulting from sCI would have to be weighted by \(1:3.6\) with respect to the \(\text{OH}\) signal to obtain the corresponding ambient air [sCI] concentration.

\[
[\text{sCI}]_{\text{amb}} = \frac{1}{\text{EF}_{\text{H}^{34}\text{SO}_4^-}} \cdot \frac{\text{BG}_{\text{Sig}}}{\text{OH}_{\text{Sig}}} \cdot [\text{OH}]_{\text{amb}}
\]

(4)
To compare both compounds with respect to their oxidation efficiency towards SO$_2$, the corresponding rate constants must be factored in as well, i.e.,
\[
\frac{k_{\text{sCI} + \text{SO}_2}}{k_{\text{OH} + \text{SO}_2}} = \frac{6 \times 10^{-13} \text{ cm}^3 \text{ s}^{-1}}{9 \times 10^{-13} \text{ cm}^3 \text{ s}^{-1}} = 0.67, \text{ with } k_{\text{OH} + \text{SO}_2} (298 \text{ K}) = 9 \times 10^{-13} \text{ cm}^3 \text{ s}^{-1}
\]
taken from Atkinson et al. [2004] and $k_{\text{sCI} + \text{SO}_2}$ adopted for the monoterpene derived sCI + SO$_2$ reaction as reported by Mauldin et al. [2012].

This means that the relative oxidation efficiency (ROE) of those ozonolytically generated sCI compounds would be only on the order of 20% compared to that of OH with respect to SO$_2$ oxidation, assuming that the CIMS background signal is equal to the OH signal as observed on average in the ambient air measurements at Mace Head (see Fig. 6).

\[
\text{ROE} = \frac{k_{\text{sCI} + \text{SO}_2}}{k_{\text{OH} + \text{SO}_2}} \cdot \frac{[\text{sCI}]_{\text{amb}} \cdot [\text{SO}_2]_{\text{amb}}}{[\text{OH}]_{\text{amb}} \cdot [\text{SO}_2]_{\text{amb}}} = \frac{1}{\text{EF}_{\text{H}^{34}\text{SO}_4}} \cdot \frac{\text{BG}_{\text{Sig}}}{\text{OH}_{\text{Sig}}} \cdot \frac{k_{\text{sCI} + \text{SO}_2}}{k_{\text{OH} + \text{SO}_2}}
\]

These calculations depend strongly on the kinetic parameters for the corresponding sCI reactions. In this work we have adopted rate constants published by Mauldin et al. [2012] and Berndt et al. [2012] for relatively large stabilized Criegee intermediates produced from ozonolysis of monoterpenes. However, other studies of smaller Criegee intermediates with low internal energies (CH$_2$OO by Stone et al. [2014], Berndt et al. [2014], and Welz et al. [2012]; CH$_3$CHO by Taatjes et al. [2013]) suggest much faster reactions of these CI species with both SO$_2$ and H$_2$O, respectively. They are produced from both ozonolysis of alkenes and from photolysis...
i.e. of CH$_2$I$_2$. Furthermore, laboratory studies by Fittschen et al. [2014] and Bossolasco et al. [2014] suggest that CH$_2$OO could also be produced in the photochemical degradation of methane via the reaction of methyl peroxy radicals CH$_3$O$_2$ with OH. For a sensitivity test of the production pathway ozonolysis we neglect the fact, that for the conditions in the CIMS inlet only approximately 80% of these CI would react with the added 34SO$_2$. The results are shown in Table 2.

