Impacts of seasonal and regional variability in biogenic VOC emissions on surface ozone in the Pearl River Delta region, China

S. Situ¹, A. Guenther², X. Wang¹, X. Jiang², A. Turnipseed², Z. Wu¹, G. Zhou³, J. Bai⁴, and X. Wang⁵

¹School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
²National Center for Atmospheric Research, CO, USA
³South China Institute of Botany, Chinese Academy of Sciences, Guangzhou 510650, China
⁴LAGEO, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
⁵Institute of Geochemistry Chinese Academy of Science, Guangzhou 510650, China

Received: 29 December 2012 – Accepted: 22 February 2013 – Published: 13 March 2013
Correspondence to: X. Wang (eeswxm@mail.sysu.edu.cn)

Published by Copernicus Publications on behalf of the European Geosciences Union.
Abstract

In this study, the BVOC emissions in November 2010 over the Pearl River Delta (PRD) region in southern China have been estimated by the latest version of a Biogenic Volatile Organic Compound (BVOC) emission model (MEGAN v2.1). The evaluation of MEGAN performance at a representative forest site within this region indicates MEGAN can estimate BVOC emissions reasonably well in this region except overestimating isoprene emission in autumn for reasons that are discussed in this manuscript. Along with the output from MEGAN, the Weather Research and Forecasting model with chemistry (WRF-Chem) is used to estimate the impacts of BVOC emissions on surface ozone in the PRD region. The results show BVOC emissions increase the daytime ozone peak by \(\sim 3 \) ppb on average, and the max hourly impacts of BVOC emissions on the daytime ozone peak is 24.8 ppb. Surface ozone mixing ratios in the central area of Guangzhou-Foshan and the western Jiangmen are most sensitive to BVOC emissions BVOCs from outside and central PRD influence the central area of Guangzhou-Foshan and the western Jiangmen significantly while BVOCs from rural PRD mainly influence the western Jiangmen. The impacts of BVOC emissions on surface ozone differ in different PRD cities, and the impact varies in different seasons. Foshan and Jiangmen being most affected in autumn, result in 6.0 ppb and 5.5 ppb increases in surface ozone concentrations, while Guangzhou and Huizhou become more affected in summer. Three additional experiments concerning the sensitivity of surface ozone to MEGAN input variables show that surface ozone is more sensitive to landcover change, followed by emission factors and meteorology.

1 Introduction

Formed by photochemical reactions involving volatile organic compounds (VOCs) and the oxides of nitrogen (\(\text{NO}_x = \text{NO} + \text{NO}_2 \)) (Chameides et al., 1992), surface ozone is the most abundant atmospheric photochemical oxidant and can adversely affect human
health, vegetation and welfare (Viney et al., 1992). VOCs can originate either from anthropogenic or biogenic sources. Globally speaking, biogenic VOC (BVOC) emissions are much higher than anthropogenic VOC emissions, accounting for 90% of total atmospheric VOC emissions (Guenther et al., 1995). Measurement and modeling of BVOCs are essential for understanding regional and global atmospheric chemistry, carbon cycle and climate change.

Over the past few decades, research has been conducted to measure emissions of carbon-containing compounds from vegetation and hundreds of BVOCs have been identified. At the present time, BVOC studies focus on four aspects: (1) understanding the mechanisms controlling BVOC emissions; (2) improving and applying BVOC measurement technology; (3) developing and improving BVOC emission models and estimating the emissions; and (4) quantifying the atmospheric chemistry impacts of BVOC emissions (Guenther et al., 1995, 1996a,b, 1999, 2006, 2012; Carslaw et al., 2000; Wang et al., 2011). Most BVOCs quickly react with OH and then influence atmospheric composition, especially ozone and secondary organic aerosol (Carslaw et al., 2000; Hoffman et al., 1997), by a series of chemical actions. The impacts of BVOCs on global chemistry have been investigated using global models (Granier et al., 2000; Poisson et al., 2000; Collins et al., 2002; Sanderson et al., 2003), and the results show that BVOCs can affect global chemistry significantly. High-resolution studies on regional and local scales also show that the impacts of BVOC emissions on air quality are very important (Thunis et al., 2000; Fabien et al., 2004; Li et al., 2007; Curci et al., 2009; Bao et al., 2010; Marley et al., 2009; Geng et al., 2011; Fu et al., 2012; Wei et al., 2007). It has also been shown that the results are very useful for developing pollution control strategies (Pierce et al., 1998).

Located in the central Guangdong province in southern China, the Pearl River Delta (PRD) region is one of the most developed areas in China. Nine major cities in the PRD region form a super-city cluster, including Guangzhou (GZ), Dongguan (DG), Foshan (FS), Shenzhen (SZ), Zhuhai (ZH), Zhongshan (ZS), Jiangmen (JM), Huizhou (HZ), and Zhaoqing (ZQ). Because of its geographic location, the PRD region is influenced
by a subtropical monsoon climate, having the characteristics of high temperature and high humidity in most seasons. Vegetation in this region is mainly subtropical evergreen forest and some of the species such as eucalyptus have very high BVOC emission capacities (Klinger et al., 2002). These features enhance BVOC emissions in the PRD region. Emission inventory studies have suggested that the BVOC emissions in the PRD are very high and the annual average isoprene emission flux is higher than Beijing, China, and the averaged value over North America (Zheng et al., 2010b; Wang et al., 2011).

Because of the remarkable economic development and rapid urban expansion, air quality in the PRD has been deteriorating in recent years. Ozone and particle matter are the major air pollutants in this region, with the maximum hourly average ozone concentration exceeding 180 ppb in 2008 (the national standard is 100 ppb in China). Society and government are concerned about this issue, and a series of studies have been carried out to provide an in-depth understanding and a comprehensive record, including concentration measurement and analysis (Zhang et al., 2008; Zheng et al., 2010a), the relationship between ozone and its precursors (Cheng et al., 2010; Wang et al., 2010a), the meteorological analysis of a season with high ozone concentration (Fan et al., 2008) and the impacts of anthropogenic emissions on ozone formation (Wang et al., 2005; Li et al., 2011). Recently, some studies showed that BVOC emissions could affect surface ozone in the PRD region. Tang et al. (2007) investigated VOCs at urban, suburban, and rural sites in the PRD, and found that biogenic isoprene emission contributed significantly to the ozone formation potential especially at a remote site. However, this study only focused on VOCs concentration and their ozone formation potential and did not quantify how BVOC emissions affect surface ozone spatiotemporally. Wei et al. (2007) used an atmospheric chemical model to study the impacts of BVOCs on an ozone episode during a tropical storm in the PRD, and the results indicated that BVOCs could increase the daytime ozone peak up to 15.2 ppb. However, this study only focused on a specific period and there was no systematic and quantitative evaluation of the importance of BVOCs on regional ozone formation.
Overall, it is not well understood and needs to be addressed in BVOCs emissions affecting surface ozone over the PRD region.

