Interactive comment on “Effect of atmospheric organic complexation on iron-bearing dust solubility” by R. Paris and K. V. Desboeufs

R. Sullivan
rsullivan@cmu.edu

Received and published: 17 March 2013

I read with interest this submitted manuscript, as I have done a fair amount of working regarding the chemical processing of atmospheric mineral dust particles. Using single-particle mass spectrometry we observed that a significant fraction of mineral dust particles were internally mixed with oxalic acid, and other diacids, during the ACE-Asia campaign. I had always wondered what effect the presence of oxalate in the mineral dust particles might have on the solubility and photochemical properties of dust components such as iron. I just wanted to bring to your attention this related work that provides field evidence to support your hypothesis. I think your manuscript raises some interesting and important questions.

Sullivan, R. C., and K. A. Prather (2007), Investigations of the diurnal cycle and mix-

ing state of oxalic acid in individual particles in Asian aerosol outflow, Environmental Science & Technology, 41(23), 8062–8069.

We also published a related paper that explored how the mixing state of dust might impact the particle’s hygroscopicity, and this included calcium oxalate: Sullivan, R. C., M. J. K. Moore, M. D. Petters, S. M. Kreidenweis, G. C. Roberts, and K. A. Prather (2009), Effect of chemical mixing state on the hygroscopicity and cloud nucleation properties of calcium mineral dust particles, Atmospheric Chemistry and Physics, 9, 3303–3316.

There are a few other reports of atmospheric mineral dust mixed with organic acids, including:


Hopefully these related papers will be helpful to you.

Ryan Sullivan

Interactive comment on Atmos. Chem. Phys. Discuss., 13, 3179, 2013.