We thank both reviewers for their time and effort and their helpful and constructive comments. The original comments by the reviewers are in color. Our reply is in black.

There was apparently a problem with the page and line numbering in the review by Michael Prather. Now, both the page and line numbers indicated in the original review and the page and line numbers corresponding to the numbering of the published manuscript in ACPD are given. We thank the reviewer for revising his page and line numbers.

In addition to the changes requested by the reviewers, we have made some further changes. Two new tables were added. Table 7 shows the response in time-integrated global mean surface air temperature to an emission pulse. Table 5 provides the coefficient to represent the multi-model mean responses by sums of exponentials. The responses as simulated by individual models were also fitted. The coefficients are tabulated in the supplementary information for all models and for the responses in CO₂. Results of the fits are compared with the model output in a complementary figure provided in the supplementary. Figure 5 (new figure 6) was adjusted; the results for the 5000 GtC pulse were scaled by a factor 1/50. This allows the reader to better compare the results for the 100 GtC versus the 5000 GtC pulse. A few groups slightly revised their output; all numerical values in the MS were checked again and revised where necessary. Revisions in numerical values are minor and do not affect our conclusions.

The revised manuscript is attached (see supplement). All changes in the text are highlighted in color using the “track change mode” of the text editor program.

Review by S. E. Schwart

Overview

This manuscript compares the radiative forcings and temperature changes attributable to emissions of CO₂, normalized to emissions, as evaluated by multiple groups that participated in a model intercomparison using carbon-cycle models and coupled carbon-climate models. Results are presented as so-called global warming potentials, global temperature change potentials, and the like. For example the normalized forcing (absolute global warming potential) of CO₂ integrated over a 100-year time horizon is reported as 92.7×10^{-15} yr W m$^{-2}$ per kg CO₂, with very likely (5-95%) confidence range $(70$ to $115) \times 10^{-15}$ yr W m$^{-2}$ per kg CO₂.

My principal concern with the manuscript is that the models that participated in the intercomparison are more or less similar, for the most part descendents or variants of the so-called Bern model of Siegenthaler, Oeschger, Joos, and colleagues (Joos et al., 1996).

A common feature of these models is that the amount of CO₂ in the atmosphere attributable to a pulse of emitted CO₂ in excess of the natural (preindustrial) amount decreases with a continually decreasing fractional rate, with a substantial fraction of this excess CO₂ (ca 20%) remaining in the atmosphere for
millennia. This treatment of the decrease of excess CO\textsubscript{2} is dominant in the current literature. However it is based entirely on models that assume a more or less static carbon cycle, with the long-time excess fraction being governed mainly by the amount of emitted CO\textsubscript{2} not taken up by ocean inorganic chemistry following equilibration with the gas phase and complete mixing in the ocean.

We disagree with the reviewer. Unlike stated by the reviewer, most of the models applied in this study are fundamentally different from the early generation carbon models used in the first two IPCC assessments. The exceptions are MAGGICC, ACC2 and Bern-SAR that apply the perturbation approach (Oeschger et al., Tellus, 1975, Joos et al, Tellus, 1996) to describe excess carbon uptake by the ocean. The other models rely on dynamic ocean circulation models and dynamic global vegetation models and include the marine biological cycle and the natural cycling of carbon within the ocean and land as detailed in Table 3, in the appendix, and the underlying literature.

Simpler representations of the impulse response function of CO\textsubscript{2} as a single exponential decay that are based on the observed rate of uptake of CO\textsubscript{2} by the oceans and terrestrial biosphere (difference between emissions and increase of atmospheric CO\textsubscript{2}) are not included in the intercomparison. The single time scale approach is in conflict with observations. Please see our reply regarding the single life time model below.

Also excluded is a recent model study that shows much greater shortterm (100-year) persistence of atmospheric CO\textsubscript{2} than is exhibited in the models examined. We did not include this model. However, unlike stated by the reviewer, the persistence of atm. CO\textsubscript{2} after a pulse input is not greater than by the models examined here. Please see our detailed response below.

The restriction of the intercomparison to this subset of representations of the carbon cycle greatly narrows the range of expected long-term forcing commitment by emitted CO\textsubscript{2} and the range of outcomes of alternative future CO\textsubscript{2} emission scenarios. I elaborate on this concern below. For these reasons I think that the uncertainty in present knowledge of the fate of excess CO\textsubscript{2} in the atmosphere is much greater than would be inferred from the present manuscript. In my judgment this situation has major implications on the publishability of the manuscript as it stands.

I have numerous additional specific concerns with the manuscript, detailed below. I also raise some issues of terminology and nomenclature pertinent to the present paper but that go well beyond the present paper and offer suggestions which, if adopted, would greatly enhance the present paper and the field more generally.

Please see our point-by-point reply.

Major concern
To my thinking the key results of the study are presented in Figure 1a, which shows the impulse response function (IRF, fraction of a pulse of emitted CO\textsubscript{2} present in the atmosphere as a function of time subsequent to emission) for a CO\textsubscript{2} emission pulse of 100 GtC added to an atmospheric background concentration of 389 ppm for a range of Earth system models, Earth system models of intermediate complexity, and so-called reduced-form models. For time horizon 100 years, a useful time horizon for policy purposes, the fraction of the emitted pulse remaining in the atmosphere is 0.41. The uncertainty on this number from the spread of the model results does not seem to be explicitly stated (in contrast, the uncertainty *is* given for the time integrated IRF). I would encourage the authors to give it also for the IRF at 100 years. Looking at the figure it seems to be ± 0.1 or so.

Done. Value and uncertainty in IRF for t=100 is 0.41±0.13 as stated at the beginning of section 4.1
So is the cup half empty or half full? If this were the whole story, I would say that the cup is definitely half full, maybe even more than half, in the sense that the research community could report to the policy community that if emissions of CO2 were halted today or at some point in the near future, one could expect something like 60% of the excess CO2 and associated forcing to disappear within 100 years. (I recognize that the models tell us that the decrease of the present excess is not exactly the same as the decrease of a pulse, but I would argue that that difference is of second order because most of the excess CO2 is fairly new).

However, I do not think that the whole story is represented by Figure 1. My major concern with the figure and the manuscript in general is the limited set of models examined, all of which are multicompart models, as specified in the protocol for the intercomparison, which is usefully included in the supplementary material, as follows:

The model must be able to compute the redistribution of anthropogenic carbon among the principal carbon reservoirs atmosphere, land biosphere, and ocean.

This requirement effectively precludes observationally driven models such as those of Moore and Braswell (1994) and Jacobson (2005).

This statement is not true. The ensembles by the GENIE and Bern3D-LPJ models are observationally driven. The parameters in these models were determined such as to match a set of target observations within uncertainties. Further, as noted by the reviewer further below, we were also open to include a linear programming approach that is also explicitly constrained by observations.