The objectives of this paper are to: (1) evaluate MEGAN performance in a typical subtropical area in South China and (2) study the impacts of BVOC emissions on surface ozone in this area. In this study, we used the Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1) to estimate BVOC emissions in the PRD region at a high spatiotemporal resolution and applied them in a fully coupled weather-chemistry model (WRF-Chem) to study the impacts of seasonal and spatial variability in BVOC emissions on surface ozone. The paper is organized as follows. In Sect. 2 and Sect. 3, the modeling and measurement approaches are described, respectively. Result and discussion, including the model performances and impacts of BVOC emissions on the surface ozone, are presented in Sect. 4, which is followed by the conclusions in Sect. 5.

2 Modeling approach

2.1 WRF-Chem description

The model used in this study is the chemistry version of the WRF model (WRF-Chem v3.2.1). The WRF model is a mesoscale non-hydrostatic meteorological model that includes several options for physical parameterizations of the Planetary Boundary Layer (PBL), cloud processes and land surface (Skamarock et al., 2008). The chemistry version is a version of WRF coupled with an “online” chemistry model, in which meteorological and chemical components of the model are predicted simultaneously (Grell et al., 2005; Fast et al., 2006).

Three domains (d01, d02, and d03) were adopted in this study, and the spatial resolutions of these three domains were 27, 9 and 3 km respectively (Fig. 1). The chemistry calculation was only applied in d03. To reduce the biases in modeled meteorology, analysis nudging was used in d01 (Deng et al., 2007). The NCEP 1° × 1° reanalysis data
were used as initial and boundary conditions for meteorology. There were 24 sigma vertical layers extending from surface to 100 hPa and 10 vertical layers were set in the PBL. Main options for physical and chemical schemes adopted in this study are listed in Table 1 (Chen and Dudhia, 2001; Martilli et al., 2002; Janjic et al., 2002; Kain et al., 1990, 1993; Lin et al., 1983; Chou et al., 1998; Mlawer et al., 1997). The Kain–Fritsch cumulus parameterization scheme was used in the d01 and d02, and no cumulus parameterization scheme was used for the finest domain (d03) in this study because the convection is assumed to be reasonably well characterized by the explicit microphysics (Wang et al., 2007).

The gas phase chemistry scheme CBM-Z (Zaveri and Peters, 1999) and the MOSAIC aerosol model (Zaveri et al., 2008) were selected as the chemical mechanisms for this study because they can better represent surface ozone that agrees with the observations in the PRD region (Wang et al., 2009). CBM-Z is a new lumped structure photochemical mechanism for large-scale applications. It extends the original CBM-IV framework to function properly at larger spatial and longer timescales. It includes 52 chemical species and 132 photolytic gas phase reactions, of which 7 reactions are isoprene chemical reactions. MOSAIC is a Model for Simulating Aerosol Interactions and Chemistry, which can treat all the important aerosol species at urban, regional and global scales (Zeverl et al., 2008). MOSAIC is implemented in the sectional framework to represent the aerosol size distribution where the aerosol size distribution is divided into discrete size bins. Each bin is assumed to be internally mixed so that all particles within a bin have the same chemical composition, and water uptake or loss does not transfer particles between bins. In the version used in this study, secondary organic aerosols (SOA) were not included.

It should be noted that monoterpenes are not treated as a unique species in the CBM-Z chemical scheme. Instead, we accounted for terpene species (e.g. α-pinene and β-pinene) by lumping them into the CBM-Z OLEI (internal olefin carbons) and OLET (terminal olefin carbon) categories for this study. The reaction rate constant with OH for OLEI (OLET) in WRF-Chem has been compared with the measured values for
some individual monoterpane species (e.g. α-pinene, β-pinene and limonene). The comparison indicates that the reaction rate constants with OH for OLEI is very close to the measured value (α-pinene) while the reaction rate constant with OH for OLET is lower than the measured values for the monoterpenes lumped into this category (e.g. β-pinene and limonene) (Atkinson et al., 2003). OLEI includes not only the biogenic internal alkenes, but also the anthropogenic internal alkenes which are emitted in greater magnitude than biogenic internal alkenes. Moreover, the contribution of terpenes to ozone formation is lower than isoprene even when terpene chemistry is treated individually (Curci et al., 2009). As a result, the use of the model default reaction rate constant with OH for OLEI for monoterpenes should be a reasonable approach to get the relative contribution of monoterpane emissions to the surface ozone over the PRD region in this study.

2.2 Anthropogenic emissions

A highly resolved temporal and spatial PRD regional emission inventory for the year 2006 was developed with the use of best available domestic emission factors and activity data (Zheng et al., 2009). A bottom-up approach was adopted to compile the inventory for major emission sources, including industry, mobile, resident and biogenic sources. The results included the annual emission amount for sulfur dioxide, nitric oxide, carbon monoxide, VOCs and particles.

The regional emission inventory was updated to 2010, and the spatial distributions are shown in Fig. 2a–d. The spatial pattern of sulfur dioxide emission agrees well with industrial centers, while those of nitric oxide, carbon monoxide and VOCs emissions agree well with vehicle emissions and industry.

2.3 Biogenic emissions

MEGAN is the new generation model of emissions of gases and aerosols from nature which has been widely used to estimate the global and regional BVOC emissions
Introduction

Meteorology, Plant Functional Types (PFTs), Leaf Area Index (LAI) and emission factors (EFs) are the inputs required to drive MEGAN. Different from the PFTs used in the previous version, MEGAN v2.04 (Sakulyanontvittaya et al., 2008), 16 plant function types are considered in MEGAN v2.1, including arctic, boreal, temperate, and tropical plants, C3 and C4 grasses, and evergreen and deciduous shrubs (Bonan et al., 2002; Oleson et al., 2000). Moreover, high-resolution 8-day LAI can be used in MEGAN v2.1 in order to better capture the temporal variation of vegetation. In this study, the PFTs and LAI data were the same as those used by Wang et al. (2011). The meteorology data were simulated by WRF-Chem. Emission factors of BVOCs were calculated based on the literature recommendations in the PRD region (Bai et al., 2001a,b; Klinger et al., 2002; Tsui et al., 2009).

