In-situ test of the \(J(\text{BrONO}_2)/k_{\text{BrO+NO}_2} \) ratio: implications for total stratospheric \(\text{Br}_y \) and bromine-mediated ozone loss

S. Kreycy\(^1\), C. Camy-Peyret\(^2\), M. P. Chipperfield\(^3\), M. Dorf\(^1\), W. Feng\(^4\), R. Hossaini\(^3\), L. Kritten\(^5\), B. Werner\(^1\), and K. Pfeilsticker\(^1\)

\(^1\)Institute of Environmental Physics, University of Heidelberg, Heidelberg, Germany
\(^2\)Laboratoire de Physique Moléculaire pour l’Atmosphère et l’Astrophysique (LPMAA), Université Pierre et Marie Curie, Paris, France
\(^3\)Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, UK
\(^4\)National Centre for Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, UK
\(^5\)Institute for Space Sciences, Free University Berlin, Berlin, Germany

Received: 26 September 2012 – Accepted: 8 October 2012 – Published: 23 October 2012

Correspondence to: S. Kreycy (sebastian.kreycy@iup.uni-heidelberg.de)

Published by Copernicus Publications on behalf of the European Geosciences Union.
Abstract

We report on time-dependent O$_3$, NO$_2$ and BrO profile measurements taken in the stratosphere by limb observations of scattered skylight at high-latitudes during autumn circulation turn-over. The observations are complemented by simultaneous direct solar occultation measurements around sunset and sunrise performed aboard the same stratospheric balloon payload. Supporting radiative transfer and photochemical modelling indicates that, the measurements can be used to constrain the ratio J(BrONO$_2$)/k$_{\text{BrO+NO}_2}$, for which overall a 1.69 ± 0.04 larger ratio is found than indicated by the most recent JPL compilation (Sander et al., 2011). Sensitivity studies reveal the major reasons likely to be (1) a larger BrONO$_2$ absorption cross-section σ_{BrONO_2}, primarily for wavelengths larger than 300 nm, and (2) a smaller $k_{\text{BrO+NO}_2}$ at 220 K than given by Sander et al. (2011). Other factors, e.g. the actinic flux and quantum yield for the dissociation of BrONO$_2$, can be ruled out.

The observations also have consequences for total inorganic stratospheric bromine (Br_y) estimated from stratospheric BrO measurements at high NO$_x$ loadings, since the J(BrONO$_2$)/k$_{\text{BrO+NO}_2}$ ratio largely determines the stratospheric BrO/Br_y ratio during daylight. Using the revised J(BrONO$_2$)/k$_{\text{BrO+NO}_2}$ ratio, total stratospheric Br_y is likely to be 1.4 ppt smaller than previously estimated from BrO profile measurements at high NO$_x$ loadings. This brings estimates of total stratospheric bromine inferred from organic source gas measurements (i.e. CH$_3$Br, the halons, CH$_2$Br$_2$, CHBr$_3$, ...) into closer agreement with estimates based on BrO observations (inorganic method). The consequences for stratospheric ozone due to the revised J(BrONO$_2$)/k$_{\text{BrO+NO}_2}$ ratio are small (maximum −0.8 %), since at high NO$_x$ (for which most Br_y assessments are made) an overestimated Br_y using the inorganic method would in return almost cancel out with the amount of reactive bromine calculated in the photochemical models.
1 Introduction

The effect reactive bromine has on stratospheric ozone is largely dominated by the Reactions (1), (2a), and (2b) (Spencer and Rowland, 1977)

\[\text{BrO} + \text{NO}_2 + \text{M} \rightarrow \text{BrONO}_2 + \text{M} \]
(1)

\[\text{BrONO}_2 + \text{h} \cdot \nu \rightarrow \text{BrO} + \text{NO}_2 \] (0.15)
(2a)

\[\text{BrONO}_2 + \text{h} \cdot \nu \rightarrow \text{Br} + \text{NO}_3 \] (0.85)
(2b)

