Supplemental Materials for "Variability in the oxidative capacity of the troposphere since the Last Glacial Maximum"
Evaluation of present-day ICECAP simulation

L. T. Murray*1, L. J. Mickley1, J. O. Kaplan2, E. D. Sofen3, M. Pfeiffer2, and B. Alexander3

1School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
2ARVE Group, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
3Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA
*Now at: Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA

1 Description of simulations used for evaluation

The main text introduces the model framework for ICE age Chemistry And Proxies (ICECAP), a project focused on paleo-chemistry at and since the Last Glacial Maximum. The framework includes the GEOS-Chem 3-D global chemical transport model (CTM; http://www.geos-chem.org), driven by archived meteorology from the NASA Goddard Institute for Space Sciences (GISS) ModelE general circulation model (GCM). Here we evaluate the performance of the present-day ModelE-driven simulation versus a standard suite of observations used to test chemical and physical processes (e.g., transport, convection, and wet deposition). We also compare our results with state-of-the-science GEOS-Chem simulations driven by two different assimilated meteorological products from the Goddard Earth Observing System (GEOS) of the NASA Global Modeling and Assimilation Office. The GEOS4 product consists of 6 h means for most fields and 3 h means for surface fields, with a horizontal resolution of 1° latitude by 1.25° longitude and with 55 layers in the vertical. The GEOS5 product (version 5.1.0) has the same temporal resolution as GEOS4 and a horizontal resolution of 0.5° latitude by 0.667° longitude with 72 layers in the vertical. For this evaluation, the GEOS4 and GEOS5 products are upscaled to 4° latitude by 5° longitude, and to 30 and 47 vertical layers, respectively.

1.1 SF6 simulation

Sulfur hexafluoride (SF6) is a trace gas of industrial origin that is chemically and physically inert on human time scales, with an atmospheric lifetime of 3200 years (Maiss and Brenninkmeijer, 1998). It is emitted primarily over industrialized regions of the northern hemisphere, and its meridional gradient is a useful test for meridional mixing (Rigby et al., 2010; Hall et al., 2011). It is also used with other long-lived gases to infer mean age of air in the stratosphere (Waugh and Hall, 2002). We perform three 43-year simulations of SF6 in GEOS-Chem, each using a single year of present-day ModelE.

*ltmurray@post.harvard.edu

1.2 Radionuclide simulation

Radon-222, lead-210, and beryllium-7 comprise the standard set of radionuclides used for evaluation of global atmospheric chemistry and climate models.

Terrigenous 222Rn is an inert, insoluble, short-lived (half-life 3.8 d) noble gas produced from the slow decay of 226Ra (half-life 1600 a) found in uranium ores. Its evasion from surface soils is relatively uniform and constant, but reduced when the surface is frozen. Its insolubility and time scale of decay make it a useful tracer for diagnosing quick vertical mixing within atmospheric models from moist convection and boundary layer mixing and ventilation (e.g., Allen et al., 1996; Brost and Chatfield, 1989; Considine et al., 2005; Feichter and Crutzen, 1990; Hauglustaine et al., 2004; Jacob, 1990; Jacob et al., 1997; Lambert et al., 1982; Mahowald et al., 1995; Stockwell et al., 1998).