In the case of the Bern3D-LPJ ensemble, the parameter distribution within a sample of 5000 simulations is constrained by the following broad set of observations in a probabilistic approach:

- Seasonal CO2 (GLOBALVIEW-CO2) Average seasonal cycle at nine sites.
- fAPARa (SeaWiFS) Seasonal climatology (2-D field)
- NPP (EMDI class A) Estimates from about 80 sites worldwide.
- NPP (FLUXNET) Estimates from about 140 sites worldwide.
- Soil C Low/mid-latitude soil carbon content 2-D field south of 50N
- High latitude soil carbon content 2-D field North America, north of 50N
- Global soil carbon content
- Vegetation carbon. Estimates from about 140 sites worldwide.
- Global vegetation carbon inventory 550±200 GtC
- WOA Temperature (T) Surface (2-D) and 3-D climatological fields
- WOA Salinity (S) Surface (2-D) and 3-D climatological fields
- WOA Phosphate (PO4) Surface (2-D) and 3-D climatological fields
- GLODAP Alkalinity (Alk) Surface (2-D) and 3-D fields (1995)
- GLODAP CFC-11 Surface (2-D) and 3-D fields (1995)
- GLODAP Dissolved inorganic carbon (DIC) Surface (2-D) and 3-D fields (preindustrial)
- GLODAP 14C Surface (2-D) and 3-D fields (preindustrial)
- CO2 Atm. record from ice-core analysis; Time series 1850-1958
- Direct atm. pCO2 measurements, Time series 1959-2010
- SAT anomaly; Northern hemisphere SAT (HadCRUT3) Annual mean time series 1850-2010
- Southern hemisphere SAT (HadCRUT3) Annual mean time series 1850-2010
- Ocean heat Ocean heat content anomaly, Global mean time series 1955-2011 (0-700 m)
- Ocean heat content anomaly; Global mean time series 1993-2008 (0-700 m)
- Ocean heat uptake; Global mean 2005-2010
Obviously, this approach includes much more observational constraints than considered by the study of Jacobson 2005; Jacobson uses the recent rise in atmospheric CO$_2$ as a single constraint.

In this respect the following quotations from the recent review by Archer et al. (2009), the authorship of which exhibits considerable overlap with the authorship of this manuscript, are apt:

If fossil fuel CO$_2$ in the atmosphere was expected to diminish according to linear kinetics, then it would be possible to calculate the lifetime simply using the present-day excess CO$_2$ concentration in the atmosphere (~100 ppm or 200 Pg C) and the natural uptake rate, currently ~2 Pg C yr$^{-1}$ (petagrams of carbon per year) each into the oceans and into the land biosphere. Dividing the inventory by the flux yields an apparent lifetime of 50 to 100 years, depending on whether the terrestrial uptake is counted in addition to the oceanic uptake. This type of calculation has been most recently presented by Jacobson (2005), who determined an atmospheric lifetime of 30 to 95 years. For the nonlinear CO$_2$ uptake kinetics, as predicted by carbon cycle models, however, this apparent lifetime would increase with time after the CO$_2$ is released. Some CO$_2$ from the release would remain in the atmosphere thousands of years into the future, and the atmospheric lifetime of the CO$_2$, calculated at that time, would be thousands of years.

The extent and longevity of the climate impact from CO$_2$ release will also depend on transient uptake by the terrestrial biosphere, which takes up 2 Pg C year$^{-1}$ today and shortens the apparent lifetime of CO$_2$, but which could become saturated in the coming decades, leaving pCO$_2$ to follow the slower uptake kinetics of the ocean (Moore & Braswell 1994). If the terrestrial biosphere, including soil carbon, turned into a new source of CO$_2$ to the atmosphere at some point in the future (Friedlingstein et al. 2006), then it would act to prolong the apparent lifetime of CO$_2$. In addition, high plant primary productivity in a high-CO$_2$ world may also act to enhance the rate of weathering of soil minerals and bedrock, leading to an acceleration of CO$_2$ uptake by silicate weathering, the slowest and ultimate sink for fossil fuel CO$_2$ (Lenton & Britton 2006).

Note that the arguments against the rapid, observationally derived removal rates are theoretical, "as predicted by carbon cycle models" or hypothetical "If the terrestrial biosphere, including soil carbon, turned into a new source of CO$_2$ to the atmosphere at some point in the future," the latter with a citation to Friedlingstein et al. (2006), which paper also has substantial overlap in authorship with the manuscript under review here. A 50 year lifetime of excess CO$_2$ would result in an IRF at year 100 of 0.14, well below the range represented in Figure 1 of the manuscript.

![Figure S3b](https://example.com/figure_s3b.png)
Portion of Figure S3b in the supplementary material of Allen et al. (2009), showing (dashed line) the mixing ratio of atmospheric CO$_2$ following abrupt cessation of emissions in year 2000.

In the other direction, I call attention to a study by Allen et al. (2009), again with significant overlap in authorship with the manuscript under review here, in which a box-diffusion carbon cycle model was used to calculate CO$_2$ mixing ratio following abrupt cessation of emissions in year 2000. The finding of that study, shown in the figure below, is that there is essentially no decline in CO$_2$ mixing ratio...
over the first hundred years, in great contrast with the results reported in this manuscript. If this model had been included in this study, the range of uncertainty would have been greatly extended upwards. It would thus seem that restricting the analysis of the future course of atmospheric CO2 presented in this manuscript to carbon cycle models that met certain criteria, and then inferring the uncertainty from the spread of the results from the models examined, was a recipe for severely limiting the uncertainty.

My point in noting overlapping authorship between the present manuscript and the several studies mentioned is to stress that the authors of the present manuscript should be well aware of these alternative approaches to determining the fate of excess carbon dioxide in the atmosphere. Hence if the present article is to be an assessment of the state of understanding of this important scientific issue rather than a report about an exercise with a fairly constrained set of models, the authors have an obligation to broaden the scope of the models examined or alternatively to inform the reader that they have deliberately restricted the set of models and to detail the consequences of that restriction with respect to the inferences that can be drawn from the study.

This consideration has implications for example even on the concluding statement of the article (page 19829, line 17):

Independent from the choice of emission metric, the long life time of the anthropogenic CO2 perturbation implies that anthropogenic emissions of CO2 must be reduced if greenhouse gas forcing and anthropogenic climate change are to be stabilized.

This statement and its position at the conclusion of the manuscript certainly implies that the authors intend for their paper to be of greater significance than a report of a comparison of a restricted subset of models.