We find that the oxidation efficiency of sCIs – if formed via ozonolysis - compared to OH would not be significant, based on the condition of equal CIMS background and OH signal counts. The relatively small difference between the estimates for such different species is a consequence of the fact that both reaction parameters (for sCI+SO$_2$ and sCI+H$_2$O) are faster for the small Criegee intermediates. The effect of a faster reaction of sCI with SO$_2$ is almost exactly cancelled out by the faster reactions with H$_2$O. A special case is CH$_2$OO for which there is a debate of its reaction rate with water. Berndt et al. [2014] state that CH$_2$OO reacts fast with H$_2$O dimers which was not accounted for in previous studies but would dominate the fate of CH$_2$OO in ambient air at Mace Head. But they could not explain the big difference to the small effects of water vapour on the CH$_2$OO decay as deduced by Stone at al. [2014] who published a slow reaction constant for CI+H$_2$O. Anyhow, ROE for CH$_2$OO for average conditions at Mace Head is calculated to be small taking both sets of parameters from these two publications separately.

For these reasons, if the oxidant(s) X generating the BG signal of the CIMS instrument would be one of the Criegee intermediates shown in Table 2 and would be produced ozonolytically, the relative oxidation efficiencies for SO$_2$ by these Criegee
intermediates compared to OH for average conditions at Mace Head are estimated to be small, increasing the calculated H$_2$SO$_4$ concentration based on the SO$_2$ + OH source alone by only 5-30%. This is still a major shortfall with respect to the average factor of 4.7 required to match the observed ambient air H$_2$SO$_4$ concentration.

On the other hand, if the different Criegee intermediates shown in Table 2 would be produced either photolytically or by reaction of a precursor with OH, the corresponding enhancement factors EF would be 1 (no further production in the CIMS inlet) and the corresponding ROEs would be larger than 10, e.g., for CH$_2$OO and CH$_3$CHOO. Taking the CIMS background signal as an upper limit for the estimate of their oxidation efficiency for SO$_2$ it cannot be excluded that these small Criegee intermediates significantly influence the ambient H$_2$SO$_4$ budget at Mace Head. However, given the short atmospheric lifetime of these species we doubt that sufficiently large steady-state concentrations are realistic.

The consequence for the ambient H$_2$SO$_4$ budget at Mace Head is complex. Either 1) very different ozonolytically produced Criegee intermediates than those studied so far, 2) photolytically produced Criegee intermediates, 3) Criegee intermediates produced via reactions of OH, 4) an entirely different kind of oxidant for SO$_2$, or 5) a production process converting a sulfur compound other than SO$_2$ might be still missing in our present account of the H$_2$SO$_4$ concentration in the coastal marine atmosphere.

Figures 8a and 8b show two out of a few examples of observations we made during the May-August 2011 period which were not obscured by the midday primary OH
production period in relation to coastal aerosol nucleation events during which OH
and also both H$_2$SO$_4$ and MSA(g) concentrations increased significantly in
conjunction with a major increase in the background signal counts for the X-
oxidant(s). On 13 May, 2011 (Fig. 8a) the first low tide was centered at about 0700
UTC. Note that no detectable aerosol nucleation (> 3 nm diameter) occurred at this
time as insolation was still low, however, some spikes in both OH concentration and
the BG signal were already visible. A significant nucleation event occurred during the
second low tide between 1800 and 2100 UTC with somewhat enhanced H$_2$SO$_4$ and
MSA(g) concentrations. Both the OH concentration and the BG signal again increased
as well.

On the next day, 14 May, 2011 (Fig. 8b) these effects are even more pronounced with
the tide shifted by about +45 min and two major nucleation events clearly detectable.
The peak of the morning event at about 0800 UTC coincided with a major production
of both OH and the X-compound (BG signal). Conversely to the preceding day, the
evening event showed relatively minor OH and X production due to the tidal shift.