Total BVOCs, including isoprene, monoterpene, sesquiterpene and other compounds (e.g. acids, aldehyde, alcohols and some other volatile compounds), are included in WRF-Chem simulations conducted for this study. Figure 2e shows the total BVOC emission flux in d02, and it indicates that there are considerable spatial variations in the total BVOC emissions over d03 which can be divided into three regions: the outside PRD, the rural PRD and the central PRD (Fig. 1). The outside PRD is the area inside the modeling domain but outside the PRD region. The rural PRD represents the rural and less developed areas in the PRD region, including Huizhou, north and northeast of Guangzhou, west of Foshan, Jiangmen and Zhaoqing. Excluding the
The rural PRD, the remaining PRD region is defined as the central PRD in this study. The amounts of BVOC emissions from the three regions contribute to 68.4 %, 26.2 % and 5.4 % of the total BVOC emissions from the whole domain, respectively. The MEGAN result also indicates that isoprene emissions dominated total BVOC emissions in daytime, accounting for ~ 60 % of total BVOC emissions.

2.4 Experimental design

To thoroughly evaluate the impacts of BVOC emissions on surface ozone over the PRD region, annual ensemble simulations are preferred. However, annual ensemble simulations with this fully coupled atmosphere-chemistry model demand a huge amount of computing time. The alternative approach used for this study is to select the highest ozone month as the simulated period to minimize computer resource requirements and investigate the effects under high ozone concentration, which is typically of greatest interest for the air quality regulatory community.

Multiple years of observations show that high ozone concentrations frequently occurred in autumn in the PRD (Zheng et al., 2010a) because of the high frequency of a surface high-pressure system and the descent motion outside of hurricane and sea breeze in this season (Fan et al., 2008). Meanwhile, we initiated BVOC emission flux measurements in Dinghu Mountain in the PRD in November 2010 using the Relaxed Eddy Accumulation (REA) technique, and the results were used to evaluate the MEGAN model. Thus, November 2010 was chosen for the simulated period to investigate the role of BVOCs in a period of high ozone.

General weather conditions over the PRD in November 2010 favored ozone formation with a surface high-pressure and northerly wind yielding scattered showers and the sky was generally clear. Three northerly cold air masses entered the PRD region on 8, 15 and 22 November, and caused an increase of wind speed and decrease of temperature (http://www.tqyb.com.cn/index.asp). General conditions including surface pressure, temperature, wind speed and relative humidity are listed in Table 2.
One month long simulation using anthropogenic emissions and total BVOC emissions was conducted as the control run for this study. In addition, 5 experiments with different chemical emission scenarios were designed (Table 3) to study the impacts of BVOC emissions on surface ozone. Excluding anthropogenic emissions, case 1 was designed to estimate the impacts of BVOC emissions on surface ozone in a clean atmosphere, which could indicate the background value of surface ozone due to BVOC emissions in this region. In case 2, the BVOC emissions were removed in order to quantify the impacts of BVOC emissions on surface ozone in the real atmospheric environment. As isoprene is emitted into the troposphere in greater quantities than other non-methane BVOCs and it is very reactive in the atmosphere, case 3 was designed to estimate the impacts of isoprene emissions on surface ozone. Case 4 and case 5 were designed to study the regional impacts by excluding the BVOC emissions from the outside PRD and the rural PRD. Case 6 was a seasonal comparison simulation to estimate the impacts of BVOC emissions in summer in this region. Aerosol feedback turned off in all cases in order keep the same meteorology.

3 Measurement approach

In autumn 2010, a field experiment was conducted at Dinghu Mountain, using the REA technique to quantify BVOC emission fluxes from a typical natural forest in this region. As far as we know, this is the first whole canopy BVOC flux measurement made in the PRD region. The measurements were made on a 37 m high canopy flux tower operated by the South China Botanical Garden of the Chinese Academy of Sciences in Dinghu Mountain (112.53° E 23.17° N) in the northwest of PRD, which is 86 km away from Guangzhou. The REA system was installed at a height of 31 m above ground and more than 10 m above the forest canopy (canopy height is around 17 m). This site is mainly covered by subtropical evergreen broadleaf forest, with some needleleaf conifers, and most trees are more than 100 yr old. Details about the site description can be found in Zhou et al. (2007).
The theory behind REA has been explained elsewhere (Businger et al., 1990; Bowling et al., 1998). In short, two air samples are collected over a statistically meaningful time period (∼30 min); one consisting of updrafts and the other consisting of downdrafts. While alternating sampling between the up and down reservoirs, depending on the vertical wind direction, the flow occurs at a constant flow rate. The duration of sample collection for each reservoir is related to the frequency at which the wind eddies change vertical direction (Baker et al., 2001). The flux calculation can be described as followed:

\[F = \beta \sigma_w (C_u - C_d) \]

(1)

Where \(\beta \) is a dimensionless coefficient which is determined empirically from fast response temperature measurements, \(\sigma_w \) is the standard deviation of the vertical wind over the collection period and \(C_u \) and \(C_d \) are measured concentrations collected in the updraft and downdraft reservoirs.

All samples were collected on Tenax TA and Carbograph 5TD solid adsorbent cartridges and shipped to the lab at NCAR (National Center for Atmospheric Reach, Boulder, CO, USA) for chemical analysis by Gas Chromatography. Cartridges were desorbed using an Ultra auto sampler with a Unity thermal desorption system (MARKES International, Llantrisant, UK) coupled to a 7890A series Gas Chromatograph with a 5975C Electron Impact Mass Spectrometer and flame ionization detector (GC-MS/FID, Agilent Technologies, Santa Clara, CA, USA). VOCs were separated with an Agilent HP-5 ms column (Agilent Technologies, USA) using an initial oven temperature of 35°C for 1 min followed by a temperature ramp of 6°C min\(^{-1}\) to 80°C, then 3°C min\(^{-1}\) to 155°C, then 10°C min\(^{-1}\) to 190°C, and finally 25°C min\(^{-1}\) to 260°C with a 5 min final hold. Helium was used as a carrier gas, at a flow rate of 3 mL min\(^{-1}\). Concentrations were quantified using FID calibrated with a NIST traceable standard. Compounds with co-eluting peaks were quantified with the MS using specific masses that were normalized by the same or similar mass in the internal standards (tetramethylethene and dihydronapthalene) that were introduced for each run using a 1 mL loop. Identifications
were mostly based on comparison of retention times and mass spectra of authentic standards but in a few cases were based on the retention times and mass spectra in the Adams et al. (2001) and NIST databases.

4 Result and discussion

4.1 Model performance

4.1.1 Meteorology

Available daily averaged data observed at 9 weather stations (including Fogang, Guangning, Gaoyao, Guangzhou, Dongyuan, Zengcheng, Huiyang, Taishan and Shenzhen) for November 2010 were used to validate the simulated 2-m temperature, 10-m wind speed, and 2-m relative humidity from the control run. The simulated downward shortwave radiation was validated by the hourly downward solar radiation observed in Dinghu. The statistics of the verification, including the bias, mean absolute errors (MAE) and root mean square errors (RMSE) are listed in Table 4.

