Supplementary materials for
“Latitude-time variations of atmospheric column abundances of CO₂, CH₄ and N₂O”

Ryu Saito¹, Prabir K. Patra¹, Nicholas Deutscher²,⁶, Debra Wunch³, Kentaro Ishijima¹, Vanessa Sherlock⁴, Thomas Blumenstock⁵, Susanne Dohe⁵, David Griffith⁶, Frank Hase⁵, Pauli Heikkinen⁷, Esko Kyrö⁷, Ronald Macatangay⁶, Joseph Mendonca⁸, Janina Messerschmidt⁷, Isamu Morino⁹, Justus Notholt², Markus Rettinger¹⁰, Kimberly Strong⁸, Ralf Sussmann¹⁰, and Thorsten Warneke²

Figure S1: Comparisons of TCCON measurement (black dots) and ACTM-simulation smoothed by averaging kernels and a priori profiles (red dots) for X_CO₂ at all the sites considered in this study. Only a sub-set of sites are presented in Fig. 4.
Figure S2: Same as Fig. S1, but for time series of X_{CH_4}.
Figure S3: Same as Fig. S1, but for time series of X_{N2O}.
Figure 4: Variations in bias b between seasons: January-March (JFM; black), April-June (AMJ; red), July-September (JAS; blue) and October-December (OND; green).
Figure S5: Seasonal cycles of X_{CO_2} are compared for ACTM and TCCON time series (smoothed lines for [fitted curve – long-term trends], and dots are for [original time series – long-term trends]). The seasonal cycles for EUR, SOD and KAR are not depicted because the time series are too short for fitting (ref. main text).
Figure S6: Same as Fig. S5, but the seasonal cycles of X_{CH_4} are shown.
Figure S7: Same as Fig. S5, but the seasonal cycles of $X_{\text{N}_2\text{O}}$ are shown. No $X_{\text{N}_2\text{O}}$ data are retrieved for KAR, TKB and IZO.
Figure S8: Time series of X_{CO2} residuals (original time series – fitted curve)
Figure S9: Time series of X_{CH_4} residuals.
Figure S10: Time series of X_{N2O} residuals.

We have also calculated the partial columns, normalized by the surface pressure, as opposed to normalization by the partial pressures of the troposphere and stratosphere (Eqn. 2 and 3). The tropopause height over the FTS sites are chosen to vary with month as well as kept constant at the annual mean tropopause height.

$$X_{y,\text{tropo}} = PC_{y,\text{tropo}}/P_s \quad (\text{Eqn. S2})$$

$$X_{y,\text{strato}} = PC_{y,\text{strato}}/P_s \quad (\text{Eqn. S3})$$

In this calculation the tropospheric and stratospheric partial columns add to the total column.
Figure S11: Time series of $X_{\text{CO}_2,\text{strat}}$, $X_{\text{CH}_4,\text{strat}}$ and $X_{\text{N}_2\text{O, strat}}$ at three selected sites (black for annual mean tropopause, blue for tropopause varying monthly). Similar to Fig. 6, but using a different methodology for calculating stratospheric partial column (see above).

Figure S12: Time series of $X_{\text{CO}_2,\text{trop}}$, $X_{\text{CH}_4,\text{trop}}$ and $X_{\text{N}_2\text{O, trop}}$ at three selected sites (black for annual mean tropopause, red for tropopause varying monthly).