A recent successful H$_2$SO$_4$ intercomparison experiment at Mace Head (M. Sipilä and
S. Richters, pers. commun., 2013) between the CIMS instrument and a CI-API-TOF-
MS instrument has confirmed that the CIMS indeed measures only the concentration
of gaseous “free” (monomeric) H$_2$SO$_4$ during nucleation events. With the rapid
transition from monomers to multimer clusters in which H$_2$SO$_4$ becomes tied up
(confined) and not broken down anymore to the HSO$_4^-$ core ions in the CIMS
collision dissociation chamber (Fig. 1) a net decrease in ambient H$_2$SO$_4$
concentrations may therefore be expected. However, as shown in the nucleation
events in Figures 8a and 8b, (monomer) H$_2$SO$_4$ levels even increased after a certain
lag time following the onset of the event. We interpret our observations as strong formation of X-oxidant(s) (e.g., CH$_2$OO from photolysis of CH$_2$I$_2$; Welz et al. [2012]) or of OH (perhaps via thermal decomposition of sCl; Berndt et al. [2014; 2012], Kroll et al. [2001]) followed by rapid oxidation of DMS and SO$_2$ to form the products H$_2$SO$_4$ and MSA(g). Such coastal nucleation events have previously been shown to be induced by photolysis and photo-oxidation of marine iodine compounds emitted mainly from exposed seaweed during low tide [O’Dowd et al., 2002]. Considering again the IO+SO$_2$ reaction and adopting a rate constant of k(IO+SO$_2$) = 8.5 × 10$^{-16}$ cm3 s$^{-1}$ (section 3.3), we calculate that approximately 8% of atmospheric IO is converting 34SO$_2$ to H$_2^{34}$SO$_4$ in the CIMS inlet system, based on a 34SO$_2$ mixing ratio of 8 ppmv and a total IO residence time of 0.45 s. Also, it is assumed that IO does not react with propane. Based on eq. (3) the corresponding yield for H34SO$_4^-$ would be reduced from 8% to 5%. With this estimate an upper limit for the atmospheric IO mixing ratio can be derived from the corresponding CIMS background signal. We estimate ambient IO levels to be, on average, less than 1.3 pptv at noon time (Fig. 6) and less than 5 pptv at the maximum of the nucleation event shown in Figures 8a and 8b. This is consistent with previous measurements of IO at Mace Head which showed maximum levels up to 5 pptv [Saiz-Lopez et al., 2006; Alicke et al., 1999]. However, other measurements taken over "hot spots" of exposed seaweed beds have shown IO peak values of up to 50 pptv [Commane et al., 2011]. Thus, it can be concluded that the observed background signal could be explained by the presence of IO that nevertheless would not contribute to atmospheric SO$_2$ oxidation because of a too small IO + SO$_2$ rate constant. Future studies are required to systematically characterize remaining uncertainties in the CIMS and CS measurements and to verify
a possible link between the unknown oxidant(s), the CIMS background, and the
iodine cycle in the marine atmosphere.