In fairness to the authors, the discussion of constraining the integrated IRF from estimates of the airborne fraction of emitted CO2 over the twentieth century (structural uncertainty) and its implications, pages 19817-19818, is a strong complement to the assessment of uncertainty based on the range of models that participated in the intercomparison exercise. One can do this calculation on the back of an envelope. Assume an exponential decay for excess CO2 and assume a lifetime. Ask what is the integrated IRF for 100 years (or equivalently the AGWP (which is the product of integrated IRF and normalized forcing Ax). The average integrated IRF (for values of lifetime of excess CO2 40, 50, ... 100 yr that are consistent with the airborne fraction of CO2 in twentieth century observations that served as the basis of the Moore-Braswell and Jacobson studies cited above) is 52 yrs ± 18% (1-σ) virtually identical with the 52.4 yr the multimodel mean in Table 4. However although the integrated IRF is highly constrained by these considerations, the IRF itself, which is perhaps more policy-relevant than the integrated IRF (or AGWP), is not well constrained, with values at t = 100 years ranging (for the above set of lifetimes) from 0.08 to 0.37 (average 0.23 ± 45%, 1-σ) and exhibiting a much lower central value and greater range than the model results shown in Figure 1a.

With respect to the publishability of this manuscript, restricted scope of the paper presents a quandary. It certainly seems worthwhile to publish the results of the intercomparison study, but it would seem essential that the authors strongly qualify their findings by noting that the design of the study effectively limited the range of uncertainty that was found and point out that other approaches to the determination of the rate of decrease of atmospheric CO2 yield results that differ greatly from those reported in the present study.
We disagree with the view of the reviewer that the uncertainty ranges given in this study are not appropriate.

We agree with the reviewer that it is important to estimate uncertainties ranges. This should be done with care and by using available information and observations to the extent possible. Providing too small uncertainty ranges is misleading. Equally misleading is to provide too large uncertainty estimates.

First, we discuss the model presented by Allen et al., Nature, 2009. The following statement and thus the conclusions drawn by the reviewer are wrong: In the other direction, I call attention to a study by Allen et al. (2009), The finding of that study, shown in the figure below, is that there is essentially no decline in CO2 mixing ratio over the first hundred years, in great contrast with the results reported in this manuscript.

Unlike suggested, it is not appropriate to compare the results for an experiment where emissions increase over the industrial period and are stopped at 2000 AD with the results of an impulse experiment in the case of the model used by Allen et al.

As detailed in the Supplementary Information of Allen et al., their “very simple climate model” assumes that

1) 15% of emissions are removed instantaneously from the atmosphere
2) 25% of emissions are removed with an e-folding time scale of about 200 years
3) 50% of emissions are removed by diffusion
4) 10% of emissions stay airborne for millennia

Term 1 and 2 alone bring the fraction of the initial CO2 pulse remaining airborne to 0.75 within 100 year and to 0.62 within 500 year. Term 3 reduces the airborne fraction further.

As stated by Allen et al. “With appropriate choices of parameters this model can reproduce the response of more complex ESMs to a pulse injection of CO2”

Next, we discuss the single life time model of Jacobson. The model of Jacobson (2005) is in conflict with observations and not adequate to represent a perturbation of the global carbon cycle.

Jacobson represents the carbon cycle by assuming that CO2 decays in the atmosphere according to a first order reaction:

$$\frac{dCO2(t)}{dt} = E(t) - \frac{CO2(t)}{\tau}$$

Here, CO2 is the atmospheric concentration, E anthropogenic carbon emissions, and τ a timescale. It is no surprise that this single equation works to represent the atmospheric CO2 increase over the industrial period. This increase is driven by approximately exponentially increasing emissions. It is basic calculus that many systems with a wide range of intrinsic time scales respond to an exponential forcing exponentially and with a single "apparent" time scale.
The agreement of this model with the 20th century atmospheric CO$_2$ record is not a sufficient justification for the single time scale model. To illustrate this we construct a model that is as simple as possible and constrained by atmospheric CO$_2$ and get a "constant airborne fraction model":

$$\Delta CO_{2,atm}(t) = c \cdot I_{\text{Emission}}(t)$$

Where $\Delta CO_{2,atm}$ is the perturbation in the atmospheric CO$_2$ inventory, c is a constant (the airborne fraction of the recent decades, about 0.5) and I_{Emission} the time-integrated anthropogenic carbon emissions. Both the constant airborne fraction model and the single time scale model are able to approximately match the observed CO$_2$ record for the carbon emission history from fossil and land use sources. However, both models are purely diagnostic, applicable to approximately exponential forcing only, and do not represent the functioning of the global carbon cycle.

The single life time model is in conflict with observations.

a) It is known that CO$_2$ is chemically stable under current environmental conditions and not oxidized as other chemical species (e.g. CH$_4$). Thus, CO$_2$ does not undergo a first order decay.

Anthropogenic carbon is redistributed among the major carbon reservoirs in the Earth System. These are the ocean with an inventory of 38000 GtC, the atmosphere (280 ppm =590 GtC; 390 ppm=828 GtC), vegetation on land (~600 GtC) and soils (~3000 GtC). The marine biosphere (3 GtC) is too small and exchange with ocean sediments and the geosphere occur on multi-millennial time scales.

b) CO$_2$ is exchanged between the atmosphere and the mixed-layer of the ocean where it reacts with water to form carbonate and bicarbonate ions. The air-sea exchange rate is approximately known from experiments and observations (e.g., Wanninkhof, JGR, 1992) and the typical time scale to equilibrate the surface layer with an atmospheric perturbation is about 1 year. The carbonate chemistry in the ocean is well known (Zeebe and Wolf-Gladrow, 2001) and observational data firmly establish the relationship between pCO$_2$ (or fCO$_2$, the fugacity), dissolved CO$_2$, bicarbonate and carbonate ions. (Revelle and Suess, 1957) showed that the Revelle factor (or buffer factor) which is defined by the relative change in pCO$_2$ divided by the relative change in dissolved inorganic carbon (Delta-pCO$_2$/pCO$_2$,0)/(Delta-DIC/DIC0) is about 10. This means that the relative change in dissolved inorganic carbon is ten times smaller than the relative change in pCO$_2$ in a water parcel. Accordingly, the relative perturbation in the oceanic concentration is ten times smaller than the perturbation in pCO$_2$. (We note that the Revelle factor increases with increasing CO$_2$).

Any observation-informed model considers these text-book relationships (Dickson et al., 2007; Stumm and Morgan, 1996) between pCO$_2$, dissolved CO$_2$, bicarbonate and carbonate ions and the equilibration between atmospheric CO$_2$ and the dissolved species in the ocean.

The assumption of the single life-time model of Jacobson that the atmospheric concentration will simply relax back to the preindustrial concentration with a multi-decadal time scale is not justified and not in accordance with basic chemistry data and the limited volume of the ocean.
Can transport processes within the ocean be approximated with a single time scale? There is the GLODAP data base on CDIAC which includes CFCs and radiocarbon data sampled over the past decades (Key et al., 2004). These data show that mixing time scales for the upper thermocline are decadal and mixing time scales for the deep ocean are multi-centennial. The lowest radiocarbon ratios of dissolved inorganic carbon are found in the deep Pacific with values that are about 240 permil or so lower than the atmosphere or about 200 permil lower compared to the surface ocean. This corresponds to a water age of roughly 1800 years.