(the brackets give the recommended quantum yields \(\Phi \) for \(\lambda > 300 \text{ nm} \)), since they determine the amount of reactive bromine (BrO) and thus the bromine-mediated ozone loss in almost the whole global lower stratosphere in daytime, except in the chlorine-activated polar ozone hole regions. Sander et al. (2011) report for the termolecular Reaction (1) a 1\(\sigma \) uncertainty of 1.465 (at 220 K) and for the BrONO\(_2\) absorption cross-section, \(\sigma(\text{BrONO}_2) \) (Eqs. 2a and 2b) and hence for \(J(\text{BrONO}_2) \) an overall uncertainty of about 1.4 (e.g. taken from Table 4.2 in JPL-2011). The former uncertainty mostly arises from the extrapolation of the laboratory measurements of \(k_{\text{BrO}+\text{NO}_2} \) from high to low temperatures. The uncertainty of \(\sigma(\text{BrONO}_2) \) though is due to its large decrease by 3.5 orders of magnitude with wavelength, when going from the extreme UV \((\lambda = 200 \text{ nm}) \) to \(\lambda > 300 \text{ nm} \), where the actinic fluxes, and thus the spectral contribution to \(J(\text{BrONO}_2) \) strongly increases.

BrONO\(_2\) can also be destroyed by reaction (Soller et al., 2002)

\[\text{BrONO}_2 + \text{O}^{(3P)} \rightarrow \text{BrO} + \text{NO}_3 \]
(3)

Nevertheless, Reaction (3) has a negligible effect on the lifetime of BrONO\(_2\) below about 25 km (Sinnhuber et al., 2005), where the bulk of BrONO\(_2\) resides during our measurements.
2 Methods

We report on spectroscopic measurements taken during a balloon flight of the LPMA/DOAS (Limb Profile Monitor of the Atmosphere/Differential Optical Absorption Spectroscopy) payload at Kiruna, Sweden (67.9° N, 22.1° E) on 7 and 8 September 2009. The payload accommodated three spectrometers: (a) a near-IR (LPMA) spectrometer that is suitable for the detection of O₃, NO₂, CH₄, N₂O, HNO₃, and other trace-gases (e.g. Camy-Peyret et al., 1995; Payan et al., 1998), (b) a UV/vis spectrometer for the high precision detection of O₃, NO₂, BrO, IO, O₄, ... in direct sunlight (e.g. Harder et al., 1998; Ferlemann et al., 2000), and (c) a UV/vis mini-DOAS instrument primarily for the detection of O₃, NO₂, and BrO in limb scattered skylight (e.g. Weidner et al., 2005; Kritten et al., 2010).

While spectrometers (a) and (b) measure in direct sun during balloon ascent, solar occultation at sunset and sunrise, the mini-DOAS instrument records the atmosphere in limb geometry, with the azimuth angle being clock-wise perpendicular (α = 90°) to the sun’s azimuth direction. Viewing elevation angles are held constant (+0.05°) during balloon ascent and but subsequently changed from +0.6° to −4.88° elevation angle in steps of 0.39° for the limb observations at balloon float altitude.

The balloon was launched at 14:50 UT and a solar zenith angle (SZA) of 75° on 7 September 2009 and balloon float altitude (≈ 33.5 km) was reached around 16:45 UT (SZA = 86°). The solar occultation and limb observations during sunset on 7 September 2009 lasted until 18:15 UT (SZA = 94°), and were resumed at 02:30 UT during sunrise on 8 September 2009 (SZA = 94°). They lasted until 06:00 UT (SZA = 75°), when the payload was separated from the balloon. Due to the low stratospheric winds at high-latitudes during summer/winter circulation turn-over, the balloon payload gently drifted from Kiruna to the Finish-Russian border (at around 350 km distance) within the 16-h long flight. Accordingly, due to the low shear winds the azimuth stabilisation of the balloon gondola and therefore the sun and limb pointing was extremely stable as compared to previous balloon flights (e.g. see Table 1 in Dorf et al., 2006a; Kritten et al.,
Here we primarily report on the data obtained from the spectrometers (b), and (c) obtained during sunset and of spectrometer (c) during sunrise.