4. Conclusions

We observed a persistent but relatively low H$_2$SO$_4$ concentration at nighttime (on the
order of a few 105 cm$^{-3}$). Also, on some occasions short spikes were observed at
nighttime in the H$_2$SO$_4$ signal during low tide which might suggest short-term
emissions of reactive hydrocarbons capable of forming Criegee intermediates and OH
in reactions with ozone which are both capable of oxidizing SO$_2$. We assume that
such processes also happen during daytime but are superimposed by the formation of
another major oxidant which shows a similar diurnal pattern like OH. A detailed
analysis of the atmospheric H$_2$SO$_4$ budget at Mace Head revealed that a dominant
oxidant for the production of H$_2$SO$_4$ is missing which, on average, would have to
contribute 4.7 times more than the observed production from OH+SO$_2$. Whether this
oxidant might be a Criegee intermediate with its production mainly determined by
strong light-induced emissions of marine alkene species and/or atmospheric
photolysis of iodine species remains an open question. However, we consider it
unlikely that α-pinene or limonene are present at significant levels in the marine
atmosphere. In forest environments these compounds are also emitted at nighttime
resulting in a quite different diurnal cycle of the CIMS background signal [Mauldin et
al., 2012] than we have observed in the coastal atmosphere. In the present work we
have shown that the signal measured with the CIMS instrument during its background
mode provides indeed evidence for the presence of one or more unknown oxidants for
atmospheric SO$_2$ in addition to OH. However, as this oxidant X does not significantly
react with propane in the CIMS system, the corresponding X-signal must be corrected
in some cases to account for additional production inside the CIMS inlet system
before evaluating its oxidation efficiency towards SO$_2$ in ambient air. For this reason
and also based on the currently available kinetic data for the SO$_2$ oxidation by sCI
compounds resulting from monoterpenes or from smaller alkenes we conclude that at
least Criegee intermediates produced via ozonolysis are unimportant in comparison
with the SO$_2$+OH oxidation in the marine atmosphere at Mace Head. It appears that
Mauldin et al. [2012] have not considered this correction which reduces the proposed
oxidation efficiency for SO$_2$ of stabilized Criegee intermediates from ozonolysis of α-
pinene or limonene in forested environments as well. Also, our observations do not fit
with diel cycles expected to arise from oxidation of SO$_2$ by ClO, BrO, IO or OIO
halogen radicals. On the other hand, CH$_2$OO formed via photolysis of CH$_2$I$_2$ appears
to be a candidate to explain the observed increase in the CIMS background signal
especially during daytime aerosol nucleation events at low tide, and to have a
significant impact on the ambient H$_2$SO$_4$ budget. In any case, more comprehensive
measurements including alkenes, isoprene, and halogen compounds are needed in
conjunction with laboratory kinetic studies to confirm the presence of oxidant species
other than OH with significant contributions to the H$_2$SO$_4$ budget in the marine
atmosphere. An additional source of H$_2$SO$_4$ not accounted for by the SO$_2$ + (OH or X)
pathway may be the formation of SO$_3$ (instead of SO$_2$) as an intermediate in the
oxidation of DMS followed by rapid reaction with water vapour. To better evaluate
the contribution from this potential source further studies involving additional
measurements of DMS are planned for future work in conjunction with what we have
already attempted in the present study, i.e., analysis of air mass advection from
biologically active oceanic regions using satellite remote sensing data.
Acknowledgments

We would like to thank J. McGrath, R. L. Mauldin III, and F. Eisele for helpful discussions. J. McGrath also helped with the measurements. Financial support for this work was provided by Science Foundation Ireland (grant 09/RFP/GEO2176), EPA Ireland (grant 2007-INF-12-S5), Higher Education Authority Programme for Research in Third Level Institutes – Cycle 4, European Commission Framework programme projects EUCAARI, (036833-2), ACTRIS (262254), and EUSAAR. This work is dedicated to Kurt and Jessica by HB.
References

Berresheim, H., J. McGrath, M. Adam, R.L. Mauldin III, B. Bohn, and F. Rohrer,

Berresheim, H., F. L. Eisele, D. J. Tanner, D. S. Covert, L. McInnes, and D. C. RamseyBell, Atmospheric sulfur chemistry and cloud condensation nuclei (CCN) concentrations over the northeastern Pacific coast, *J. Geophys. Res.*, 98, 12701-12711

Frisch, M.J., G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.

Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M.

Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L.

Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.

Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E.

Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N.

Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S.

S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B.

Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev,

A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V.

G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels,

Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09,

Hanson, D.R., Mass accommodation of H$_2$SO$_4$ and CH$_3$SO$_3$H on water-sulfuric acid solutions from 6% to 97% rH, *J. Phys. Chem. A*, 109, 6919-6927 (2005).

Kolb, C.E., R. A. Cox, J. P. D. Abbatt, M. Ammann, E. J. Davis, D. J. Donaldson, B.
C. Garrett, C. George, P.T. Griffiths, D. R. Hanson, M. Kulmala, G. McFiggans, U.
Pöschl, I. Riipinen, M. J. Rossi, Y. Rudich, P. E. Wagner, P. M. Winkler, D. R.
Worsnop, and C. D. O’ Dowd, An overview of current issues in the uptake of
atmospheric trace gases by aerosols and clouds, Atmos. Chem. Phys., 10, 10561–
10605 (2010).