The result shows that the simulated downward shortwave radiation is higher than the observation. This may at least partly be due to the fact that the model did not include aerosol feedback in this study. Because of the simulated higher downward shortwave radiation, modeled 2-m temperature has a warm bias of 1.2° and 2-m relative humidity has a dry bias of −2.1 %. The simulated 10-m wind speed is 2.2 m s⁻¹ higher than the observation which is expected since WRF generally overestimates wind speed in a flat area (Roux et al., 2009; Mass et al., 2010, 2011). Overall, the meteorological conditions simulated by the model are reasonable.

4.1.2 BVOC emissions

The analysis of REA samples shows that the main BVOCs emitted from the Dinghu Mountain forest include isoprene, α-pinene, β-pinene, camphene and D-limonene.
After excluding fluxes that did not meet required conditions, isoprene emission fluxes range between 0.002 and 0.215 mgm$^{-2}$ h$^{-1}$ and monoterpene emission fluxes range between 0.063 and 0.313 mgm$^{-2}$ h$^{-1}$ on mid-day in autumn 2010.

The landcover inputs used to parameterize the Dinghu site in MEGAN include an LAI value of 3 for November and a PFT composition of 42.3% broadleaf trees and 20.9% needleleaf trees. Along with the local measurements of BVOC emission factors for dominate tree species at this site, the contributions of trees species in the PRD to the total tree cover of the area were used to weight and group the EFs for each PFT. Monitored meteorological data at the Dinghu site were used to drive MEGAN. Model results show that the isoprene emission rates vary from 0.366 to 3.577 mgm$^{-2}$ h$^{-1}$ and monoterpene emission rates are between 0.149 and 0.617 mgm$^{-2}$ h$^{-1}$ on mid-day during the REA sampling period. Compared to the REA observations, MEGAN agrees well with monoterpene emission flux, but considerably overestimates the isoprene emission flux.

This initial study of above canopy fluxes in the PRD region indicates that isoprene emissions can be very different from the model estimate. However, there are very high uncertainties in modeled isoprene estimates for almost all vegetation types (Zheng et al., 2010b), so we used stainless steel canister concentration measurements to further evaluate the MEGAN performance.

To compare the emission flux from MEGAN and the concentration from stainless steel canister samples, a simple box model was used to convert the modeled MEGAN isoprene emission flux to mixed layer concentration. Details about this simple box model have been described by Guenther et al. (1996b), and the equation can be written as:
\[C = \frac{EF}{Z_i L} \]

Where \(C \) is the mean scalar mixing ratio; \(EF \) is the emission flux; \(Z_i \) (m) is the height of mixed-layer capping inversion; \(L \) (s\(^{-1}\)) the oxidation rate of hydrocarbons. In this simple box model, only OH and O\(_3\) are considered to oxidize hydrocarbons. So \(L \) is defined as \([k_{OH} \cdot OH] + [k_{O_3} \cdot O_3]\), where \(k_{OH} \) and \(k_{O_3} \) are reaction rate constants and OH and O\(_3\) are mixing ratios of hydroxyl radical and ozone, respectively. To estimate the chemical loss, we used the OH and ozone reaction rate coefficients reported by Atkinson et al. (2003) and the measured ozone mixing ratios at Dinghu Mountain. No measured OH concentration data are available at this site, so the max OH concentration in the PRD on a summer day (Lu et al., 2012) was applied in this calculation. The result shows that isoprene concentrations based on MEGAN range between 0.1 to 1.3 ppb for a mid-day average in autumn, which agrees with the measured isoprene concentration (\(\sim 0.1 \) ppb) in 2008 at Dinghu Mountain. The modeled isoprene concentration is 2.2 ppb for mid-day average in summer, which agrees well with the measured isoprene concentration in summer at Dinghu Mountain (Bai et al., 2001b).

In conclusion, the evaluation indicates that monoterpene emission fluxes estimated by MEGAN agree well with the observation at the Dinghu site, but isoprene is overestimated in autumn while it agrees well with the measurement in summer. The possible reasons for the overestimated isoprene emission flux by MEGAN include:

1. The MEGAN emission algorithms for characterizing seasonal variations are based on measurements in temperate landscapes (Monson et al., 1994; Petron et al., 2001) and may not account for seasonal variations in isoprene emissions at tropical or subtropical sites (Barkley et al., 2009).

2. There are few isoprene emission factor measurements reported in the literature for this region, and the available data for a given species are sometimes conflicting indicating large uncertainties in these emission factors.
3. MEGAN uses the past 24 h to normalize the emission factors under standard conditions and some special weather phenomena may not be considered. Thus, a longer normalization may be needed to fully account for the environmental influence.

Therefore, more field experiments are needed to accurately quantify the BVOC emission flux in the PRD region. This will provide a more in-depth understanding of the BVOC emission fluxes in this region and further improve the MEGAN model.

4.1.3 Surface ozone

Available hourly observed data at 4 monitoring sites (including WQS, LH, JGW and CZ) for November were used to validate the ozone simulation from the control run. The locations of these 4 monitoring sites are shown in Fig. 1. The site WQS is located 30–50 km downwind of the central Guangzhou-Dongguan-Foshan metropolitan urban areas and represents a regional scale site. The site LH is in the central Guangzhou, which is a typical urban site. The site JGW is in Huizhou, which is chosen as a rural or less developed area site in the eastern PRD. The site CZ in Zhaoqing is representative of rural or less developed areas in western PRD. The four sites represent the main areas in the PRD and will be used to illustrate the impacts of BVOCs on surface ozone in the different areas of the PRD.

Figure 3 shows that the control run reproduced the diurnal variations and magnitude of ozone reasonably well at most sites. As an important precursor of ozone, the comparison of NO\textsubscript{2} at the monitoring sites further demonstrates that the ozone formation is captured reasonably well over the domain throughout the period. Model appeared to underestimate ozone at LH, especially at night. This might be related to a combination of several factors, such as the uncertainties in the precursor emissions, meteorological parameters and chemical mechanism (Wang et al., 2010). Considering the prevailing northerly winds in November, the underestimation of ozone at LH might be caused mainly by the uncertainties in emissions in northern rural areas of Guangzhou and
distant northern areas outside of Guangzhou, such as Qingyuan. The overestimation of surface wind speeds might result in more transport and less accumulation of ozone and its precursors, and this was probably another important contributor to the underestimated ozone at LH. Moreover, the nighttime vertical diffusion is not easily simulated by current mesoscale meteorological models, especially over the complex topography and land use in PRD (Wang et al., 2010).