The assumption of the Jacobson model that the CO\textsubscript{2} sink follows a single time scale is in conflict with oceanic tracer data (e.g., CFCs and radiocarbon).

The implicit assumption of the Jacobson model that the deep ocean is ventilated with a time scale of order 50 years is in conflict with radiocarbon observations.

c) Carbon uptake by the land occurs through photosynthesis and the related conversion of CO\textsubscript{2} to organic carbon. Carbon release occurs through oxidation (autotrophic, heterotrophic, fire) of organic material back to CO\textsubscript{2}. Carbon sink processes in the land biosphere include forest regrowth and woody encroachment, fertilization of plant growth by increased availability of fixed nitrogen and higher CO\textsubscript{2} concentrations. Manipulative experiments indicate the potential magnitude of C and N fertilization (e.g., (Norby et al., 2010)). Similarly as for the ocean, radiocarbon data indicate that there are multiple time scales for soil overturning that are in the range from years to centuries (e.g., (Gaudinski et al., 2000)).

In summary, the single life time model is in conflict with radiocarbon data (and other tracer data) and with first order principles of chemistry.

We recall that we applied 15 different carbon cycle-climate models spanning the full model hierarchy from reduced form models to state-of-the-art Earth System Models as well as a linear programming approach to estimate time integrated IRF and AGWP. Unlike stated by the reviewer, most of these models are fundamentally different from the early generation carbon models used in the first two IPCC assessments.

We recall that the GENIE and Bern3D-LPJ ensembles and the linear programming approach were explicitly constrained by observations.

In conclusion, the uncertainty range presented in this manuscript is appropriate and reflects our observational-based understanding of the carbon cycle. We do not include the erroneous single time scale model of Jacobson and the very simple model of Allen et al approximately falls within the uncertainty limits provided in the manuscript.
Specific comments

Page 19805, eq (2). In the definition of AGWP the authors choose to leave the quantity A_x, which they denote as the radiative forcing per kg increase in atmospheric abundance of gas x, inside the time integral. In principle this is correct. This normalized forcing might depend on the amount of gas x or other gases in the atmosphere (through overlap of lines) on global mean temperature (through interaction of radiation with clouds) and many other variables that are dependent on secular time. In practice these dependences are not well known if known at all, and even if they were known it would be arbitrary or hard to sort them out and apportion them to the different forcing agents. Hence A_x is generally treated as a constant, as the authors do later on in the manuscript at page 19806, line 12. It would thus seem that the authors might just as well discuss this matter here and bring the A_x outside the integral right away.

$$AGWP_x(TH) = \int_0^{TH} RF_x(t)\,dt = \int_0^{TH} A_x IRF_x(t)\,dt = A_x \int_0^{TH} IRF_x(t)\,dt$$

The last equality explicitly shows the AGWP for a given time horizon to be the product of the radiative forcing associated with an increment of abundance of the gas and the impulse response function integrated over the time horizon, readily displaying the two contributions to the AGWP and allowing the contributions to the uncertainty in the AGWP to be readily identified.

Pulling the A_x out of the integral at this stage would make the definition of AGWP much more transparent and might also help the authors better draw the distinction between AGWP (which they denote "an integrated metric") and AGTP (which they denote "an instantaneous (end-point) metric") made at page 19810, which I discuss later.

One might note that the unit of RF_x (and for that matter A_x) is W m$^{-2}$ kg$^{-1}$ consistent with the unit of AGWP being W yr m$^{-2}$ kg$^{-1}$. At this point I would only note that the AGWP as defined in eq (2) of the manuscript is an intensive property of a gas, that is a property of the gas itself and not dependent on the amount of gas introduced into the atmosphere, at least to first order. Definition of such a property (which goes back at least to Shine et al., 1990) is very useful for comparing different gases. As noted below I recommend also that the expression for the specific forcing for CO2, A_{CO2}, that is used later in evaluations of the AGWP be given here and not in the results section.

See also below my objection to the use of multi-letter symbols for quantities in algebraic equations.

Page 19805, eq (2). : Partly done: We did not change equation 2, but we state at the end of the following paragraph:

“For sufficiently small emissions and approximately constant background conditions the radiative efficiency, A_e, can be approximated as time-invariant.”

The approximation of a constant A_e does not hold for time varying backgrounds or large pulses as for example documented in figure 5 and 6 of the revised manuscript. Thus, we keep equation 2 unchanged.
The relation for CO$_2$ radiative forcing is introduced here as requested by the reviewer:

“...The radiative forcing by a perturbation in the atmospheric burden of CO$_2$, ΔN_{CO_2}, relative to a reference burden, $N_{\text{CO}_2,0}$, is parameterized following (Myhre et al., 1998):

$$RF_{\text{CO}_2}(\Delta N_{\text{CO}_2}) = 5.35\, W\, m^{-2}\, \ln\left(\frac{N_{\text{CO}_2,0} + \Delta N_{\text{CO}_2}}{N_{\text{CO}_2,0}}\right)$$

(3)

This yields for small perturbations:

$$RF_{\text{CO}_2}(\Delta \text{CO}_2(t)) = 5.35\, W\, m^{-2}\, \frac{\Delta N_{\text{CO}_2}}{N_{\text{CO}_2,0}} = A_{\text{CO}_2} \cdot \Delta N_{\text{CO}_2}$$

for $\Delta N_{\text{CO}_2} \to 0$

(4)

Thus in the limit of a small perturbation, the radiative efficiency of CO$_2$ is $5.35\, W\, m^{-2}$ divided by the constant reference burden and thus itself a constant."

Page 19808, line 16. It appears that the authors meant to say CO$_2(t_0)$ [not CO$_2(t)$] is the is the atmospheric CO$_2$ inventory at a time when the system was in (approximate) equilibrium.

P 19808, line 16: Done. thank you, corrected

Page 19808, line 17 and elsewhere: The term "equilibrium" formally denotes a state in which the requirement of detailed balance is met, namely that all net fluxes on all paths are zero, a given flux from a particular reservoir negated by an equal flux in the opposite direction. The authors certainly mean "steady state", although the term "equilibrium" is widely used in this context. If the authors prefer to use the customary "equilibrium", I suggest that they at least qualify its meaning at first use.