Kreidenweis, S. M., and J. H. Seinfeld, Nucleation of sulfuric acid water and
methanesulfonic acid-water solution particles: Implications for the atmospheric

Kroll, J. H., R.S. Shailesh, J.G. Anderson, K.L. Demerjian, and N.M. Donahue,
Mechanism of HOx formation in the gas-phase ozone-alkene reaction. 2. Prompt
versus thermal dissociation of carbonyl oxides to form OH, J. Phys. Chem. A, 105,

Krouse, H.R., and V.A. Grinenko (Eds.), Stable Isotopes: Natural and Anthropogenic
Sulphur in the Environment, Scientific Committee on Problems of the Environment

Larin, I.K., N. A. Messineva, A. I. Spasskii, E. M. Trofimova, and L. E. Turkin,
Measurement of the rate constants for the reactions of the IO’ radical with sulfur-
containing compounds H₂S, (CH₃)₂S, and SO₂. J. Kinetics and Catalysis, 41, 437-443
(2000).

Figure Captions

Figure 1. Principle scheme of SI/CIMS components including air inlet (modified from R.L. Mauldin III, *pers. commun.*, 2012). Inset shows details of the atmospheric pressure region with reagent gas flows indicated for measurement of OH background signal (both 34SO$_2$ and C$_3$H$_8$ are added to the sample air through the two front injectors; see text). Laminar flow conditions with a central flow axis velocity of 0.71 m s$^{-1}$ in both the sample and ionization tubes are generated by a 12 slpm sample flow, 58 slpm total flow (= sample flow plus sheath flow, the latter indicated here by addition of Air/HNO$_3$ mixture), and the geometries of the sample tube (diameter 1.9 cm) and ionization tube (diameter 4.2 cm). The time needed (in each case starting at the first injector) to reach the second injector is 73 ms, to the entrance of the ionization region 115 ms, and to the aperture in front of the mass spectrometer 450 ms, respectively.

Figure 2. Midday (1000-1400 UTC) maximum H$_2$SO$_4$ and MSA(g) concentrations in marine air at Mace Head, averaged for each month (total measurement period: May 2010 – August 2012). Vertical bars denote standard deviations.

Figure 3. Correlation between H$_2$SO$_4$ and OH (top) and between MSA(g) and OH concentrations (bottom) in marine air for the period May - August 2011 (5 min integrated data, daytime: 0800-2000 UTC). To match the measured data in time OH concentrations were calculated based on concurrent J(O1D) data and the J(O1D)-OH relationship for marine air previously established in Berresheim et al. [2013].
Figure 4. (top) SO₂ mixing ratios (1 hour signal integration) measured in marine air between May – August 2011 (average: 160 (± 50) pptv; detection limit: 25 pptv, indicated by red line); (bottom) Condensational sink (CS; 5 min integration) calculated for H₂SO₄ (see text).

Figure 5a. Example of observed ambient H₂SO₄ concentration in comparison with H₂SO₄ mass balance values calculated from eq. (1) for 18 June 2011. Air masses originated from polar regions between Greenland and Iceland exhibiting strong biological activity in surface waters. As OH had only been measured for 5 min during each half hour period, to obtain calculated H₂SO₄ for each of the corresponding measured H₂SO₄ values we used J(O¹D) as proxy for OH to fill the corresponding gaps based on the OH-J(O¹D) relation established for the marine sector [Berresheim et al., 2013] (continuous 5 min time resolution). (top) Mean discrepancy factor of 7.0 between midday (1000-1400 UTC) observed and calculated [H₂SO₄]. Open symbols show calculated [H₂SO₄] based on actual OH measurement signals (ratio: 5.6±1.2).
(bottom) Signal counts obtained for OH measurement (OH plus background) and background mode only (cycle: 5 min during each 30 min period).