For both instruments the spectral retrieval is based on the DOAS method (Platt and Stutz, 2008). Since in previous studies, they have been described at length (e.g. Weidner et al., 2005; Dorf et al., 2006a; Butz et al., 2006; Kritten et al., 2010), here only those details are described which depart from our previous work. The retrieval of O$_3$, NO$_2$, and BrO from the solar occultation and the mini-DOAS measurements is performed along the parameters as given in Butz et al. (2006) and Aliwell et al. (2002), with updates as recently described in Dorf et al. (2008), and Kritten et al. (2010). Also, the errors and uncertainties the DOAS retrievals have already been discussed in length in previous studies (e.g. Harder et al., 1998; Aliwell et al., 2002; Weidner et al., 2005; Dorf et al., 2006a; Butz et al., 2006), they are only referred to when necessary.

The limb radiances are modelled using version 2.1 of the Monte Carlo radiative transfer (RT) model McArtim (Deutschmann et al., 2011). The model’s input is chosen according to measured atmospheric temperatures and pressures, including a climatological high-latitude summer aerosol profile inferred from SAGE III (http://eosweb.larc.nasa.gov/PRODOCS/sage3/table_sage3.html) and confirmed with the direct sun measurement of spectrometer (b), the balloon altitude and the geolocation, SZAs as encountered during each measurement, the azimuth and elevation angles, as well as the field of view (FOV) of the mini-DOAS telescopes. Since the mini-DOAS spectrometer is not radio-metrically calibrated, all simulations are performed relative to the first limb spectrum (elevation angle +0.6°) of each limb sequence. It is noteworthy that the radiometric calibration does not change between the individual limb sequences, except for very high SZAs ≥ 93°, when spectrometer straylight becomes important. This finding is in agreement with the small mismatch between measured and modelled limb radiances also found by Deutschmann et al. (2011) (see Figs. 5 and 6 therein). Figure 2 indicates how well the modelled and measured relative radiances are reproduced for the limb observations at λ = 350, 450, and 495 nm, where BrO, NO$_2$ and O$_3$ are evaluated. The good agreement indicates that both, the relevant observation parameters (e.g. balloon
altitude, SZA, elevation and azimuth angles, FOV), and the atmospheric parameters
\(T, p,\) aerosol concentration, and their optical properties) are well represented in the
RT model.

For the interpretation of the direct sun observations, our group’s raytracing model
(DAMF) is used that was extensively tested in the profile retrievals of past balloon
flights (e.g. Harder et al., 2000, see Fig. 1 therein).

For the photochemical modelling the output from the most recent simulations of the
3-D CTM SLIMCAT (Chipperfield, 1999) at Kiruna for 6 September 2009 is used to
initialise our lab-owned 1-D Facsimile code Labmos (e.g. Bösch et al., 2003). This
approach is neccessary here because the output from global SLIMCAT run is only
available every 48 h. This time resolution is too coarse to be used for comparisons with
measurements. On the other hand using a 1-D photochemical model for the model
vs measurement inter-comparison appears justified, since during the balloon flight
stratospheric winds were low, and thus very likely the same air masses were probed
throughout our observations. However, both photochemical models use the most re-
cent version of the JPL kinetics and thermochemical data for all relevant gas-phase
and heterogeneous reactions (Sander et al., 2011). Finally, the Labmos simulations
are constrained to the measured \(\text{N}_2\text{O}\) and \(\text{CH}_4\) from spectrometer (a) to correct for
small mismatches in the profiles of the source gases due to a small bias in the diabatic
heating rate of SLIMCAT. Total stratospheric bromine \((\text{Br}_y)\) is set to 20.3 ppt, derived
from BrO observations of spectrometer (b), and the \(\text{Br}_y\) mixing ratio profile are accord-
ingly vertically shifted (about 2 km) until the modelled and measured \(\text{N}_2\text{O}\) and \(\text{CH}_4\)
profiles matched. The initialisation is further constrained to \(\text{O}_3\) and \(\text{NO}_2\) obtained from
the direct sun observations of spectrometer (b).