| Table 1: Global budgets of radionuclides in GEOS-Chem simulations using different meteorology a |
|---------------------------------|----------------|----------------|----------------|
| | GEOS4 | GEOS5 | ModelE |
| **Rn-222** | | | |
| Global Burden, g | 193 | 192 | 188 |
| Troposphere | 193 (99.8%) | 192 (99.8%) | 188 (100.0%) |
| Stratosphere | 0.43 (0.2%) | 0.45 (0.2%) | 0.02 (0.0%) |
| Tropospheric residence time, d | 5.5 | 5.5 | 5.5 |
| Sources, g d$^{-1}$ | 35 | 35 | 34 |
| Sinks, g d$^{-1}$ | 35 | 35 | 34 |
| **Pb-210** | | | |
| Global Burden, g | 323 | 383 | 257 |
| Troposphere | 285 (88%) | 322 (84%) | 216 (84%) |
| Stratosphere | 38 (12%) | 61 (16%) | 41 (16%) |
| Tropospheric residence time, d | 8.6 | 9.7 | 6.7 |
| Sources, g d$^{-1}$ | 33 | 33 | 32 |
| Sinks, g d$^{-1}$ | 33 | 33 | 32 |
| Radioactive Decay | | | |
| Tropospheric | 0.02 (0%) | 0.03 (0%) | 0.02 (0%) |
| Stratospheric | 0.0 (0%) | 0.01 (0%) | 0.0 (0%) |
| Dry Deposition | 4 (11%) | 3 (11%) | 2 (7%) |
| Wet Deposition | | | |
| Stratiform | 10 (30%) | 10 (31%) | 12 (36%) |
| Convective | 20 (59%) | 19 (59%) | 18 (56%) |
| **Be-7** | | | |
| Global Burden, g | 16 | 16 | 15 |
| Troposphere | 3.8 (25%) | 4.4 (27%) | 5.5 (36%) |
| Stratosphere | 11.7 (75%) | 12 (73%) | 9.6 (64%) |
| Tropospheric residence time, d | 21.1 | 24.8 | 25.7 |
| Sources, g d$^{-1}$ | 0.33 | 0.33 | 0.33 |
| Cosmogenic | | | |
| Tropospheric | 0.14 (41%) | 0.13 (40%) | 0.15 (44%) |
| Stratospheric | 0.2 (59%) | 0.2 (60%) | 0.19 (56%) |
| Sinks, g d$^{-1}$ | 0.33 | 0.33 | 0.34 |
| Radioactive Decay | | | |
| Tropospheric | 0.05 (15%) | 0.06 (17%) | 0.07 (21%) |
| Stratospheric | 0.15 (46%) | 0.16 (47%) | 0.13 (37%) |
| Dry Deposition | 0.01 (3%) | 0.01 (3%) | 0.01 (3%) |
| Wet Deposition | | | |
| Stratiform | 0.04 (12%) | 0.04 (11%) | 0.04 (12%) |
| Convective | 0.08 (24%) | 0.07 (22%) | 0.1 (29%) |

a Parentheses give percentage of total global burden, source, or sink

Radiogenic 210Pb is the chemically-inert decay daughter of 222Rn. It is readily taken up by submicron aerosol particles and subsequently removed from the atmosphere by deposition or decay (Bondietti et al., 1988; Maenhaut
Cosmogenic 7Be is produced by the cosmic ray spallation of N_2 and O_2, predominantly in the polar upper troposphere and lower stratosphere (UT/LS) (Lal et al., 1958). Like 210Pb, it is rapidly taken up by submicron aerosol particles (Bondietti et al., 1988; Maenhaut et al., 1979; Papastefanou, 2009; Papastefanou and Ioannidou, 1996; Sanak et al., 1981). It is subsequently transported until removal by rainout or surface deposition in the troposphere, or by radioactive decay (half-life 53.3 d). 7Be has been used to constrain vertical transport, wet deposition fluxes, and stratosphere-troposphere exchange (STE) in models (e.g., Allen et al., 2003; Brost et al., 1991; Koch et al., 1996; Liu et al., 2001; Liu et al.; Barrett et al., 2012).

Table 1 gives the atmospheric budget of simulations in GEOS-Chem of these three radionuclides driven by meteorology from ModelE (4 years of present-day meteorology), and the GEOS4 (2004-2006) and GEOS5 (2004-2006) assimilated products. Emissions of ^{222}Rn within GEOS-Chem are those of Jacob et al. (1997). We simulate the source of 7Be using the parameterization of Usoskin and Kovaltsov (2008) for mean solar activity, which leads to an average production of 0.064 atoms cm$^{-2}$ s$^{-1}$; about 60% in the stratosphere and 40% in the troposphere. Figure 1 evaluates the source of 7Be in the model by showing concentrations of UT/LS 7Be in the model versus aircraft observations for 1957-1983 from the Department of Energy RAdioNuclide DAtaBase (RANDAB). The model distributions match those of the RANDAB dataset ($R^2 = 0.48$-0.53). In the the region of greatest production, the extratropical lower stratosphere, the models are all biased low by 10-13% relative to the observations, although well within the range of observed variability.
1. Full chemistry simulation