Figure 5b. Example of relatively small discrepancy between measured and calculated H₂SO₄ based on eq (1) (ratio 1.8) and actual OH measurements (ratio 2.5±1.2), respectively. Nighttime OH values were with one exception below the detection limit. For further explanations see Figure 5a caption and text. Air mass origin was mainly from temperate North Atlantic in connection with anticyclonic conditions.
Figure 6. Mean half-hour values measured in marine air during the time period 2010-2011 calculated from the OH mode raw signal at m/z 99 (blue line), total background mode raw signal at m/z 99 (red line), OH mode signal minus background mode signal (green line = net signal counts corresponding to the ambient OH concentration), signal counts at m/z 99 due to 34S mass fraction of ambient H$_2$SO$_4$ (black dashed line = signal(m/z 97)*0.044), OH mode background signal with 34S fraction of ambient H$_2$SO$_4$ subtracted (red dashed line).

Figure 7. Transition state geometries for ClO, BrO, IO and OIO + SO$_2$.

Figure 8a. Example observation showing relationships between aerosol nucleation events at low tide, OH concentrations, and OH background (BG) signal (due to X-compound). (top) H$_2$SO$_4$ and MSA(g) concentrations (30 s integration), tidal height, and total particle number concentration $N_p > 3$ nm diameter (30 s integration) measured with a condensation particle counter (CPC; TSI 3025). (bottom) OH concentrations (5 min; black dots), count rates for OH+BG and BG only (non-OH) signals (30 s), and ozone photolysis frequency, J(O$_1$D).

Figure 8b. Example of increased OH concentrations and OH background signal (BG) during two aerosol nucleation events at low tide under marine sector conditions. Symbols as in Figure 8a.
Table 1. Molecular parameters and energies for transition state theory calculations (see text for theoretical methods). The symbol # indicates a transition state.

<table>
<thead>
<tr>
<th>Species</th>
<th>Transition state geometry<sup>a</sup></th>
<th>Rotational constants / GHz</th>
<th>Vibrational frequencies / cm<sup>-1</sup></th>
<th>Relative energy<sup>b</sup> / kJ mol<sup>-1</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>ClO</td>
<td></td>
<td>18.03</td>
<td>829</td>
<td>-</td>
</tr>
<tr>
<td>SO<sub>2</sub></td>
<td></td>
<td>58.67, 10.17, 8.667</td>
<td>508, 1146, 1334</td>
<td>-</td>
</tr>
<tr>
<td>ClO-SO<sub>2</sub> #</td>
<td>Cl: 2.906, 0.862, -0.283 O: 1.988, -0.503, -0.103 S: -0.021, -0.255, -0.325 O: -0.353, 1.084, 0.116 O: -0.553, -1.414, 0.357</td>
<td>8.227, 1.831, 1.540</td>
<td>248, 73, 135, 270, 296, 492, 720, 1113, 1303</td>
<td>24.1</td>
</tr>
<tr>
<td>BrO</td>
<td></td>
<td>12.50</td>
<td>713</td>
<td>-</td>
</tr>
<tr>
<td>BrO-SO<sub>2</sub> #</td>
<td>Br: -0.048, 0.360, 0.367 O: 0.235, -0.502, 1.910 S: 1.906, 0.0189, 3.011 O: 2.914, 0.483, 2.075 O: 2.140, -1.167, 3.803</td>
<td>8.138, 1.128, 1.011</td>
<td>239, 63, 114, 227, 280, 494, 625, 1115, 1302</td>
<td>20.4</td>
</tr>
<tr>
<td>IO</td>
<td></td>
<td>9.844</td>
<td>649</td>
<td>-</td>
</tr>
<tr>
<td>IO-SO<sub>2</sub> #</td>
<td>I: 1.387, 0.0252, 0.0250 O: -0.292, -0.940, -0.130 S: -2.056, 0.068, 0.307 O: -1.803, 1.417, 0.167 O: -2.984, -0.780, 0.412</td>
<td>8.050, 0.875, 0.806</td>
<td>258, 73, 109, 222, 292, 495, 613, 1107, 1288</td>
<td>7.3</td>
</tr>
<tr>
<td>OIO</td>
<td></td>
<td>18.31, 7.054, 5.092</td>
<td>273, 809, 831</td>
<td>-</td>
</tr>
<tr>
<td>OIO-SO<sub>2</sub> #</td>
<td>S: -0.005, 0.236, 0.0738 O: 0.210, 0.766, 1.416 O: 1.111, -0.069, -0.803 I: 1.644, 3.069, 0.096 O: -0.961, 1.427, -0.805 O: -0.190, 4.124, 0.404</td>
<td>4.572, 0.871, 0.839</td>
<td>304, 29, 79, 129, 202, 261, 417, 495, 547, 810, 1064, 1247</td>
<td>50.1</td>
</tr>
</tbody>
</table>