As an example of the simulations, Fig. 3 shows the simulated 2-D fields of BrO,
\(\text{BrONO}_2\), and HOBr over Kiruna for 7 and 8 September 2009. Here, the simulation
indicates that balloon soundings are well suited to study the Reactions (1), (2a), and
(2b) at northern high-latitudes during the summer to winter circulation turn-over, mostly
because \(\text{NO}_x\) concentrations are large and the profiles of both targeted gases \((\text{NO}_2,
\text{BrONO}_2)\).
and BrO) nicely overlap as well, thus providing a good sensitivity for Reaction (1) during sunset.

However, the Br$_y$ partitioning at early dawn during the solar occultation measurements (the period of the red dashed lines in Fig. 3), is largely given by the efficiency of the heterogenous reaction of

\[
\text{BrONO}_2 + H_2O_{\text{aqueous}} \rightarrow \text{HOBr} + \text{HNO}_3
\] (4)

at night. Therefore, our high-latitude sunrise solar occultation measurements are not considered any further here but they will be discussed in a separate study addressing the HOBr photochemistry.

In order to support an inter-comparison of measured and modelled slant column densities (SCDs) of O$_3$, NO$_2$ and BrO, the simulated photochemical fields are fed into the RT models McArtim and DAMF, where path integrals through the simulated photochemical fields are calculated and then compared with the measured SCDs.

3 Results

Figure 4 displays the inter-comparison of the measured and modelled limb SCDs of O$_3$, NO$_2$ and BrO. While for O$_3$ and NO$_2$ the agreement is close to perfect for all elevation angles and tangent heights, measured limb BrO is in general larger than obtained from the simulations for the standard run (i.e. [Br$_y$] = 20.3 ppt, σ(BrONO$_2$) and $k_{\text{BrO+NO}_2}$ from JPL-2011). This is in particular true for the high BrO SCDs values, which are obtained for large negative elevation angles (low tangent heights, or much lower altitudes than the balloon float altitude), where the bulk of BrO and BrONO$_2$ resides. In short, our observations indicate that during dusk BrO tends to react later (or at higher SZAs) into its major nighttime reservoir gas BrONO$_2$, while at dawn limb BrO tends to appear more rapidly than the standard simulation suggests.

A similar finding is obtained from the solar occultation measurements during sunset using the direct sun instrument (b) (Ferlemann et al., 2000) even though they are
less sensitive to Reactions (1), (2a), and (2b), since by definition the samples are always taken at SZA = 90°, i.e. at the tangent height from where most of the absorption (signal) comes from (Fig. 5). Hence, our solar occultation observations mostly probe the atmosphere for a more-or-less constant J(BrONO₂), but at the same time the effectively probed air masses (i.e. tangent points) move more and more away from the payload (up to 1200 km), i.e. towards the northwest during sunset. An inspection of the assimilation maps of the MIMOSA model’s (http://ether.ipsl.jussieu.fr/ether/pubipsl/mimosa_2009_uk.jsp) potential vorticity (PV) indicate a negligible PV gradient at the upper level (950 K), and a small west/east PV gradient at the lower levels (475 and 550 K), indicative of different origins of both air masses. Therefore, it is likely that the kink of the measured BrO SCD at around SZA = 92.5° (tangent height 27 km) is not due to photochemistry, but transport. However, the measured BrO SCDs are larger than predicted by the standard model run (red line in Fig. 5). Therefore, the overall result obtained from the solar occultation measurements is similar than deduced for limb measurements, however less robust.

Both findings can be taken as evidence that, either the ratio J(BrONO₂)/k_{BrO+NO₂} is larger than indicated by the JPL-2011 compilations, or that Br_y is incorrectly assumed in the model. These possibilities are investigated in the following section.