We also analyze the present-day ozone-NO\textsubscript{x}-CO-VOC-BrO\textsubscript{x}-aerosol simulation as described in the main text driven by ModelE (using three years of 1990s meteorology) and GEOS4 meteorology (1994-1996). Both simulations have identical anthropogenic emissions. We use identical treatment of natural emissions, and modify the standard GEOS4 simulation to be consistent with the ModelE-driven simulation (e.g., lightning uses a global NO\textsubscript{x} yield per flash, and is not constrained to satellite observations). Total emissions and their distribution therefore differ with the different meteorology.

2. Evaluation

2.1 Horizontal Mixing

Figure 2 shows the observed meridional gradient of SF\textsubscript{6} in monthly mean flask samples of surface air from NOAA, relative to the concentration at American Samoa (SMO) in the remote tropical southern Pacific. Also shown is each simulation sampled as in the observations, and the zonal mean gradient. In all simulations, GEOS-Chem overestimates the meridional gradient in SF\textsubscript{6} by 60-100%. This suggests that the inter-hemispheric mixing rate in the model is too slow, and/or that the EDGAR inventory overestimates the emissions growth rate in the northern hemisphere relative to the southern hemisphere. However, the difference between the ModelE and GEOS simulations with identical emissions indicates that GEOS-Chem driven by ModelE has about a 25% slower rate of meridional mixing than by the GEOS simulations.
2.2 Vertical Mixing

2.2.1 Troposphere

We assess vertical mixing within the troposphere using vertical profiles of ^{222}Rn, and ratios of $^7\text{Be}/^{210}\text{Pb}$ in surface air. Figure 3 shows simulated climatological ^{222}Rn profiles sampled at the month and location of available observations, also plotted. Observations are scarce and available only at northern extratropical continental locations. In an overly-convective atmosphere, the vertical gradient of ^{222}Rn would disappear. In all of our simulations, there is a slight overestimate within the boundary layer and underestimate above, implying a small underestimate in boundary layer ventilation. Our results are comparable to or better than other CTMs/GCMs (e.g., Considine et al., 2005). All three simulations represent the climatological median of the measurements well, especially above the boundary layer. ModelE reproduces the ^{222}Rn distribution the best of the three models (ModelE $R^2 = 0.46$; GEOS5 = 0.34; GEOS4 = 0.42), particularly in the upper troposphere.

Figure 4 shows the annual mean surface concentration of ^7Be simulated with mean solar activity, surface ^{210}Pb, and their ratio. Given the difference in the source regions for the two molecules, and that the ratio of $^7\text{Be}/^{210}\text{Pb}$ is unaffected by deposition, the ratio serves as a useful measure of vertical mixing in the troposphere (Koch et al., 1996). A persistent high bias would indicate excessive downward transport and/or insufficient upward transport, assuming no bias in either source. The filled circles represent measurements from surface monitoring stations of the DOE Environ-
Figure 4: Mean GEOS-Chem surface concentrations of ^7Be (left column) and ^{210}Pb (center column), and the $^7\text{Be}/^{210}\text{Pb}$ ratio (right column). Filled circles show the long-term mean observations from the DOE SASP network. The ^7Be observations have been selected for periods of average solar activity.

Environmental Measurements Laboratory (EML) Surface Air Sampling Program (SASP) (http://www.nbl.doe.gov/htm/EML_Legacy_Website/). SASP recorded the spatial and temporal distribution of various radionuclides in surface ambient air from 1957 until 1999, including ^7Be and ^{210}Pb. For comparison with our simulations, we select data from periods of average solar activity (solar modulation potential $\Phi = 670 \pm 50$ MV from the Usoskin et al. (2005) reconstruction). Surface concentrations of both ^7Be and ^{210}Pb are lower in the ModelE simulation, consistent with the shorter lifetime against deposition. The $^7\text{Be}/^{210}\text{Pb}$ ratio is higher in the polar regions and lower in the tropics than in the GEOS simulations, which imply less tropical mixing and more polar vertical mixing in the ModelE simulations.

