Interactive comment on “Radical mechanisms of methyl vinyl ketone oligomerization through aqueous phase OH-oxidation: on the paradoxical role of dissolved molecular oxygen” by P. Renard et al.

P. Renard et al.
pascal.renard@etu.univ-provence.fr
Received and published: 6 May 2013

SC C185: ‘Comments on the chemical mechanism’, Yi Tan, 19 Feb 2013

The authors appreciate important comments raised by Yi Tan, they have been considered in the new version of the manuscript. The authors’ answers to the questions/comments of Yi Tan are presented below.

General comments

Question: This interesting work confirmed the importance of O2 in aqueous phase chemistry. I agree with the first reviewer that oxygen depletion might not be atmospherically relevant in cloud droplets or liquid-phase particles.

Answer: We agree on the fact that O2 depletion is not likely in the atmosphere, but the study of its influence was necessary in our experiments, as it is (hopefully) clearly written now. We want to insist here that our experiments evidenced that oligomerization processes start under super-saturated O2 concentrations (see Fig. 9b and c). We have done some new calculations to scale these results to the atmospheric conditions. In the atmosphere (from -20 to +25°C, and from 0 to 5 km altitude), at Henry’s Law equilibrium, dissolved O2 concentrations can vary over a narrow range from 190 to 391 µM whereas dissolved unsaturated organic compounds can vary over orders of magnitude (as shown in the new introduction, see below), resulting in the ratios indicated in Fig. 12 (new figure, as shown below). No measurements of dissolved oxygen have been done up to now in atmospheric waters (to our knowledge), but one can think that respiration of microorganisms (Vaitilingoma et al., 2013) could deplete them in rain drops, cloud or fog droplets, while organic films at the air/water interface of deliquesced particles could slow down the air-to-water transfer of O2 as it was shown to occur for acetic acid by Gilman and Vaida (2006).

Question: It is difficult to extrapolate current aqueous phase experiments to solid phase particles. Using MVK to represent the whole WSOC family also seems adventurous to me. The depletion of O2 could also alter radical reaction pathways. For example, acetic acid oxidation could form succinic acid under O2 depleted conditions (Wang et al., 2001), while the same reaction is unlikely to happen in the atmosphere (Tan et al., 2012). This raises questions on pathway 7a in Figure 10. I would imagine the oligomerization of the unsaturated MVK* radical is more important under O2 depleted or very high MVK concentration conditions. Fig 7 indicates that ratio between m/z+ 407.20 (S174) and m/z+ 419.24 (S138) became much lower in lower concentration experiments. I will take this as an evidence of my argument. Now the question is - will this pathway matter at all in the atmosphere where MVK is low and O2 is abundant?
Here is the new introduction: “Although Secondary Organic Aerosol (SOA) represents a substantial part of organic aerosol, which affects air quality, climate and human health, the understanding of its formation pathways and its properties is still limited due to the complexity of the physicochemical processes involved. It is now accepted that one of the important pathways of SOA formation occurs through aqueous phase chemistry (Hallquist et al., 2009; Carlton et al., 2009; Ervens et al., 2011). In particular, a number of studies have observed the formation of large molecular weight compounds in atmospheric aerosols (see for example Clayes et al., 2004, and 2010; Baduel et al., 2011) and in cloud/fog droplets (Herckes et al., 2002 and 2007), and the presence of HUmic-Like Substances (HULIS) in atmospheric aerosol particles, fog and cloud water has been reviewed by Graber and Rudich (2006). Recent studies have shown that aqueous phase chemistry of glyoxal (Volkamer et al., 2007 and 2009; Ervens and Volkamer, 2010; Lim et al., 2010), methylglyoxal (Tan et al., 2012), pyruvic acid (Guzmán et al., 2006; Tan et al., 2012) glycolaldehyde (Ortiz-Montalvo et al., 2012), methacrolein and methyl vinyl ketone (El Haddad et al., 2009; Liu et al., 2012) can produce significant amounts of SOA. In particular, Volkamer et al., (2007 and 2009) and Ervens and Volkamer, (2010) have shown that SOA production can occur via liquid phase processes of glyoxal in deliquesced particles named wet aerosol, where ambient relative humidity (RH) range from 50 to 80%. These findings give an extremely large set of conditions where organic liquid phase processes can occur, i.e. from rain drop, cloud and fog droplet to wet aerosol, for which atmospheric lifetimes (< 1 minute – days), liquid water content (LWC : 108 - 1 µg m-3), surface area (10-2 – 10-10 cm²), particle number concentration (10-4 – 104 cm-3) and individual organic and inorganic chemical concentrations (10-2 – 106 µM) vary over orders of magnitude (Ervens and Volkamer, 2010). In their review, Lim et al. (2010) report that liquid phase reactions of glyoxal with OH radicals performed under high initial concentrations tend to be faster and form more SOA than non-radical reactions. They conclude that in clouds/fog condi-
can reasonably suppose that 2-20% of the organic matter concentration is unsaturated in atmospheric waters. Therefore, assuming total water soluble organic compounds (WSOC) concentrations of 0.01-1 µM in rain drops, 1-100 µM in cloud droplets, 1-10 mM in fog droplets and 1-10 M in wet aerosol, one obtains a range of unsaturated organic compounds of 0.002-0.2 µM in rain drops, 0.02-20 µM in cloud droplets, 0.02-20 mM in fog droplets and 0.02-2 M in wet aerosol. The aim of the present study was to determine the radical mechanism involved in the oligomerization of MVK, and to identify the oligomers formed via this chemistry. MVK was used as a model compound for unsaturated organic compounds present in atmospheric waters, its initial concentrations were varied from 0.2 to 20 mM, thus representing the total concentrations of unsaturated organic compounds in fog droplet and wet aerosol. In order to determine the atmospheric relevance of this radical chemistry, the influence of temperature and dissolved oxygen concentrations were studied."