4 Discussion

In order to investigate potential causes for the deviation of the measured vs. modelled BrO SCDs, a sensitivity test for the size of the parameters J(BrONO₂), k_{BrO+NO₂}, and Br_y is performed for limb and solar occultation measurements (Figs. 6 and 7). In both cases the best agreement between measurements and simulations is found by increasing J(BrONO₂), and decreasing k_{BrO+NO₂}, when forcing the regression line measured vs. modelled BrO SCDs through 0. Figure 8 illustrates the situation, when varying J(BrONO₂), and k_{BrO+NO₂} for both, the limb (dusk and dawn) and the solar occultation measurements (dusk), whereby the colour coding denotes the slope
of the regression measured vs. modelled BrO SCDs. The figure indicates that for the limb measurement the best combination of $J(\text{BrONO}_2)$, and $k_{\text{BrO+NO}_2}$ is obtained when increasing $J(\text{BrONO}_2)$ to a value of 1.1 to 1.4 and decreasing $k_{\text{BrO+NO}_2}$ to a value of 0.65 to 0.85. For the solar occultation measurements the best set of values is 0.9 to 1.4 for $J(\text{BrONO}_2)$ and 0.7 to 1 for $k_{\text{BrO+NO}_2}$. Most likely this discrepancy is due to different air masses observed by both instruments, since RT calculations show that the limb samples are taken 30–70 km right hand of the payload, but the solar occultation measurements 200–1200 km towards the sun. Merging both measurements, the best agreement is found for a ratio $\frac{J(\text{BrONO}_2)}{k_{\text{BrO+NO}_2}}|_{\text{obs}} = (1.69 \pm 0.04) \cdot \frac{J(\text{BrONO}_2)}{k_{\text{BrO+NO}_2}}|_{\text{JPL}}$, whereby less weight is put on the result of the solar occultation measurements at dusk for the reasons given above.

For this flight $[\text{Br}_y]$ was (20.3 ± 2.5) ppt (presumably in 5-yr-old air), which is determined from the direct sun measurements at balloon float using the so-called Langley method (e.g. Dorf et al., 2006b, 2008). Also note that, for the assessment of Br_y using Langley’s method, stratospheric BrO is probed above balloon float, where the BrO/Br_y partitioning is mostly due to Br atoms and BrO, and thus insensitive to $J(\text{BrONO}_2)$, and/or $k_{\text{BrO+NO}_2}$.

Sensitivity runs for $[\text{Br}_y]$ within the given uncertainty range (±2.5 ppt) are also performed (not shown). Proportionally increasing/decreasing the modelled BrO SCD by ±12.5 % (±2.5 ppt) slightly decreases/increases the slope of the data, but evidently not by far enough to obtain a 1 : 1 agreement between the modelled and measured BrO SCDs (Figs. 6 and 7).

Next, we address potential causes for the uncertainty in the $\frac{J(\text{BrONO}_2)}{k_{\text{BrO+NO}_2}}$ ratio. Incorrect modelled actinic fluxes by the required amount are rather unlikely, since our RT model nicely explains the measured limb radiances at different wavelengths, different elevation angles and SZAs (e.g. see Fig. 2, Bösch et al., 2001, and Fig. 5 in Deutschmann et al., 2011). Also the largely dominant contribution of the direct solar irradiance to the actinic flux seems to be well understood (e.g. Bösch et al., 2001; Gurlit et al., 2005). Moreover, since our measurement is insensitive to the quantum yields (Φ)
of Reactions (2a) and (2b) (the Br atoms formed in Reaction (2b) would readily react with O₃ to form BrO), an incorrect J(BrONO₂) points to an incorrect σ(BrONO₂). For J(BrONO₂) JPL-2011 states an overall uncertainty of 1.4 (Table 4.2) most likely due to uncertainties of σ(BrONO₂) in the UV-A and visible, and its temperature dependence. Since at T = 298 K σ(BrONO₂) agrees fairly well among the different studies, one may speculate whether the recommended temperature correction for T = 220 K is in fact too strong. Furthermore, JPL-2011 states a 1σ uncertainty of 1.465 for k_{BrO+NO₂} at 220 K. Here, the major uncertainty arises from the T-dependence of the high pressure limit of the reaction, which is found to be rather large (m = 2.9). Attempts to fit the data with the JPL master equation analysis was found to be insufficient to fit the data at low pressures (Sander et al., 2011). Therefore, one may again speculate as to whether k_{BrO+NO₂} at 220 K is somewhat lower than recommended by JPL-2011.