P 19808, line 17: Done. “equilibrium changed to “steady state” everywhere where appropriate

Page 19809, line 20. The definition of the quantity $R(t)$, denoted by the authors as "response in T to a unit change in radiative forcing" is erroneous, incomplete, and confusing. First, it is the change in (global mean surface) temperature at time t that results from a forcing applied at time $t = 0$, that is to say, it is a temporally displaced response; this property of the quantity is not mentioned in the definition. Second, the quantity $R(t)$ must be the response (at time t) not to a unit forcing (as stated in the manuscript) at time $t = 0$ but to a delta function forcing applied at time $t = 0$. Formally, this can be seen from examination of the dimension of eq (10). The dimension of the LHS is temperature change per emitted mass [unit, K kg$^{-1}$]; on the RHS the quantity $RF(t)$ is forcing at time t due to emission of 1 kg of material at time $t = 0$, [W m$^{-2}$ kg$^{-1}$]; cf. Eq (2) of the manuscript, discussed above; the integral is over time [yr]; so the quantity $R(\text{TH} - t)$ must have dimension temperature per forcing per time [K (W m$^{-2}$)-1 yr$^{-1}$]. Hence R is not a response to a unit forcing; it is a response (at time t) to a short forcing (at time $t = 0$) such that the integral of the forcing over time is 1 W m$^{-2}$ yr.

That said, the AGTP defined in eq (10) is, like the AGWP, an intensive property of a given gas.
11

Page 19809, line 20: Done. Text clarified to read: “where $R(t)$ is the temporally displaced response in T to a δ-function change in radiative forcing at time $t=0$.

Page 19810, line 3: The authors try to draw a distinction between the AGTP (absolute global temperature potential), which they denote an "instantaneous (end-point) metric," and the AGWP (absolute global warming potential), which they denote an "integrated metric." I do not see any difference in the nature of the two quantities. The AGWP is the integral of the forcing from the time of emission of 1 kg of material to the time horizon, or equivalently the amount of energy taken up by the planet (per square meter) as a consequence of the emission of 1 kg of material. The AGTP is the change in global mean surface temperature from the time of emission of 1 kg of material to the time horizon as a consequence of the emission of 1 kg of material. I suggest either the authors delete the point or offer a more persuasive explanation of the difference.

Page 19810, line 3: Done. Text deleted as suggested

Page 19819, line 7: The expression for A_{CO_2} given here depends on the Myhre (1998) expression for forcing given later in the page (line 23), but actually in a new subsection that deals with response in surface air temperature, ocean heat uptake and steric sea level, not forcing. Given the central importance of both these expressions I recommend that they be broken out instead of inline. The inline equation is correct but cumbersome. Actually, as the Myhre expression for CO2 forcing was known prior to the present study (indeed, well prior), it is strange that this expression is given here, in the results section. I recommend it be given much earlier in the paper, back at Eq (2) where the quantity Ax is introduced.

Page 19819, line 7: Done. The radiative forcing equation for CO$_2$ developed by Myhre et al is introduced now in section 2.1 and given by the new equation 3 and 4 in the limit of small perturbations (see response above to “Page 19805, eq (2)”).

The text here has been extended to include a reference to these two new equations: “Here, A_{CO_2} is computed for an atmospheric background of 389 ppm and in the limit of a small perturbation by using the derivative of the simplified radiative forcing expression of (Myhre et al., 1998) (Equation (3) and (4) and converting ppm into kg-CO$_2$/kg-C): $A_{CO_2} = 5.35 \text{ W m}^{-2} \text{ (389 ppm)}^{-1} \times (2.123 \times 10^{12} \text{ kg-C/ppm})^{-1} \times (12 \text{ kg-C / 44 kg-CO}_2) = 1.77 \times 10^{-15} \text{ W m}^{-2} \text{ kg-CO}_2^{-1}$.”

Page 19819, line 9-14: Here and in Table 4 it would seem that the authors need to pay much closer attention to specifying the meanings of the uncertainties. The IPCC AR4 $\pm 10\%$ uncertainty in radiative forcing of CO2 (Forster et al., 2007 p. 131), which denotes the 5-95% range ($\pm 1.64 \sigma$) of the probability distribution function for the forcing, would seem to be the source of the 0.1 that is given in the radical at line 14 along with the 49% (0.49) that is attributed to the uncertainty in integrated impulse response function. Table 4 gives for the 100 yr time horizon the best estimate for time integrated airborne fraction as 52.4 yr and gives the "average of ranges in % of the multi-model mean" as 48.8%, which I take to be the source of the 0.49 in the radical. However the table states that the 5-95% confidence range in the best estimate for time-integrated radiative forcing of CO2 is (39.6-65.2) yr. Likewise the abstract states that the normalized forcing by CO2 integrated over a 100-year time horizon is $92.7 \times 10^{-15} \text{ yr W m}^{-2} \text{ per kg CO}_2$, with very likely (5-95%) confidence range (70 to 115) $\times 10^{-15} \text{ yr W m}^{-2} \text{ per kg CO}_2$.

11
These uncertainty ranges correspond to ± 24.4%, not ± 48.8%, so there would seem to be some inconsistency here that needs to be resolved. This uncertainty is discussed also at page 19818, lines 20-26, where it is stated that the average uncertainty range (for IRF at TH = 100 yr) is 26 yr, or 49% relative to the best estimate 52.4 yr. The manuscript states:

[T]hese approaches yield an average uncertainty range of 26 yr or of 49% for the 100-yr integrated response (Table 4). We assume that this average range represents approximately a 5–95% confidence range and that it is symmetrically distributed around the 25 multi-model mean to arrive at our best estimates for the mean and 5–95% confidence range for the time-integrated IRFCO2.

This may be the source of the problem. If the authors are expressing the uncertainty as a ± to combine with the similarly expressed uncertainty in the forcing, then it would seem that the 49% range must be divided by 2.

However perhaps more important is the ± 10% uncertainty associated with CO2 forcing which the authors take at face value from AR4 (Forster et al., 2007). Although this uncertainty is hoary with age and burnished by repetition, it hardly seems an accurate estimate of the uncertainty that actually attaches to present knowledge of this forcing. Recently Andrews et al. (2012) compared CO2 forcings and climate response of 15 atmosphere-ocean general circulation models (GCMs) that participated in the CMIP-5 model intercomparison. Forcing and temperature response coefficient were inferred from the output of the model runs respectively as intercept and slope of a graph of net top-of-atmosphere energy flux versus global mean temperature anomaly subsequent to a step-function quadrupling of atmospheric CO2. (Because the model experiments examined response to a quadrupling of CO2, rather than a doubling, the intercept had to be divided by 2 to obtain the forcing pertinent to doubled CO2). The forcing is interpreted as an "adjusted forcing" that includes rapid adjustments, mainly of atmospheric structure, that modify the TOA radiative flux on time scales shorter than a year or so. A key finding of the Andrews et al. study is the spread of values of forcing exhibited by the different GCMs, 16%, 1-σ. The spread in forcing is a consequence of differing treatments of the radiation transfer in the several models as well as different treatments of clouds that interact with radiation. As the forcing inferred from the analysis of Andrews et al. is an adjusted forcing, it appropriately reflects differences among the models in rapid (1 yr) response of atmospheric structure to the imposed forcing. This spread in forcings inferred from the climate model runs is substantially greater than the uncertainty specified in the IPCC AR4, which gives a 5–95% confidence range (± 1.64 σ) of ± 10%; i.e., 1-σ uncertainty 6.1%.