Surface ozone concentration increases significantly and has a large spatiotemporal variation over the PRD. The highest ozone concentration occurs at 15:00:00 LT, with a regional averaged value of ~50 ppb (Fig. 4), and the ozone concentration is higher in the western PRD and the south of central PRD, because of the northeast prevailing wind direction (Fig. 5a).

4.2 Background influence of BVOC emissions on surface ozone

By excluding all anthropogenic emissions, the background level of surface ozone due to BVOC emissions over the PRD region was estimated. The daily average background ozone concentration is ~25 ppb. This result also shows the small temporal variability of surface ozone in the background, varying from 22–29 ppb in daytime, and the maximum occurs at 15:00:00 LT valued 28.2 ppb. The spatial distribution of surface ozone at 15:00:00 LT showed in Fig. 5b, and it indicates that the spatial distribution is relatively smooth over of the PRD region.

The simulated background level of surface ozone indicates that BVOC emissions alone do not result in an ozone problem. The high level of ozone concentration is a result of the influence of anthropogenic pollutants emitted into the atmosphere. However, BVOC emissions must be considered when examining anthropogenic emission control strategies, because the ratio of ozone precursors (i.e. VOCs and NO\textsubscript{x}) may change and then affect the formation of ozone and some secondary atmospheric pollutants.
4.3 Impacts of BVOC emissions on surface ozone

There is distinct difference between surface ozone simulations with and without BVOC emissions (Fig. 4). The difference rises together with BVOC emissions in the morning, and reaches the peak value of 3.0 ppb at 14:00:00 LT. The difference remains at high value until 17:00:00 LT, and then begins to fall. This phenomenon indicates BVOC emissions generate additional surface ozone and contribute ~3.0 ppb to the daytime ozone peak in this region. And the impact remains in this region and keep high value for approximately 3 h in the afternoon. As the most abundant non-methane BVOC, isoprene contributes ~57% to the impacts of total BVOC emissions on the daytime ozone peak in the PRD.

Besides, the averaged impacts of BVOC emissions on surface ozone are obtained at each grid at 15:00:00 LT, when the regional ozone peak appears. The result indicates the central area of Guangzhou-Foshan and the western Jiangmen are where surface ozone is most sensitive to BVOC emissions (Fig. 6a), and the BVOC emissions can increase the daytime ozone peak by 7.9 and 9.4 ppb averagely in these two places. In order to know the upper limit of BVOC emissions affecting the daytime ozone peak over the PRD region, the hourly maximum impacts of BVOC emissions on surface ozone are obtained at each grid at every 15:00:00 LT as well (Fig. 7a). It indicates that the impact of BVOC emissions on the daytime ozone peak can be as high as 24.8 ppb in the PRD region, and it varies between 10 to 24.8 ppb in the central area of Guangzhou-Foshan and the western Jiangmen. Located in the central PRD, the central area of Guangzhou-Foshan is a major urban center/government area in the PRD region, where it is urgent to control the ozone pollution.

Figure 8 shows the impacts of BVOC emissions on surface ozone at 4 air quality monitoring sites. The BVOC emissions at JGW are the highest, 10 times higher than at LH, but the impacts on surface ozone at JGW are the least significant (less than 2 ppb), and the diurnal variation of surface ozone increment due to BVOC emissions is very smooth at this site. This is mainly because (1) low NO\textsubscript{x} does not favor ozone formation.
because it is NO\textsubscript{x}-limit at the JGW site (Zhang et al., 2008; Wang et al., 2010); and (2) the upwind location is not impacted by ozone accumulation. Even though the BVOC emissions are lower than 4 mol km-2 h-1 at LH, the contribution of BVOC emissions to surface ozone is the highest, more than 4 ppb. The impacts of BVOCs on surface ozone at WQS and CZ are very similar at noon, ranging from 2 to 4 ppb. The impacts at CZ reach the maximum at 18:00:00 LT, which can be attributed to the influence of ozone transport, because CZ is on the downwind edge of PRD in November. This comparison also indicates that BVOC emissions have a higher impact on surface ozone in urban areas than in rural or less developed areas in the PRD region.

Figure 7a also suggests that there is a strong day-to-day difference of the impact of BVOC emissions on the daytime ozone peak over the PRD region, depending on the daily variation of meteorology, especially the wind speed and wind direction. With surface wind analysis performed over the PRD region, 3 distinct impact conditions are classified: north wind condition; calm wind condition; and south wind condition. The occurrence probabilities of the three conditions are 60.0\%, 36.7\% and 3.3\%, respectively. The BVOC impact patterns are quite different for the three conditions (Fig. 9). South wind condition is a rare condition, and it happens when the PRD region is controlled by a high ridge that is located to the east of the PRD. During south wind condition, BVOC emissions affect the daytime ozone peak more in the rural or less developed areas, including the northeast of Zhaoqing, north of Guangzhou, north of Jiangmen, and east of Dongguan, and it causes an average 2.8 ppb ozone increment over the PRD. North wind condition, the most common condition during the simulation, results in impacts of BVOC emissions on the daytime ozone peak of about 1.1 ppb increment in the PRD region on average and the surface ozone increases more in the central area of Guangzhou-Foshan and the western Jiangmen. Calm wind is conducive to ozone accumulation and it is easy to cause high ozone concentrations that can lead to an ozone pollution episode. During calm wind condition, BVOC emissions can increase the daytime ozone peak in much of the PRD region, and the increment is 2.1 ppb over the PRD region averagely.
4.4 Regional variability

The impacts of BVOC emissions from outside, central and rural PRD have been estimated, and the results are shown in Fig. 6b–d. The influence of BVOC emissions from the outside PRD is very similar to that of the BVOC emissions from the whole domain (Fig. 6a, b), and the central area of Guangzhou-Foshan and northwestern Jiangmen are, again, where the surface ozone is most sensitive to BVOC emissions. The BVOCs from the central PRD affect the central area of Guangzhou-Foshan (Fig. 6d). We can conclude that surface ozone in the central area of Guangzhou-Foshan is more sensitive to the BVOC emissions from outside and central PRD. In contrast, the BVOCs from the rural PRD affect the ozone mainly in northwestern Jiangmen (Fig. 6c).

The impacts of BVOC emissions on surface ozone are different in various PRD cities (Fig. 10), which can be explained by (1) the amount of BVOCs emission; (2) the relative location of emission sources; and (3) the meteorological conditions, including horizontal transport and vertical diffusion. Details about the impacts of BVOCs in different PRD cities are listed in Table 5.

We can see that surface ozone increases most in Foshan and Jiangmen where surface ozone is most sensitive to BVOC emissions, and the highest increment in these two cities is 6.1 and 5.5 ppb, respectively. The ozone in Foshan is more sensitive to the BVOCs from outside PRD and central PRD, with the highest increment at 2.0 and 2.3 ppb, respectively. The ozone in Jiangmen is more sensitive to the BVOCs from outside PRD and rural PRD, with the highest increment at 2.0 and 2.5 ppb, respectively.