^a Atomic positions in Cartesian coordinates (Å)

^b above the reactants, including zero-point energies
Table 2: Details of the calculation of the relative oxidation efficiency (ROE, see Eq.(5)) for specific Criegee intermediates assuming ozonolysis of alkenes as their only source of formation for average ambient conditions at Mace Head (14°C, 75% RH, BG_{sig}/OH_{sig}=1)

<table>
<thead>
<tr>
<th></th>
<th>CH₂OO</th>
<th>anti-CH₃CHOO</th>
<th>syni-CH₃CHOO</th>
<th>α-pinene</th>
<th>limonene</th>
</tr>
</thead>
<tbody>
<tr>
<td>k(sCl+SO₂) [cm³ s⁻¹]</td>
<td>3.9×10⁻¹¹ a</td>
<td>6.7×10⁻¹¹ b</td>
<td>2.4×10⁻¹¹ b</td>
<td>5.9×10⁻¹⁸</td>
<td>7.7×10⁻¹⁸ c</td>
</tr>
<tr>
<td>k(sCl+H₂O) [cm³ s⁻¹]</td>
<td><9×10⁻¹² a</td>
<td>1×10⁻¹⁸ b</td>
<td><4×10⁻¹⁵ b</td>
<td>1.4×10⁻¹⁷ c</td>
<td>1.4×10⁻¹⁷ e</td>
</tr>
<tr>
<td>τ¹(unimolecular) [s⁻¹]</td>
<td>500 f</td>
<td><250 b</td>
<td><250 b</td>
<td>5 c</td>
<td>5 c</td>
</tr>
<tr>
<td>τ¹(8ppm SO₂) [s⁻¹]</td>
<td>7800</td>
<td>13400</td>
<td>4800</td>
<td>118</td>
<td>154</td>
</tr>
<tr>
<td>τ¹(ambient H₂O) [s⁻¹]</td>
<td>27 d</td>
<td>(2840) f</td>
<td>3000</td>
<td>1200</td>
<td>4.2</td>
</tr>
<tr>
<td>EF (Eq. 3)</td>
<td>150</td>
<td>919</td>
<td>411</td>
<td>3.6</td>
<td>3.6</td>
</tr>
<tr>
<td>k(sCl+SO₂) / k(OH+SO₂)</td>
<td>43.3</td>
<td>74.4</td>
<td>26.7</td>
<td>0.66</td>
<td>0.86</td>
</tr>
<tr>
<td>ROE (Eq.5)</td>
<td>0.29 (0.05) f</td>
<td>0.09-0.08 g</td>
<td>0.08-0.06 g</td>
<td>0.18</td>
<td>0.24</td>
</tr>
<tr>
<td>Fraction of sCl reacting with 35SO₂ in the CIMS inlet</td>
<td>0.94</td>
<td>0.80</td>
<td>0.77</td>
<td>0.93</td>
<td>0.94</td>
</tr>
</tbody>
</table>

b: Taatjes et al. [2013] c: Mauldin et al. [2012]
d: Stone at al. [2014] e: MCM 3.2 f: Berndt et al. [2014]
g: range reflecting unimolecular decomposition rates 0-250 s⁻¹
Figure 1
Figure 2.
Figure 3.
Figure 4.
Figure 5a.
Figure 5b.
Figure 6.
Figure 7.
Figure 8a.
Figure 8b.