The finding has also implications for total stratospheric bromine. Using the inorganic method to assess stratospheric Br_y relies on a photochemical correction, i.e. Br_y is calculated from measured BrO according to [BrO] = [Br_y]·(1 + k_{BrO+NO₂}·[NO₂]·[M]/J_{BrONO₂} ...) where “...” indicates contributions from minor bromine species in the stratosphere (e.g. HOBr, Br, BrCl, and HBr). In our case, taking the revised J(BrONO₂)/k_{BrO+NO₂} ratio (i.e. 1.69 ± 0.04), stratospheric Br_y may decrease by as much as 1.4 ppt. In fact, a smaller Br_y assessed using the inorganic method would tend to close the existing gap to total stratospheric bromine assessed using measurements of organic source gases. Also the potential contribution of so-called very short-lived substances (VSLS) to stratospheric bromine would accordingly decrease. For example, while our assessment of Br_y for 4.5 old air probed over Brazil in 2005 indicated a VSLS contribution of [VSLS]_{inorg} = (5.2 ± 2.5) ppt (Dorf et al., 2008), the organic method resulted in only [VSLS]_{org} = (1.25 ± 0.08) ppt (Laube et al., 2008). A more recent comparison indicated [VSLS]_{inorg} = (3.5±2.5) ppt (inferred from our own BrO measurement using the Langley method) and about [VSLS]_{org} = 2.25 ppt (Brinckmann et al., 2012), for the air masses jointly probed by both methods over Brazil in 2008.
The implications of our finding for stratospheric ozone loss are small or even negli-
gible, since the ozone loss by the BrONO$_2$ photolysis has a small contribution to the
total ozone loss by bromine (dominated by the reaction BrO + ClO), which is presently
assessed to amount to about 30–35% on a global average (Sinnhuber et al., 2009).
Furthermore, even though BrONO$_2$ mostly photolyses into Br + NO$_3$ (Reaction 2b), only
about 12% of the produced NO$_3$ photolyses into the channel NO + O$_2$, which in fact
may cause some ozone loss (via reformation of BrO and NO$_2$ and the consumption of
two ozone molecules). A possibly larger impact would be through the altered partition-
ing of bromine between BrO and its reservoir BrONO$_2$, as BrO participates in a number
of ozone loss cycles.

To quantify the impact of our findings two runs with the SLIMCAT off-line 3-D CTM
are performed (e.g. Chipperfield, 2006; Feng et al., 2007). The runs are initialised in
November 2008 from an existing SLIMCAT run and integrated for 14 months using
ECMWF meteorology. The model run has a horizontal resolution of 2.8° × 2.8° and in-
cluded a detailed stratospheric chemistry scheme (Chipperfield, 1999). One model run
is performed with standard JPL kinetics. In the other run J(BrONO$_2$) is scaled by 1.27
and k_{BrO+NO_2} was scaled by 0.75, thereby scaling the ratio J(BrONO$_2$)/k_{BrO+NO_2} by
1.69. Figure 9 shows the percentage ozone di-
ference between these runs for 2009 as
an annual mean zonal mean and as a zonal mean at 18 km altitude. Overall the im-
pact of these kinetic changes on stratospheric ozone is small and confined to altitudes
below about 30 km where BrONO$_2$ is a reservoir for bromine. The largest decrease in
ozone is around 0.8% at the edge of the Antarctic ozone region in September/October.
The kinetics changes lead to less BrONO$_2$ (and HOBr) and more bromine in the form
of BrO which catalyses ozone loss. The small effect itself is more important at the edge
of the polar vortex and late in the season when NO$_y$ is more readily available to form
BrONO$_2$. Smaller changes are seen in the Arctic and at mid-latitudes.