Zhaoqing, Zhongshan, Guangzhou and Zhuhai are in areas that are moderately sensitive to BVOC emissions and the highest ozone increments in these cities are 4.0, 3.8, 3.2 and 3.1 ppb, respectively. The impacts of BVOCs from these three regions in Zhaoqing are almost the same, while the BVOCs from central PRD affect the surface ozone more than outside and rural PRD in Zhuhai. The ozone in Zhongshan and Guangzhou is more sensitive to the BVOCs from the outside and the central PRD.
Duanguan, Shenzhen and Huizhou are the least sensitive areas to BVOC emissions mainly because of their upwind location, and the highest ozone increment in these cities is 2.0, 1.8 and 1.3 ppb, respectively. In Huizhou, the surface ozone isn’t sensitive to BVOCs emission from the central PRD.

There are two peaks in the diurnal variation of the surface ozone increment in Zhaoqing, and the smaller one shows up at mid-day while the larger one shows up in the late afternoon. Similar to the peaks at the CZ site, the peak that appears in the late afternoon in Zhaoqing is mainly related to transport. The diurnal variations of surface ozone increment in Guangzhou and Dongguan are similar to that in Zhaoqing.

4.5 Seasonal variability

A comparison experiment to investigate the impacts of seasonal variability in BVOC emissions on ozone formation was conducted for 1–9 July (referred to here as the summer case). This period is characterized by high temperature and clear sky, and no tropical storms occurred. The model simulated mean 2-m temperature, solar radiation, wind speed, and relative humidity are 28.3°, 978.8 Wm⁻², 4.8 ms⁻¹ and 79.1 %. In this case, BVOCs and isoprene emissions are 3.2 and 3.6 times higher than in November (referred to here as the autumn case).

The simulated spatial distribution of surface ozone in summer is very different from that in autumn (Figs. 11a and 4a), because of the southwest prevailing wind direction. The high values of ozone concentration are in the northern and the eastern PRD.

Similar to the situation in autumn, BVOC emissions significantly affect the daytime ozone peak in the downwind areas in summer, including Guangzhou, Dongguan, Shenzhen and Huizhou (Fig. 11b). The maximum hourly impacts on the daytime ozone peak can be as high as 34.0 ppb over the PRD region in summer, and the maximum hourly impacts are greater in the northeast of Guangzhou (Fig. 7b). In the central area of Guangzhou-Foshan, BVOC emissions cause an average increase of surface ozone up to 9.8 ppb at 15:00:00 LT in summer and the maximum hourly impact at 15:00:00 LT in summer is 19.4 ppb.
Fig. 12 shows the comparison of the impacts of BVOCs on surface ozone in PRD cities in different seasons. The comparison reveals that the ranking of BVOC sensitive areas changes in summer. Guangzhou becomes the most sensitive area to BVOC emissions, followed by Huizhou, Dongguan, Foshan, Shenzhen, Zhenshan, Zhaoqing, Zhuhai and Jiangmen. The highest surface ozone increment in Guangzhou is up to 8.8 ppb, which is 5.6 ppb higher than in autumn. Jiangmen shifts to be the area where surface ozone is the least sensitive to BVOC emissions and the highest surface ozone increment in Jiangmen is only 0.5 ppb, which is 5ppb lower than in autumn.

There is a significant difference in the diurnal variation of the surface ozone increment in Zhaoqing. There are two peaks in the diurnal variation of the surface ozone increment in summer in Zhaoqing, but the larger one shifts to occur at mid-day while the smaller one shifts to occur in late afternoon. The transport influence in Zhaoqing is weaker, because it is in the upwind area in summer. So the shift indicates that not only the transport but also other factors, such as PBL compression, caused the peak in late afternoon in autumn in Zhaoqing. There is a peak in the surface ozone increment in the diurnal variations in Guangzhou and in Huizhou in summer, which is related to the influence of transport and the accumulation caused by the decreasing PBL height.

In both autumn and summer seasons, the impacts of BVOC emissions on surface ozone in Guangzhou are distinct and there is a strong seasonal variation of the impacts in this city. Guangzhou is the capital of Guangdong province as well as the economic, transportation and cultural center in the PRD which makes it a key target for ozone reduction strategies. However, it should be noted that strategies for solving ozone problems at this location will likely be different from those for other locations and the different season and impacts of BVOC emissions on surface ozone should be taken into account when developing ozone control policies in this city.

4.6 Sensitivity of surface ozone to BVOC emissions model driving variables

Landcover, emission factors, and meteorological parameters are important drivers of MEGAN calculations, and their variations can impact the estimate of BVOC emissions
(Wang et al., 2011; Fu et al., 2012) and then further influence the ozone concentration in numerical simulation. In this section, 3 experiments were performed to assess the sensitivity of surface ozone to the MEGAN drivers in November.

4.6.1 Landcover

Eucalyptus is an important BVOC emitter, because it has high terpenoid (including isoprene, monoterpane and sesquiterpene) emissions. Moreover, eucalyptus is a dominant tree in Guangdong province and is being planted widely in the PRD region because of its high economic value. We conducted a landcover change sensitivity study by changing all forest to eucalyptus, except for protected areas in national and local natural parks. The eucalyptus BVOC emission factors were adopted including an isoprene emission factor of 24 000 µg m\(^{-2}\) h\(^{-1}\), ~2 times higher than that used in the control run. The results show that changing forests to eucalyptus increase total BVOC emissions by ~23% in PRD and isoprene emissions by ~315%. Compared to the control run, there is 4.1 ppb daytime ozone peak increase due to the increase in BVOC emissions. Thus, landcover change can enhance the impacts of BVOC emissions on daytime ozone peak by 5.4 ppb over the PRD region.

The sensitivity of surface ozone at four monitoring sites at 15:00:00 LT was examined. The result shows that surface ozone at CZ site has the highest responds to the BVOCs increase, followed by LH, JGW and WQS. The change of relative ranking is mainly due to the increase of BVOC emissions and the changing in spatial distribution.

4.6.2 Emission factor

BVOC emission factors dominate the total uncertainties in BVOC emission estimates which are about a factor of 3 (Lamb et al., 1987). Thus, we changed the emission factors by a factor of 3 to assess the sensitivity of surface ozone to emission factors and examine the impact of this uncertainty on surface ozone. The changes of emission
factors lead to BVOC emissions that are 200 % higher (−66.7 % lower) than that in the control run.

The daytime ozone peak is 1.3 ppb higher (0.8 ppb lower) than that in the control run. The impacts of BVOC emissions on daytime ozone peak change were between 0.5 ppb and 2.6 ppb when averaged over the PRD region.