2.2.2 Stratosphere

Figure 5 shows the simulated zonal distributions of the annual mean age of air in the stratosphere, which is defined as the mean time since air at a particular point in the stratosphere was last in the troposphere (Hall and Waugh, 2000). Age of air increases away from the tropopause and equator, where most tropospheric air enters the stratosphere (Holton et al., 1995). We determine age of air by using SF_6 as a chronological tracer (Waugh and Hall, 2002) to determine the average temporal lag between a concentration at given location in the stratosphere relative to the tropical upper troposphere. We use the period 1995-2012, in which the atmospheric burden of SF_6 grew linearly in our simulations.

Most models underestimate the stratospheric age of air implied by observations of CO_2, SF_6, and HF, which increases up to 7 years by 35 km in the poles (Waugh and Hall, 2002). GEOS-Chem using ModelE is most accurate in reproducing...
the average age of air implied from the observations. However, the shallower meridional gradient of ModelE indicates a stronger “leaky pipe” (e.g., Ray et al., 2010) and more poleward flow in the lower tropical stratosphere than in either GEOS model. Coupled with an overly vigorous stratosphere-troposphere exchange (next section), this apparently allows for more efficient transport from the tropical to the Antarctic troposphere via the lower stratosphere, and leads to an overestimate of stratospheric ozone concentrations in the extratropical lower stratosphere.

2.2.3 Stratosphere-Troposphere Exchange

Beryllium-7 has often been used as a tracer of downward transport from the stratosphere (Dibb et al., 1992, 1994; Husain et al., 1977; Rehfeld and Heimann, 1995; Sanak et al., 1985; Viezee and Singh, 1980) and as an indicator of STE performance within global atmospheric models (Allen et al., 2003; Liu et al., 2001; Liu et al.; Barrett et al., 2012).

Figure 6 shows the annual zonal fraction of 7Be of stratospheric origin in each simulation. Using GEOS4 and GEOS5 meteorology, we find that 24-26% of annual average surface midlatitude concentrations of 7Be is of stratospheric origin, consistent with the Dutkiewicz and Husain (1985) constraint of 25% from 7Be/90Sr for 38-51°N. For ModelE using QUS, we find a slight underestimate of 20-25%. However, the fraction throughout the polar free troposphere in the ModelE-driven simulation is much higher than in the GEOS simulations, implying a larger stratosphere-to-troposphere mass flux. The amount of 7Be over Antarctica in ModelE of stratospheric origin is roughly double that of either GEOS simulation. Our results are similar to the NASA Global Modeling Initiative (GMI) CTM driven by GISS Model II’ meteorology (Liu et al.).

We found that application of the GISS QUS winds to the standard TPCORE advection scheme in GEOS-Chem originally lead to much larger overestimates in stratosphere-troposphere mixing, as small inconsistencies in the the horizontal mass fluxes manifest as large vertical fluxes. This problem was apparent in earlier GEOS-Chem simulations using GISS Model III meteorology, especially at the poles, (e.g., Wu et al., 2007), but as the cross-tropopause flux of
ozone in those simulations was prescribed, it was less of an issue in those studies. To allow for online stratospheric chemistry in this study, we found it necessary to implement the QUS advection scheme within GEOS-Chem.

2.3 Wet Deposition

Figure 7 (right column) compares the mean \(^{210}\)Pb wet deposition flux in each simulation with that of the long-term mean aggregated from rainfall collectors, soil cores, and snow samples by Preiss et al. (1996) aggregated to the model resolutions. GEOS-Chem captures the magnitude and global spatial distribution of the \(^{210}\)Pb deposition flux, with the exception of the East Asian outflow. Wet deposition of \(^{210}\)Pb in the GEOS simulations is biased by -16% and -26%, and by -16% in the ModelE simulation versus the observations. If we neglect the observations over the Japanese archipelago, which may reflect in situ production of \(^{210}\)Pb on mineral dust aerosol (Fukuda and Tsunogai, 1975) that we do not simulate, the GEOS simulations remain similarly biased (-13 to -28%), but ModelE is now positively biased by +7%. Altogether, these results imply a small low bias in the \(^{210}\)Pb source (and therefore \(^{222}\)Rn emission), although the results are clearly sensitive to precipitation distributions.