Here are the new conclusions, which have been renamed "atmospheric implications", and which contain a new figure (Fig. 12) and a new table (Table 3): The proposed mechanism allowed for explaining the particular role of dissolved O2 under our experimental conditions. Each iRâ ˘A´c radical underwent competition kinetics between O2 addition (reaction R1) and oligomerization (reaction R2):

\[
iR\check{\Lambda}\check{c} + O_2 \rightarrow \text{LMWC} \quad k_{R1} \quad (R1)
\]

\[
iR\check{\Lambda}\check{c} + n(\text{MVK}) \rightarrow \text{oligomers} \quad k_{R2} \quad (R2)
\]

Supersaturated (by a factor of 155%) initial O2 concentrations inhibited radical oligomerization by fast addition on iRâ ˘A´c resulting in the formation of LMWC (such as acetic acid and methylglyoxal), which were further OH-oxidized and formed other iRâ ˘A´c radicals. The fast O2 addition reactions resulted in a fast decrease of O2 concentrations in the vessel, faster than O2 renewal from the gas phase and from the reactivity of H2O2, and even faster than MVK consumption. At initial MVK concentrations higher than 0.2 mM, the decrease of O2 concentrations resulted in the dominance of reaction (2) after several minutes, and oligomerization started, even when O2 concentrations were still higher than Henry's law equilibrium with atmospheric O2. The paradoxical role of O2 resides in the fact that while it intensely inhibits oligomerization, it produces more iRâ ˘A´c radicals, which contribute to O2 consumption, and thus lead to oligomerization. These processes, together with the large ranges of initial concentrations investigated (60 – 656 µM of dissolved O2 and 0.2 – 20 mM of MVK concentrations) show the fundamental role that O2 likely plays in atmospheric waters. In order to scale the relative importance of reactions R1 and R2 from the laboratory to the atmospheric conditions, one has to compare the rates of R1 and R2:

\[
v_{R1} = k_{R1} \times [iR\check{\Lambda}\check{c}] \times [O_2]
\]

\[
v_{R2} = k_{R2} \times [iR\check{\Lambda}\check{c}] \times [\text{MVK}]
\]

The dominance of oligomerization over O2 addition is determined by

\[
\frac{v_{R2}}{v_{R1}} = \frac{k_{R2}}{k_{R1}} \times \frac{[\text{MVK}]}{[O_2]}
\]