In consequence, an increase in the photolysis rate and a decrease in the formation
rate of BrONO$_2$ as determined here would eventually imply only a small change in the
bromine-mediated ozone loss in the stratosphere.
5 Conclusions

We performed an atmospheric test of the \(J(\text{BrONO}_2)/k_{\text{BrO}+\text{NO}_2} \) ratio assisted by photochemical and radiative transfer modelling. It is found that under stratospheric conditions \((T \approx 220 \text{ K and } p = 50 \text{ mbar})\), the ratio \(J(\text{BrONO}_2)/k_{\text{BrO}+\text{NO}_2} \) is \(1.69 \pm 0.04 \) larger than given in the JPL-2011 compilation. Our sensitivity study indicates that very likely both \(\sigma(\text{BrONO}_2) \) and \(k_{\text{BrO}+\text{NO}_2} \) differ from the JPL-2011 recommendation.

The major consequences of our study are threefold. (1) Recent assessments of total stratospheric bromine using the inorganic method during high stratospheric NO\(_x\) loadings may have overestimated the necessary correction for the BrO to Br\(_y\) ratio. As a consequence, stratospheric [Br\(_y\)] should be 1.4 ppt lower, which amounts to 6.8% of the total stratospheric bromine. (2) A larger \(J(\text{BrONO}_2)/k_{\text{BrO}+\text{NO}_2} \) ratio may also cause a small increase (maximum \(-0.8\%\)) in the bromine-mediated ozone loss in the stratosphere, because ozone loss by BrONO\(_2\), and its products is anyhow small. Also an overestimated stratospheric Br\(_y\) due to an incorrect \(J(\text{BrONO}_2)/k_{\text{BrO}+\text{NO}_2} \) ratio would be compensated in the photochemical models, when reactive bromine is calculated using the inorganic method. (3) In the troposphere, a diminished formation of BrONO\(_2\) where high NO\(_x\) meets reactive bromine released from the degradation of organic bromine compounds, or bromine being heterogeneously released from salty aerosols or salt lakes, may lead to a longer lifetime of ozone destroying BrO. In consequence, the revised \(J(\text{BrONO}_2)/k_{\text{BrO}+\text{NO}_2} \) ratio may cause more ozone destruction and a more efficient degradation of organic molecules by their reaction with Br atoms on one hand. On the other hand it may hinder the activation of reactive bromine tied to the aerosol or in bulk salt (e.g. von Glasow et al., 2004; Salawitch, 2006). Accordingly, the consequences of our finding for ozone, and the oxidation capacity, in the troposphere may largely depend on the specific conditions.

Acknowledgements. This study was funded by through the grants of the German ministry of Economy (BMWi) (50EE0840), the European Space Agency (ESA-ESRIN: no. RFQ/3-12092/07/I-OL) and the Deutsche ForschungsGemeinschaft, DFG (grants PF-384/5-1 and
Additional funding from the EU projects Reconcile (FP7-ENV-2008-1-226365), and SHIVA (FP7-ENV-2007-1-226224) is highly acknowledged. The SLIMCAT modelling was supported by the NERC National Centre for Atmospheric Science (NCAS), UK. We thank the CNES equipe nacelles pointées and the balloon team from Aire sur l’Adour/France without which the balloon flight would not have been possible. We also thank our colleagues from the LPMA balloon team (P. Jeseck, I. Pepin and Y. Té) for the successful cooperation. Finally we are grateful for the hospitality and support given by the personnel of Esrange/Kiruna to successfully perform the balloon flight.