4.6.3 Meteorology

Solar radiation and temperature are the most important meteorological parameters influencing BVOC emissions. Hence, we perturbed temperature and daytime solar radiation by their RMSE (Table 4) for each time step of the MEGAN calculations for temperature and only in daytime for solar radiation.

\[
\text{SWDWON} = \text{control}_{\text{swdown}} \pm \text{RMSE}_{\text{swdown}} \tag{3}
\]

\[
\text{TEMP} = \text{control}_{\text{TEMP}} \pm \text{RMSE}_{\text{TEMP}} \tag{4}
\]

As expected, increasing (decreasing) solar radiation and temperature produces more (less) BVOC emissions. BVOC emissions varied between −11.9 and 29.9 % due to solar radiation perturbation, and led to 0.2 ppb lower and 0.2 ppb higher daytime ozone peak in the PRD region. Thus, the impacts of BVOC emissions on the daytime ozone peak varied between 1.1 ppb and 1.5 ppb.

Similarly, there is 35.2 % increment (10.6 % decrement) of BVOC emissions due to temperature increasing (decreasing) resulting in 0.5 ppb higher (0.4 ppb lower) surface ozone. The impacts of BVOC emissions on the daytime ozone peak varied between 1.1 ppb and 1.6 ppb.
5 Conclusions

The WRF-Chem version 3.2.1 and MEGAN version 2.1 were used to estimate the impacts of BVOC emissions on surface ozone in November 2010 in the PRD region China.

The results show that there is no strong spatiotemporal variation of background surface ozone in PRD, which is related to BVOC emissions only. The daily averaged value of this background ozone concentration is \(\sim 25 \) ppb. However, the surface ozone concentration increases significantly when anthropogenic and biogenic emissions are considered, and the regional surface ozone average reaches the maximum at 15:00:00 LT with the peak value of \(\sim 50 \) ppb. There is an average of \(\sim 3 \) ppb surface ozone associated with BVOC emissions that contribute to the daytime ozone peak and the maximum hourly impacts of BVOC emissions on the daytime ozone peak is 24.8 ppb. As the most abundant non-methane BVOC species, isoprene contributes \(\sim 57\% \) of the impacts of BVOC emissions on daytime ozone peak. BVOCs have the greatest impact on daytime ozone peak in urban and downwind areas, especially the central area of Guangzhou-Foshan and the western Jiangmen.

The impact pattern of BVOC emissions on surface ozone is strongly related to weather conditions, especially the wind speed and wind direction. Three conditions are classified based on wind conditions, and the possibility of their occurrence is 60\%, 36.7\% and 3.3\%, respectively. The condition of calm winds is of particular interest because BVOC emissions can affect the daytime ozone peak widely and significantly in the PRD region.

Impacts of BVOCs from three regions in the modeling domain on surface ozone have been estimated, and the BVOCs from the outside and the central PRD affect the surface ozone in the central area of Guangzhou-Foshan more than the BVOCs from the rural PRD. BVOCs from the rural PRD affect the surface ozone in western Jiangmen significantly. Among PRD cities, Foshan and Jiangmen are where surface
ozone is most sensitive to BVOC emissions, with the highest concentration increment of 6.0 ppb and 5.5 ppb.

There is strong seasonal variation of impacts of BVOC emissions on surface ozone, and the most sensitive areas of surface ozone to BVOC emissions shift to be Guangzhou and Huizhou in summer. Guangzhou is a place where surface ozone is very sensitive to BVOC emissions in both autumn and summer, so the strategies for solving ozone problems for this city will likely be different and the impacts of BVOC emissions should be considered when developing ozone control policies in this location.

Sensitivity experiments indicate that surface ozone responds differently to various MEGAN drivers. Related to the amount and spatial distribution of BVOC emissions, landcover is the most important MEGAN driver to which the sensitivity of surface ozone is the highest. Emission factors are another MEGAN factor to which surface ozone is very sensitive. Under the current BVOCs spatial distribution, ozone in the urban area is more sensitive to BVOC emission changes.

This study presents initial results indicating that BVOC emissions can affect surface ozone significantly in the PRD region and that the impacts are complex. Further work will quantitatively investigate the chemical, biological and physical processes that control the impact of BVOC emissions on surface ozone in the PRD region. Moreover, more work will be done to improve the emission factors of BVOCs in the PRD region since the BVOC emission factors used in this study are very uncertain.

Acknowledgements. This research was supported by the NSFC projects (U0833001, 41275018, 40975082, 41010104042) and the key program of the Natural Science Foundation of Guangdong Province under Grant Nos.S2012020011044. The National Center for Atmospheric Research is sponsored by the US National Science Foundation.
References

Seasonal and regional variability in biogenic VOC emissions

S. Situ et al.

Table 1. WRF-Chem configuration.

<table>
<thead>
<tr>
<th>Process</th>
<th>WRF-Chem option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microphysics</td>
<td>Lin</td>
</tr>
<tr>
<td>Long-wave radiation</td>
<td>RRTM</td>
</tr>
<tr>
<td>Short-wave radiation</td>
<td>Goddard</td>
</tr>
<tr>
<td>Surface layer</td>
<td>Monin–Obukhov (Janjic) scheme</td>
</tr>
<tr>
<td>Land surface model</td>
<td>Noah LSM</td>
</tr>
<tr>
<td>Urban canopy model</td>
<td>Multi-layer, Building Environment Parameterization (BEP) scheme</td>
</tr>
<tr>
<td>Boundary layer scheme</td>
<td>Mellor–Yamada–Janjic TKE scheme</td>
</tr>
<tr>
<td>Cumulus parameterization</td>
<td>Kain–Fritsch (new Eta) parameterization scheme</td>
</tr>
<tr>
<td>Photolysis scheme</td>
<td>Fast-J</td>
</tr>
<tr>
<td>Gas-phase mechanism</td>
<td>CBM-Z</td>
</tr>
<tr>
<td>Aerosol model</td>
<td>MOSAIC</td>
</tr>
</tbody>
</table>

S. Situ et al.
Table 2. General meteorological conditions including surface pressure, temperature, wind speed and relative humidity during simulated period.

<table>
<thead>
<tr>
<th></th>
<th>Pressure (hPa)</th>
<th>Temperature (°C)</th>
<th>Wind speed (m s(^{-1}))</th>
<th>Relative humidity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>1011.9</td>
<td>19.5</td>
<td>1.8</td>
<td>66.0</td>
</tr>
<tr>
<td>Maximum</td>
<td>1018.4</td>
<td>23.7</td>
<td>4.7</td>
<td>91.0</td>
</tr>
<tr>
<td>Minimum</td>
<td>1000.8</td>
<td>15.0</td>
<td>0.4</td>
<td>40.0</td>
</tr>
</tbody>
</table>
Table 3. Description of model simulations.