That there is such a range of forcing as inferred from GCM runs should not come as much of a surprise. For example, although the Radiative Transfer Model Intercomparison Project (Collins et al., 2006) reported a 1-σ spread in longwave forcing at 200 hPa among the GCMs compared of only 8.5%, that study was restricted to cloud-free atmospheres, with the reason given that "the introduction of clouds would greatly complicate the intercomparison exercise," from which one infers that the spread of forcing in a model with clouds would greatly exceed that in an idealized cloud-free model. Hence the finding of a 1-σ spread of some 16% in the forcings (i.e., 5-95% range ± 26%, much greater than the ± 10% reported by AR4) is likely as accurate an assessment of the maximum level of confidence that can be placed in this quantity at present. It would thus seem that it is this uncertainty that should be combined (in quadrature) with the uncertainty in impulse response function to get an accurate measure of the uncertainty in integrated forcing.
P 19819, line 9-14: part a) Done. Thank you for pointing out this inconsistency. The text has been changed to read: “The uncertainty in the radiative efficiency of CO$_2$ is given as ±10% in the IPCC TAR and AR4 (90% confidence interval; see page 140 of (Forster et al., 2007)) and guided by the spread in published estimates. An uncertainty of ±10% translates to an uncertainty range of 20%. The overall uncertainty in $AGWP_{CO2}$ is only slightly larger than that for IRF_{CO2} as the uncertainty in A_{CO2} is much smaller than that of the time integrated IRF_{CO2}. Assuming quadratic error propagation, the uncertainty range in $AGWP_{CO2}(TH=100\ yr)$ is 53% ($\sqrt{0.49^2+0.2^2}=0.53$) compared to 49% of the integrated IRF_{CO2}.

Part b) magnitude of uncertainty range:

We disagree with the reviewer that our uncertainty estimate for the radiative forcing parameterization is too small.

The conclusion of the reviewer that the spread in CO$_2$ radiative forcing in models with and without cloud is much different is not justified. Clouds can greatly reduce the magnitude of radiative forcing due to greenhouse gases, but this does not necessarily increase the spread in radiative forcing calculations and recent studies included clouds (Iacono et al., 2008, Oreopoulos et al., 2012).

Uncertainties in radiative forcing in GCMs are often larger than the uncertainty assumed here and in IPCC AR4 for the radiative forcing parameterization of Myhre and colleagues. However, the point is that we are computing the radiative forcing from the Myhre et al parameterization (equation 2 and 3). What matters is thus the uncertainty in this parameterization and not the uncertainty of the radiative forcing as implemented in GCMs. Foster et al., 2007, page 140 states: “Collins et al. (2006) performed a comparison of five detailed line-by-line models and 20 GCM radiation schemes. The spread of line-by-line model results were consistent with the ±10% uncertainty estimate for the LLGHG RFs adopted in Ramaswamy et al. (2001) and a similar ±10% for the 90% confidence interval is adopted here.

However, it is also important to note that these relatively small uncertainties are not always achievable when incorporating the LLGHG forcings into GCMs. For example, both Collins et al. (2006) and Forster and Taylor (2006) found that GCM radiation schemes could have inaccuracies of around 20% in their total LLGHG RF (see also Sections 2.3.2 and 10.2).”

Page 19819, line 23. As noted above, the forcing equation given here should be given earlier and given its central importance might be broken out instead of in-line. It might also be motivated better.

The 47.1 in the equation comes from 100 G ton corresponding to 47.1 ppm, but that is not stated.

The 389 in the equation is particular to the starting point of the calculation. This equation is central to the derivation of the ACO2 given earlier in the page (in a prior subsection). As noted earlier, I think all of this material should be moved up toward Eq (2).
Equations are given in line in section 2.1 and the text here is modified to read: “The response in radiative forcing to the 100 GtC pulse (equivalent to 47.1 ppm) corresponds to a step increase by 0.61 W m\(^{-2}\) at year 0, followed by a decrease to 0.26 W m\(^{-2}\) at year 100 and to 0.15 W m\(^{-2}\) at year 1000. These values are computed from the multi-model mean \(IRF_{CO2}\) with the help of equation (3) and for a reference mixing ratio of 389 ppm \((RF(t)=5.35 \text{ W m}^{-2} \ln((389 \text{ ppm} + IRF_{CO2}(t)) \times 47.1 \text{ ppm})/389 \text{ ppm})).”

Page 19820. Did any of the results presented in Figure 2a use the analytical method involving the \(R\) function of Eq (10)? It is stated that Fuglestvedt (2010) used this approach. If that approach was used here, it would seem essential that the \(R\) function be presented, discussed, and justified. If not, perhaps Eq (10) could be omitted and the concern over the definition of \(R\) (see comments above re p. 18906) thereby be finessed.

It is not clear why the "equilibrium" temperature response to these forcings is presented. I guess it is for the comparison with the transient results. But then it would seem more relevant to present the "equilibrium" temperature increase for the several times and forcings not for the "mid-range climate sensitivity of 3 °C" as at line 1 but for the sensitivities of the individual models, perhaps as symbols on Figure 2, so that one might assess how close a given model is to its own "equilibrium" temperature change for that forcing.

The point about fluctuations in temperature in several of the models is important, namely that these fluctuations are characteristic of the control runs. As I examined the figure I had been trying to understand the possible reasons for the fluctuations. That said, I am puzzled why the fluctuations seem to be concentrated at the beginning of the run with little high frequency variation beyond 100 years (where, with the compression of the time axis, they would be expected to appear with much higher frequency on the graph).

Page 19821, line 23: Done. a) The evolution of temperature is simulated by the models and eq. 10 is not used to compute AGWP. This is already clearly stated below equation 10: “It is also possible to estimate \(AGTP_{CO2}\) and \(IRF_{CO2}\) directly from a climate-carbon cycle model in response to a pulse emission. This is done in this study with the suite of carbon-cycle climate models.”

b) equilibrium SAT response: The text has been clarified to read: “What magnitude in the SAT response is to be expected from this forcing? The equilibrium response in global mean surface air temperature (SAT) to these forcing values are 0.49°C (year 0), 0.21°C (year 100) and 0.13°C (year 1000) when assuming for illustrative purposes a typical mid-range climate sensitivity of 3°C for a nominal doubling of CO\(_2\).”

c) SAT variability: The following sentence was added to the MS for clarification: “We note that the three Earth System Models were run over the first 100 years only.”