Assuming that the ratio \(k_{R2}/k_{R1}\) does not vary from the laboratory conditions to the atmospheric ones, one can simply predict the oligomerization to occur from the [MVK] / [O2] ratio. In our experiments, the detailed study of the time profiles of O2 and MVK together with the kinetics of oligomer formation allowed us to determine that radical oligomerization dominates over O2 addition for [MVK] / [O2] ratios (in M/M) equal or higher than 32 (at 5°C) and 54 (at 25°C). In atmospheric waters, assuming that dissolved O2 concentrations are saturated (i.e. at Henry's Law equilibrium) everywhere from 0 to 5 km in altitude, and from -20 to +25°C, gives a range of 190-391 µM for [O2]. Furthermore, taking the concentrations of unsaturated organic compounds ([UNS]) in atmospheric waters as stated in the introduction, one obtains [UNS] / [O2] ratios as indicated in Fig. 12 (Ervens et al., 2012). In this figure, radical oligomerization occurs when [UNS] / [O2] ratios are equal or higher than 32 or 54. It is thus concluded that radical oligomerization will always occur in wet aerosols, and in sometimes in fogs: in most polluted fogs, where [UNS] > 6 mM. This result, added to the fact that the lifetime of wet aerosols in the atmosphere are several days, shows the extreme relevance of radical oligomerization of unsaturated organic compounds in the atmosphere. Another point of view for atmospheric implications is the fate of MVK. In general, aqueous phase OH-oxidation is known to drastically reduce WSOCs atmo-
spheric lifetimes, compared to their gas phase reactivity (Monod et al., 2005). As it was shown in the present study, once in the liquid phase, MVK can undergo OH-oxidation. In fogs and wet aerosols, it can additionally undergo oligomerization with a first order kinetic rate constant of \(k_{oligo} = 7.6 (\pm 0.3) \times 10^{-4} \text{ s}^{-1} \), (which is not temperature dependent between 5 and 25°C) as derived in the present work from the MVK decay during oligomerization, under all conditions (figures 5 and 9). Although MVK is weakly water soluble, its aqueous phase reactivity may impact its overall atmospheric lifetime. In Table 3, we compare MVK atmospheric lifetimes between its gas phase reactivity only (taking into account both OH-oxidation and ozonolysis) and its multiphase reactivity. The latter takes into account MVK air/water partitioning at Henry’s Law equilibrium, and its liquid phase reactivity: oligomerization is considered only in fogs and aerosol media. Table 3 shows that liquid phase reactivity impacts the overall atmospheric lifetime of MVK by 2 to 13%. Compared to these numbers, the rate of heterogeneous ozonolysis of MVK on SiO2 or Al2O3 particles under various relative humidity \((\text{RH} = 10^{-10} \text{ to } 10^{-9})\) calculated for a number of 100 nm particles of 5000 particles cm\(^{-3}\), would deplete its atmospheric lifetime by less than 0.00006%. Thus, liquid phase photooxidation seems more efficient, but this needs to be confirmed by more studies of both bulk and heterogeneous reactivity of olefin compounds. The results obtained in Figure 12 and Table 3 show the atmospheric relevance of liquid phase reactivity of unsaturated water soluble organic compounds (even for low soluble ones like MVK), and their ability to activate radical oligomerization chemistry, which is extremely fast and is able to form macromolecules as high as 1800 Da in polluted fogs and wet aerosols. For an unsaturated compound 10 times more soluble than MVK, we anticipate that its overall atmospheric lifetime would be depleted by 13 to 79%, thus showing the need for further studies of oligomer formation from other relevant unsaturated compounds, and their mixtures under various conditions (especially inorganic content and ionic strength). Further studies are also needed to investigate the oligomer yields, their oxidizing states, and their aging (Siekmann et al., in preparation).

Specific comment

Pg 2918 line 24: Although the effect of precursor initial concentrations was discussed in Tan et al. (2010), the focus of that paper was on the aqueous phase oxidation products of methylglyoxal. A previous publication (Tan et al., 2009) is a more relevant reference.

Answer: This change has been done in the revised version of the manuscript

References

...

Benson, B. B. and Krause, D.: The concentration and isotopic fractionation of oxygen dissolved in freshwater and seawater in equilibrium with the atmosphere, American Society of Limnology and Oceanography Inc., Department of Physics, Amherst College, Amherst, Massachusetts, USA, 1984.

C2007

C2008

Interactive comment on Atmos. Chem. Phys. Discuss., 13, 2913, 2013.
Fig. 12: Estimated ranges of the ratios of unsaturated dissolved organic carbon concentration to oxygen concentration (in M M⁻¹) in atmospheric waters. The straight lines delimit the values for which radical oligomerization dominates over O₂ addition, as determined by the present work (see text).

<table>
<thead>
<tr>
<th>Rate</th>
<th>Cloud</th>
<th>Fog</th>
<th>Wet Aerosol</th>
</tr>
</thead>
</table>

Wet Aerosol
Fog
Cloud
Rain
[Unsaturated DOC] / [O₂] ratio
Radical oligomerization
Fig. 1.

Table 3: Comparison of MVK atmospheric lifetimes between its gas phase reactivity only and its multiphase reactivity, taking into account its air/water partitioning at Henry's Law equilibrium, its gas and liquid phase reactivity: oligomerization is considered only in fog and aerosol media, with k_{oligo} values derived from our experimental studies.

<table>
<thead>
<tr>
<th>Unit</th>
<th>Wet</th>
<th>Cloud</th>
<th>Fog</th>
<th>Aerosol</th>
</tr>
</thead>
<tbody>
<tr>
<td>OH concentration (molec cm⁻³ / (ppmv))</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>O₃ concentration (µmol / mol)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Radical oligomerization reactions</td>
<td>No</td>
<td>No</td>
<td>Yes*</td>
<td>Yes*</td>
</tr>
<tr>
<td>Henry’s Law constant (M atm⁻¹)</td>
<td>-</td>
<td>41</td>
<td>41</td>
<td>7100</td>
</tr>
<tr>
<td>LWC (g m⁻³)</td>
<td>5</td>
<td>1.4</td>
<td>0.1</td>
<td>2.5 x 10⁻⁵</td>
</tr>
<tr>
<td>Atmospheric lifetime (h)</td>
<td>12</td>
<td>10.4</td>
<td>11.6</td>
<td>10.4</td>
</tr>
<tr>
<td>% impact of liquid phase reactivity</td>
<td>-</td>
<td>13%</td>
<td>-</td>
<td>3%</td>
</tr>
</tbody>
</table>

a k_{oligo} = 8 x 10⁻⁴ s⁻¹; b Iraci et al., 1999; c Nozière et al., 2006.

Fig. 2.

C2013 C2014