<table>
<thead>
<tr>
<th>Simulation</th>
<th>Anthropogenic emissions</th>
<th>Biogenic VOCs emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>All anthropogenic emissions</td>
<td>All BVOCs</td>
</tr>
<tr>
<td>Case 1</td>
<td>No anthropogenic emissions</td>
<td>All BVOCs</td>
</tr>
<tr>
<td>Case 2</td>
<td>All anthropogenic emissions</td>
<td>No BVOCs</td>
</tr>
<tr>
<td>Case 3</td>
<td>All anthropogenic emissions</td>
<td>No isoprene</td>
</tr>
<tr>
<td>Case 4</td>
<td>All anthropogenic emissions</td>
<td>No BVOCs in outside PRD</td>
</tr>
<tr>
<td>Case 5</td>
<td>All anthropogenic emissions</td>
<td>No BVOCs in rural PRD</td>
</tr>
<tr>
<td>Case 6</td>
<td>All anthropogenic emissions</td>
<td>All BVOCs in 1–9 Jul</td>
</tr>
<tr>
<td></td>
<td>No anthropogenic emissions</td>
<td>All BVOCs in 1–9 Jul</td>
</tr>
</tbody>
</table>
Table 4. Verification statistics of meteorological simulations.

<table>
<thead>
<tr>
<th>Meteorological variable</th>
<th>Num</th>
<th>MEAN Obs</th>
<th>MEAN Sim</th>
<th>Bias</th>
<th>MAE</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWDOWN (W m(^{-2}))</td>
<td>1</td>
<td>163.8</td>
<td>229.8</td>
<td>64.2</td>
<td>82.9</td>
<td>152.0</td>
</tr>
<tr>
<td>2-m TEMP (°C)</td>
<td>9</td>
<td>19.5</td>
<td>20.7</td>
<td>1.2</td>
<td>1.4</td>
<td>1.6</td>
</tr>
<tr>
<td>10-m WSPD (m s(^{-1}))</td>
<td>9</td>
<td>1.8</td>
<td>3.9</td>
<td>2.2</td>
<td>2.2</td>
<td>2.4</td>
</tr>
<tr>
<td>2-m RH (%)</td>
<td>9</td>
<td>66.3</td>
<td>64.2</td>
<td>-2.1</td>
<td>8.5</td>
<td>8.5</td>
</tr>
</tbody>
</table>

SWDOWN: downward shortwave radiation; 2-m TEMP: temperature at 2 m; Obs: observation; Sim: simulation; MAE: mean absolute error; RMSE: root mean square error; Num: number of stations.
Table 5. The maximum impacts of BVOCs emissions on surface ozone in the PRD cities and the contribution from different regions (unit: ppb).

<table>
<thead>
<tr>
<th></th>
<th>FS</th>
<th>JM</th>
<th>ZQ</th>
<th>ZS</th>
<th>GZ</th>
<th>ZH</th>
<th>DG</th>
<th>SZ</th>
<th>HZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impacts</td>
<td>6.1</td>
<td>5.5</td>
<td>4.0</td>
<td>3.8</td>
<td>3.2</td>
<td>3.1</td>
<td>2.0</td>
<td>1.8</td>
<td>1.3</td>
</tr>
<tr>
<td>Outside</td>
<td>2.0</td>
<td>2.0</td>
<td>1.2</td>
<td>1.2</td>
<td>1.1</td>
<td>0.9</td>
<td>1.0</td>
<td>0.6</td>
<td>0.7</td>
</tr>
<tr>
<td>Rural</td>
<td>1.8</td>
<td>2.5</td>
<td>1.4</td>
<td>0.9</td>
<td>0.7</td>
<td>0.6</td>
<td>0.7</td>
<td>0.7</td>
<td>0.5</td>
</tr>
<tr>
<td>Central</td>
<td>2.3</td>
<td>1.0</td>
<td>1.4</td>
<td>1.7</td>
<td>1.4</td>
<td>1.6</td>
<td>0.3</td>
<td>0.5</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Outside: impacts of BVOCs from the outside PRD; Rural: impacts of BVOCs from the rural PRD; Central: impacts of BVOCs from the central PRD.
Fig. 1. Modeling domains topography, location of meteorological monitoring sites (star) and air quality monitoring sites (filled circle). Definition of the three regions: grey area is the outside PRD; green area is the rural PRD; yellow area is the central PRD.
Fig. 2. Spatial distributions of anthropogenic and biogenic emissions flux in the Pearl River Delta (PRD) region: (a) sulfur dioxide; (b) carbon monoxide; (c) nitric oxide; (d) total anthropogenic VOCs; (e) total biogenic VOCs.
Fig. 3. The simulated and observed hourly nitrogen dioxide (NO$_2$) and surface ozone at 4 PRD monitoring sites in November 2010 (the location of the sites are shown in Fig. 2).
Fig. 4. Diurnal variation of total BVOCs emission rate, surface ozone concentration with and without BVOCs emissions, and their difference Δ ozone over the PRD region.
Fig. 5. Spatial distributions of surface ozone at 15:00:00 LT in (a) control run and (b) in background run.
Fig. 6. Changes of the daytime ozone peak due to BVOC emissions: (a) spatial distribution of surface ozone changes due to BVOC emissions from the whole domain; (b) spatial distribution of surface ozone changes due to BVOC emissions from the outside PRD; (c) spatial distribution of surface ozone changes due to BVOC emissions from the rural PRD; (d) spatial distribution of surface ozone changes due to BVOC emissions from the central PRD.
Fig. 7. Maximum hourly impacts of BVOC emissions on the daytime ozone peak (a) in autumn and (b) in summer.
Fig. 7. Maximum hourly impacts of BVOC emissions on the daytime ozone peak (a) in autumn and (b) in summer.

Fig. 8. Diurnal variations of modeled surface ozone changes and BVOC emission rate at 4 monitoring sites. The red dashed line shows surface ozone changes (ppb) while the black solid line shows BVOC emission rate (mol km$^{-2}$ h$^{-1}$).
Fig. 9. Spatial distributions of the daytime ozone peak changes due to BVOC emissions under different meteorological conditions: (a) north wind condition; (b) calm wind condition; (c) south wind condition.
Fig. 10. Diurnal variation of the surface ozone increment in PRD cities due to BVOC emissions from different regions.
Fig. 11. Spatial distributions of (a) surface ozone and (b) the impacts of BVOC emissions on surface ozone at 15:00:00 LT in summer.
Fig. 12. Comparison of BVOCs impacts on surface ozone in PRD cities in summer and in autumn.