References

limb measurements, Atmos. Chem. Phys., 6, 1293–1314, doi:10.5194/acp-6-1293-2006, 2006. 27825

Fig. 1. Measured slant column densities of O₃ (upper panel), NO₂ (middle panel), and BrO (lower panel) in limb geometry during the balloon flight from Kiruna on 7 and 8 September 2009. During balloon ascent from 14:50 UT until 17:10 UT, the limb radiation was observed for an elevation angle of 0.05°. During dusk (17:10 UT to 18:30 UT), 3.5 limb scans were performed at 33 km altitude. During early dawn, the scanning telescope malfunctioned (the reddish area), and the limb scans (in total 7.25) started at 03:55 UT and commenced until 06:00 UT, when the balloon was floating at 31 km altitude. Each limb scan consists of limb observations at +0.6°, in steps of 0.39° down −4.88° elevation angle.
Fig. 2. Inter-comparison of measured (black) and modelled (red) relative radiances at \(\lambda = 350, 450, \) and \(495 \) nm for the limb scans as described in the legend of Fig. 1. The RT simulations are normalised for the balloon ascent to the observations at 17:00 UT, and for each limb scan to the observation for the largest elevation angle (0.6°), i.e. for the lowest radiances.
Fig. 3. Standard simulation of the key stratospheric bromine species for 7 September 2009 using the Labmos photochemical model: diurnal variation of BrO (upper panel), BrONO$_2$ (middle panel), and HOBr (lower panel). The red drawn lines indicate the periods of the limb measurements (local SZA = 86–75° at a.m. and 85–95° at p.m.) and the dashed red lines the period of the direct sunlight measurements (local SZA = 95–90° at a.m., and SZA = 90–95° at p.m.). Solar zenith angles shown in the middle panel refer to local angles and the colour coding indicates the respective concentrations in units of 107 molec cm$^{-3}$.
Fig. 4. Inter-comparison of limb measured vs. modelled slant column concentrations of O$_3$ (upper panel), NO$_2$ (middle panel) and BrO (lower panel) for the standard JPL-2011 kinetics in units of given in the panels. Note the excellent agreement for the slant column densities O$_3$ and NO$_2$, but the fair agreement for BrO with standard model parameters. In the lower panel the JPL-2011 uncertainty of the J(BrONO$_2$)/k_{BrO+NO_2} ratio is indicated (dashed lines).
Fig. 5. Inter-comparison of measured vs. modelled slant column densities of BrO for the sunset solar occultation measurements on 7 September 2009. The coloured lines show simulations for different pairs of J(BrONO$_2$) and k_{BrO+NO_2} as indicated by the inset. Local solar zenith angles (e.g. 90°, 91°, 92.5°, and 94°) of some measurements are also indicated.
Fig. 6. Inter-comparison of limb measured vs. modelled slant column densities of BrO for different scaling factors of $J(\text{BrONO}_2)$ and $k_{\text{BrO+NO}_2}$ as indicated in the individual panels. The open dots are for sunset and the full dots for sunrise observations. The s-value indicates the slope and its uncertainty between modelled and measured BrO SCDs.
Fig. 7. Inter-comparison of solar occultation measured vs. modelled slant column densities of BrO for different scaling factors of $J(\text{BrONO}_2)$ and $k_{\text{BrO+NO}_2}$ as indicated in the individual panels.
Fig. 8. Regression of J(BrONO$_2$) vs. k_{BrO+NO_2} for the limb (black dots) and solar occultation BrO measurements (black stars) together with the uncertainty range for both parameters as indicated by the JPL-2011 compilation. The colour coding indicates the resulting slopes of the modelled vs. measured BrO SCD regression, when forcing the regression line through zero. So the best agreement (BA) is given for a slope of 1.
Fig. 9. Difference in ozone from a simulation of the SLIMCAT 3-D CTM with scaled J(BrONO$_2$) ($\times 1.27$) and $k_{\text{BrO+NO}_2}$ ($\times 0.75$) compared to a run with standard JPL kinetics. (a) Difference (%) in zonal mean annual mean ozone and (b) difference (%) in zonal mean ozone at 18 km as a function of time. Note the different colour scales in the two panels.