Page 19822, line 26 to page 19823, line 1. “The response of the land biosphere carbon inventory is associated with considerable uncertainties. It is currently not clear whether the land will continue to act as a strong carbon sink or whether climate change will lead to a loss of land carbon that overwhelms the potentially positive influence of elevated atmospheric CO\(_2\) and nitrogen input on net primary productivity and carbon stocks.” This is an important point.
P 19822, line 26: Done. no action requested.

Page 19826, lines 8-9. "However, the most important factor that determines the time-integrated IRFCO2 and AGWP is the choice of time horizon." This is of course no surprise. It is a consequence of the definition. But it is surprising that it is the concluding sentence of the results section. I refer the authors to my discussion of average IRF vs integrated IRF, below.

P 19822, line 8-9: We agree that this is no surprise, but we feel it remains important to spell this out for a wide audience.

Page 19827, line 18-21. "The subjective choice of the time horizon dominates uncertainties in the absolute global warming potential of CO2 and related uncertainties in global warming potential 20 of most other agents. The uncertainty in AGWP (in units of yr Wm−2 per kg CO2) can be mapped to an uncertainty in the time horizon (in units of year)." Again, the time horizon that is used is up to the user; the "subjective choice" of time horizon is not a source of uncertainty in the usual sense that the term is employed in science.

P 19822, line 18-21: Done. Text clarified to read: “The subjective choice of the time horizon has a much larger influence on the range in absolute global warming potential of CO2 and in the global warming potential of most other agents than uncertainties associated with the computation of these values for a given time horizon. The uncertainty in AGWP (in units of yr W m−2 per kg-CO2) can be mapped to a range in the time horizon (in units of year).”

Page 18927, line 26. "in the IPCC report"; suggest give year, chapter; even better table number.

P 19827, line 26: Done. Reference added as requested: “in the IPCC report (Table 2.14, page 212 in (Forster et al., 2007)) GWP are tabulated”

Page 18927, line 27 and Table 7. I am not sure this table belongs in this paper at all. But if it is to be included, I would certainly recommend that the Ax values of the several gases be presented as these, together with the IRFs are the fundamentally relevant quantities. Likewise the AGWPs (or better the integrated and/or average IRFs) are more fundamental than the GWPs. Elsewhere (Schwartz, 2012) I have argued that the GWP concept be abandoned in favor of AGWPs, as changing the denominator because of improved understanding of forcing or IRF of CO2 has the effect of changing the GWPs of gases other than CO2 even though there has been no change in the understanding of the properties of those gases. The present revision of GWPs is just another instance of the consequences of expressing scientific quantities in non-standard units (i.e., multiples of the AGWP of CO2). This point is underscored by Figure 7.

In Figures 1-3 gray shading is used to show the uncertainty range of quantities of interest. It would be of great value to include this gray shading in Figure 7, as I have done in the figure below, from which it is seen that the range of impulse response profiles of the models examined by Joos et al. encompasses and indeed well exceeds the range of all the impulse response profiles from the prior IPCC reports. So even with the limited subset of carbon cycle models examined in the current study, the uncertainty in the carbon cycle dominates the uncertainty in the GWPs of all non-CO2 gases. This finding underscores the shifting sands that constitute the foundation on which the GWP edifice is built. The discussion (lines 10-20) of the differences between the several IPCC IRFs and that of the multi-model mean of the
The present study is of course rendered moot because of the large spread in IRFs associated with the models that contribute to the multi-model mean.

Table 7 shows the ratio of GWP(TH) to the GWP(TH=100). The radiative efficiency A_x does not enter this calculation. Thus, we do not add A_x to this table as it is irrelevant.

The point of this table is to underscore that the choice of the time horizon is important when comparing GHG emissions in a basket approach.

We do report AGWP in table 4 and we added the following text in section 2.1 to underscore the disadvantage of reporting GWP:

“Forster et al., 2007 (page Table 2.14, page 212) report the GWP of many gases and for different time horizons. A problem related to reporting GWP only is that each update in AGWP$_{CO2}$ affects the reported GWP values of all other gases. This could be easily avoided by reporting Absolute Global Warming Potentials in addition to GWP.”

The reason for the differences in the different IRFs are described in the submitted version (and kept in the revised version): “The responses published in the SAR and the AR4 are lower than the multi-model model mean response of this study. This is predominantly due to the smaller pulse size and lower CO$_2$ background in the SAR and AR4 setup. The time-integrated IRF$_{CO2}$ for the AR4 (Bern2.5D-LPJ) and SAR (Bern-SAR) models under the setup of this study (Table 4) are with 49 and 51 yr only slightly lower than the multi-model mean of 52 yr at year 100. We do not find indications that there are systematic differences in IRF$_{CO2}$ between models of different complexities such as EMICs and comprehensive Earth System Models.”

This discussion is not moot as it demonstrates that the reason for the update in the IRF form SAR to AR4 is mainly related to differences in the setup of the IRF experiment and a consequence of the rapidly rising atmospheric CO$_2$ and not due to the choice of models. As the purpose of figure 7 is to illustrate the revision in the IRF compared to previous assessment we do not see the point to add the grey uncertainty range. In our opinion, this range would distract from the intended message of the figure.

Relation to prior work

A key prior model intercomparison is that reported in Archer et al. (2009), which included some of the same models (as well as some of the same authors) of the present study. It would seem appropriate in the introduction to distinguish the two intercomparisons and in the discussion to compare and contrast results. Perhaps there are other intercomparison studies that should be similarly distinguished and compared.

Relating to prior work: Done. Text in section 3 reads: “5000 GtC is of the same order as available conventional (coal, oil, gas) fossil carbon resources and has been used in past pulse experiments (e.g. Archer et al., 2009; Eby et al., 2009). This experiment is thus indicative of the long-term consequences for burning all conventional fossil resources.”

Text in discussion sections reads: “An emission of 5000 GtC is an extreme case in the context of Global Warming Potential (GWP), though within reach when burning all fossil resources. Such large pulses are also used in other studies to assess the evolution in the CO$_2$ perturbation over several..."
centuries and up to 10,000 years (Archer et al., 2009; Eby et al., 2009). These studies also find a long-lasting perturbation in atmospheric CO$_2$.

Figures, tables, appendix

The figures are well drawn. The tables are informative. It is useful to have the descriptions of all the models (given in the Appendix) in one place, but perhaps these (and associated citations) might be relegated to the Supplementary Material rather than take up (magnetic) space in the article itself.

Figures, tables, appendix: no changes applied.

Definitions and terminology

The terms "global warming potential" and "absolute global warming potential" as defined and used in the present manuscript and in the literature in general are of course misnomers. They do not quantify warming, an increase in temperature. They quantify forcing over a period of time. Thus, despite the widespread use of these terms in the literature, as a reviewer of the present manuscript I feel an obligation to note that these terms are misnomers and encourage the authors to use more appropriate terminology, and the editor to insist on this.