We find a tropospheric residence time for \(^{210}\)Pb-containing aerosols against deposition in our ModelE-driven simulation of 7.2 d, shorter than with GEOS4 (9.5 d) or GEOS5 (11 d) meteorology for 2004-2006, but within the range of previous estimates, 6.5-12.5 d (Turekian et al., 1977; Lambert et al., 1982; Balkanski et al., 1993; Koch et al., 1996; Guelle et al., 1998b,a; Liu et al., 2001).

Figure 7 (left column) examines the modeled \(^{7}\)Be wet deposition fluxes, compared against the few available observations (Baskaran et al., 1993; Bleichrodt, 1978; Brown et al., 1989; Dibb, 1989; Du et al., 2008; Harvey and Matthews, 1989; Hasebe et al., 1981; Hirose et al., 2004; Igarashi et al., 1998; Narazaki and Fujitaka, 2010; Nijampurkar and Rao, 1993; Olsen et al., 1985; Papastefanou et al., 1995; Schuler et al., 1991; Turekian et al., 1983; Wallbrink and Murray,
Figure 7: GEOS-Chem annual average aerosol wet deposition flux for 7Be (left column) and 210Pb (right column). Each row uses different meteorology. The filled circles show observed values aggregated to the model resolution.

1994, and references therein). The wet deposition flux is increased in our ModelE simulation relative to the GEOS simulations, particularly over the midlatitude oceans. This result reflects the higher stratosphere-to-troposphere mass flux in ModelE, which increases the fraction of the 7Be burden in the troposphere relative to the stratosphere. It also derives from greater precipitation in regions of stratospheric downwelling, which increases the fraction of 7Be lost by deposition rather than by radioactive decay. Compared to observed values of 7Be, the ModelE-driven simulation shows a bias of +33% while GEOS4 and GEOS5 yield biases of -22% and -26%. The spread in biases shows the difficulty in modeling precipitation accurately, as well as large variability in the observed fluxes induced by the solar cycle.

We find a lifetime of tropospheric 7Be against wet deposition of 40 d in our ModelE simulation, which is consistent with our GEOS5 simulation, and longer than our GEOS4 simulation (32 d). These lifetimes are all longer than prior findings, e.g., 23 d (Koch et al., 1996) and 21 d (Liu et al., 2001), but within the variability expected from the sensitivity of the calculation to model vertical resolution and tropopause definition, as the 7Be burden straddles the tropopause.

2.4 Hydroxyl Radical

To assess OH concentrations in the model, we examine the lifetime and/or distributions of relatively long-lived molecules whose main sink in the troposphere is OH. We find that the lifetime of methyl chloroform (MCF) against tropospheric
OH is 6.0 years in the CTM driven by present-day meteorology from ModelE, matching the observed constraint of $6.0^{+0.5}_{-0.4}$ years from Prinn et al. (2005). The simulated methane lifetime against loss by tropospheric OH is 10.4 years, which agrees with the best estimate of $10.2^{+0.9}_{-0.7}$ years derived from the MCF data (Prinn et al., 2005), recent multi-model estimates of 10.2 ± 1.7 (Fiore et al., 2009) and 9.8 ± 1.6 (Voulgarakis et al., 2013) years, and an estimate of 11.2 ± 1.3 years derived from methane observations (Prather et al., 2012). The present-day simulation captures the observed meridional gradient of CO in the southern hemisphere. Like most other models (Shindell et al., 2006), our simulations underestimate the CO gradient in the northern hemisphere by about a third, for reasons that are uncertain (Figure 8).

2.5 Ozone

Figure 9a shows that total ozone columns (TOC) over the tropics (30°S-30°N) in the ModelE-driven simulations have a small bias (+1.5%) against 1990-1999 mean TOC from the TOMS/SBUV merged total ozone data set, version 8, revision 3 (available online at http://acd-ext.gsfc.nasa.gov/Data_services/merged/). Data from the Aura satellite allow for isolating the stratospheric and tropospheric contributions to TOC (Ziemke et al., 2011). Figure 9b shows that over the tropics (30°S-30°N), where the stratosphere has its greatest influence on tropospheric photochemistry, the simulated stratospheric columns of ozone (SCO) agree within 5% of the Ziemke et al. (2011) satellite climatology (mean bias ModelE: +0.2%; GEOS4: +4.8%). Extratropical SCO is overestimated by up to 100% in both simulations, particularly over the southern hemisphere, resulting from overly strong meridional air mass fluxes in the lower stratosphere from the tropical regions of net photochemical production (Section S2.2.2 and S2.2.3). Figure 9c shows tropospheric columns of ozone (TCO). ModelE and GEOS4 are biased low by 20% and 9% in the tropics versus the 2000s TCO climatology from OMI/MLS (Ziemke et al., 2006). The overly vigorous stratospheric-troposphere exchange in ModelE leads to a cross-
Figure 9: Annual average total ozone columns (TOC; top panel), stratospheric columns of ozone (SCO; middle panel), and tropospheric columns of ozone (TCO; bottom panel). The left column shows ozone columns determined from GEOS-Chem driven by three years of present-day GISS ModelE meteorology. The center column shows satellite climatologies of TOC in the 1990s from the TOMS/SBUV TOMS/SBUV merged data, the 2004-2010 SCO climatology from the Microwave Limb Sounder (MLS) (Ziemke et al., 2011), and the 2005-2011 TCO climatology from OMI/MLS (Ziemke et al., 2006). The right column shows ozone columns in GEOS-Chem driven by GEOS4 meteorology for 1993-1996. All units are Dobson Units (DU). Tropopause determined in the simulations using thermal lapse rate for comparison with satellite stratospheric and tropospheric products.

Tropopause flux of ozone from the stratosphere that is approximately 40% higher in the CTM driven by ModelE than GEOS4. This causes large overestimates in tropospheric ozone in the extratropics (+46% from 60°S-30°S and +44% from 30°N-60°N), particularly during the spring months. On the other hand, GEOS4 is biased low in the extratropics (-32% from 60°S-30°S and -12% from 30°N-60°N) due to the recent inclusion of bromine chemistry in the model. Figure 10 compares the modeled ozone profiles against all available ozonesondes for the 1990s from the World Ozone and Ultraviolet Radiation Data Center (WOUDC; http://www.woudc.org), using the zonal bands and pressure levels from Stevenson et al. (2006). Most of the tropical bias occurs in the free and upper troposphere, and is within the range of observed variability. GEOS4 is biased low in the extratropics with the recent inclusion of bromine chemistry in the model. The ModelE biases in the extratropics are again consistent with the overestimate of stratosphere-troposphere exchange.

In summary, GEOS-Chem driven by ModelE for the ICECAP project recreates the global lifetimes of MCF and methane against oxidation by tropospheric OH implied by observation (better than GEOS simulations), and has very small bias in its tropical overhead stratospheric ozone columns. Its greatest limitation is in an overly vigorous mass flux.
Figure 10: Comparison of the annual cycle of ozone observations (black dots) and model results (colored lines), sampled for different latitude bands (90°S–30°S, 30°S to equator; equator to 30°N, and 30°N–90°N) and different pressure levels (750, 500, and 250 hPa). The models are sampled at the same sites and with the same frequency as the observations. The bars for each observation are the average of the interannual standard deviations at each station.

from the stratosphere, which creates large biases in extratropical tropospheric ozone. It also underestimates the ozone burden in the tropical upper troposphere. Future projects using the ICECAP framework will increase the horizontal and vertical resolution of the GCM to improve mass transport, and/or the model top pressure (van Velthoven and Kelder, 1996; Austin et al., 1997; Rind et al., 1999).
References