As is made clear in the manuscript under review, the quantity denoted as the "absolute global warming potential" AGWP is the integrated forcing by a gas over a specified time period (horizon), normalized to the amount of emitted gas. Thus it denotes and quantifies integrated forcing. It has units W yr m$^{-2}$ kg$^{-1}$, the integral of forcing (W m$^{-2}$) over time (yr), per emitted material (kg). I suggest that the authors and the community more broadly denote the quantity as "normalized integrated forcing" or "specific integrated forcing," the qualifying adjective "normalized" or "specific" denoting that the integrated forcing is per mass of emitted material. This is an intensive property of a substance; that is, it does not scale with the amount of material (although, as discussed in the manuscript, it may be weakly dependent on the amount of material, for example because of saturation of absorption lines or dependence of the rate constants of chemical or biochemical processes on the concentration of material). One can then speak of a committed integrated forcing that would result from the emission of a given mass of the substance, evaluated as the normalized integrated forcing times the mass of emitted material, units W yr m$^{-2}$, an extensive property of the substance because it scales with the amount of material. Both of these quantities would be functions of the upper limit of the time of integration.

Definitions and terminology: paragraph 1 and 2: It is beyond the scope of this paper to redefine the terminology used by different scientific communities.

The manuscript under review and the literature in general (and well beyond atmospheric science, into electronics and the like) use the term "impulse response function" IRF to refer to the signal at time $t_0 + t'$ due to an impulse at time t_0 and normalized to the strength of the impulse. With specific reference to emission of substances into the atmosphere the IRF denotes the fraction of material emitted at time t_0 that remains in the atmosphere at time $t_0 + t'$, a function of t' and perhaps weakly dependent on t_0 and on the amount of material emitted. The use of this terminology in atmospheric science seems appropriate. The term impulse response function might similarly be used to refer to other time-dependent quantities such as forcing and temperature change that result from a pulse emission of material at time t_0, again normalized to the amount of emitted material, not just to the
fraction of emitted material itself. Such use of the term is also made in the manuscript, I think appropriately, for example the impulse response of global mean temperature normalized to a unit emission of a given substance, page 19809, line 13.

The IRF of the amount of material in the atmospheric reservoir plays a special role. This IRF is dimensionless, the fraction of material emitted at time t_0 that is present in the atmosphere at time t' subsequent to emission.

Definitions and terminology: paragraph 3 and 4: reviewer agrees with current manuscript – no changes applied as definitions, explanations, and units are already included in the MS.

The time integral of an impulse response function over a period of time, which has dimension time and unit year, is referred to in the present manuscript somewhat cumbersomely as "time-integrated airborne fraction" or "time-integrated IRF." The end point of the integration is denoted in this community as "time horizon." The time integrated IRF is strongly dependent on the time horizon. Initially this integral scales linearly with the time horizon. As the material is depleted from the atmosphere the integrated IRF is no longer proportional to the time horizon, but falls off from that proportionality. Ultimately, if and when the material is completely depleted from the atmosphere, the integrated IRF becomes a constant. For this reason, at least over the period for which the IRF is non-zero and the integral is increasing, it might make sense to divide the integrated IRF by the time horizon to obtain the average IRF over the time horizon. This would make sense especially in the case of CO2, for which in the models examined here, the IRF does not reach zero for time horizons of interest, extending out to millennia.

The integrated IRF scales roughly with time and thus exhibits a strong dependence on time horizon, as shown in the excerpt from Table 4 of the manuscript, below, and as commented on at page 19826, lines 8-9, "However, the most important factor that determines the time-integrated IRFCO2 and AGWP is the choice of time horizon." This dependence is wholly a consequence of definition. In contrast to the integrated IRF, the average IRF, the average fraction of emitted material that remains in the atmosphere over the time horizon, is a much more constrained quantity, bounded between 0 and 1 and decreasing with time horizon, and much less strongly a function of time horizon than the integrated IRF. This property of the IRF readily allows comparisons within the table both down and across, obviating the need for mentally normalizing to the time horizon. For this reason I would advocate the quantity being reported and tabulated be the average IRF, not the integrated IRF.

Definitions and terminology: paragraph 5 and 6: average IRF: We appreciate that the average IRF is more constrained and easier to compare in the case of CO2. However, we like to keep the time-integrated IRF as (i) this quantity forms the basis for the computation of AGWP, (2) the averaged IRF values might be more easily confused with the instantaneous values of the IRF.

Nomenclature

As a reviewer I must express distress over the use of multi-letter symbols (acronyms) such as GWP, RF, TH to denote quantities in algebraic equations in the manuscript under review. This usage flies against long accepted practice in the scientific community. The authoritative document published by the International Union of Pure and Applied Physics, "Symbols, Units, Nomenclature and
Fundamental Constants in Physics" (http://metrology.wordpress.com/measurement-process-index/iupap-redbook/index-iupap-red-book/) states: "Symbols for physical quantities should be single letters of the Latin or Greek alphabet with or without modifying signs (subscripts, superscripts, primes, etc.). The two-letter symbols used to represent dimensionless combinations of physical quantities [e.g., Reynolds number, Re] are an exception to this rule." This practice is a long established convention in physical science that leads to improved clarity and communication. As a reviewer I would encourage the authors to adhere to this convention (despite the widespread practice otherwise in the GWP community), and if they choose not to, I would encourage the Editor to insist that they do so. This notation can get confusing, as the authors themselves seem to concede at page 19809, line 20 where, with reference to their equation 10,

$$AGWP_x(TH) = \int_0^TH R_x(t) R(TH-t) dt$$

they state: "where $R(t)$ is the response in T to a unit change in radiative forcing and not to be confused with IRF T,x." While they are at it, I would encourage the authors to use an upright (roman) symbol x to denote the name of the gas; why upright? because slant (italic) is conventionally used to denote a quantity that has numerical value; upright is used as an identifier. Later on in Eq 9 the upright symbol is used, appropriately, for CO2. Finally, on quantities and units, the relevant quantity for expression of the amount of CO2 in theatmosphere is molar mixing ratio in dry air (not concentration, which is amount of material per volume), with unit part/part, e.g., μmol(CO2)/mol(air), commonly denoted ppm (no v, erroneously for volume)(Keeling et al., 1976; Schwartz and Warneck, 1995).

Nomenclatura:

As this paper is not only intended for physicists, we keep the conventional multi-letter notation. This notation is also used in other Copernicus publications (see e.g. Boucher, O.: Comparison of physically- and economically-based CO2-equivalences for methane, Earth Syst. Dynam., 3, 49–61, doi:10.5194/esd-3-49-2012, 2012.) .

Thank you. We use now an upright font for the symbol x.

Thank you. We removed this typo and use now ppm throughout.

Selected references

Revelle, R., and Suess, H. E.: Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades, Tellus, 9, 18-27, 1957.
