Radical loss in the atmosphere from Cu-Fe redox coupling in aerosols

J. Mao1,2, S. Fan2, D. J. Jacob3, and K. R. Travis3

1Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ 08542, USA
2Geophysical Fluid Dynamics Laboratory/National Oceanic and Atmospheric Administration, Princeton, NJ 08542, USA
3School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA

Received: 21 September 2012 – Accepted: 7 October 2012 – Published: 15 October 2012
Correspondence to: J. Mao (jingqiu.mao@noaa.gov)
Published by Copernicus Publications on behalf of the European Geosciences Union.
Abstract

The hydroperoxyl radical (HO$_2$) is a major precursor of OH and tropospheric ozone. OH is the main atmospheric oxidant, while tropospheric ozone is an important surface pollutant and greenhouse gas. Standard gas-phase models for atmospheric chemistry tend to overestimate observed HO$_2$ concentrations, and this has been tentatively attributed to heterogeneous uptake by aerosol particles. It is generally assumed that HO$_2$ uptake by aerosol involve conversion to H$_2$O$_2$, but this is of limited efficacy as an HO$_2$ sink because H$_2$O$_2$ can photolyze to regenerate OH and from there HO$_2$. Joint atmospheric observations of HO$_2$ and H$_2$O$_2$ suggest that HO$_2$ uptake by aerosols may in fact not produce H$_2$O$_2$. Here we propose a catalytic mechanism involving coupling of the transition metal ions (TMI) Cu(I)/Cu(II) and Fe(II)/Fe(III) to rapidly convert HO$_2$ to H$_2$O in aerosols. The implied HO$_2$ uptake significantly affects global model predictions of tropospheric OH, ozone, and other species, improving comparisons to observations, and may have a major and previously unrecognized impact on atmospheric oxidant chemistry.

1 Introduction

HO$_2$ in the troposphere cycles rapidly with other members of the hydrogen oxide radical family (HO$_x$ ≡ OH + H + HO$_2$ + organic peroxy and oxy radicals). This cycling determines OH levels and ozone production. The main sources of HO$_x$ are photolysis of ozone in the presence of water vapor and photolysis of carbonyls. The sinks involve formation of peroxides, HNO$_3$, and water. Peroxides and HNO$_3$ can photolyze, returning HO$_x$. Formation of water is a terminal sink. HO$_2$ is in general the dominant component of HO$_x$, so that the budget of HO$_2$ is largely defined by that of HO$_x$.

Uptake of HO$_2$ by aqueous aerosols is promoted by its high solubility in water (Henry’s law constant 2.0 × 103 M atm$^{-1}$ at 298 K) and aqueous-phase dissociation to O$_2^-$ ($pK_a = 4.7$), with rapid ensuing ionic redox chemistry. The efficacy of uptake is com-
monly measured by the reactive uptake coefficient, $\gamma(\text{HO}_2)$, defined as the fraction of HO$_2$ collisions with aerosol surfaces resulting in reaction. Direct reaction of HO$_2$(aq) with O$_2^−$ produces H$_2$O$_2$ but the corresponding $\gamma(\text{HO}_2)$ is relatively low, ranging from 0.01 for acidic aerosols (Thornton and Abbatt, 2005) to 0.2 for neutralized aerosols (Thornton and Abbatt, 2005; Taketani et al., 2008). Higher values of $\gamma(\text{HO}_2)$, approaching unity, have been measured for Cu-doped aerosols where Cu(I)/Cu(II) redox cycling catalyzes HO$_2^−$/O$_2^−$ conversion to H$_2$O$_2$ (Mozurkewich et al., 1987; Cooper and Abbatt, 1996; Thornton and Abbatt, 2005; Taketani et al., 2008). Model calculations suggest that other aerosol TMI, including Fe(II)/Fe(III) and Mn(II)/Mn(III), can drive similar chemistry (Graedel et al., 1986). Uptake of HO$_2$ by non-aqueous inorganic aerosol appears to be very slow (Cooper and Abbatt, 1996; Taketani et al., 2008), but can be significant for organic aerosols (up to 0.13 for levoglucosan particles) (Taketani et al., 2010).

Standard gas-phase models for atmospheric chemistry tend to overestimate observed HO$_2$ concentrations, and this has been tentatively attributed to heterogeneous uptake by aerosol particles. As shown in Table 1, HO$_x$ loss by HO$_2$ uptake is only significant where the gas-phase photochemistry controlling HO$_x$ levels is slow (HO$_2$ is typically less than 10 ppt) and/or aerosol loading is high. To a large extent this is because HO$_x$ loss through HO$_2$ + HO$_2$ and HO$_2$ + RO$_2$ is quadratic on HO$_x$ concentrations.

All the laboratory and model mechanisms for HO$_2$ uptake by aerosol involve conversion to H$_2$O$_2$ (Mozurkewich et al., 1987; Hanson et al., 1992; Gershenzon et al., 1995; Cooper and Abbatt, 1996; Remorov et al., 2002; Thornton and Abbatt, 2005; Taketani et al., 2008, 2009; Thornton et al., 2008; Loukhovitskaya et al., 2009; Macintyre and Evans, 2011), but this is of limited efficacy as an HO$_2$ sink because H$_2$O$_2$ can photolyze to regenerate OH and from there HO$_2$. Joint atmospheric observations of HO$_2$ and H$_2$O$_2$ suggest that HO$_2$ uptake by aerosols may in fact not produce H$_2$O$_2$ (de Reus et al., 2005; Mao et al., 2010). Previous proposed mechanisms for the conversion of HO$_2$ to H$_2$O, including Br$^−$ + HO$_2$ (Matthew et al., 2003), HSO$_4^−$ + HO$_2$ (Cooper and Abbatt, 1996), and the HO$_2$−H$_2$SO$_4$ complex (Miller and Francisco, 2001) are not catalytic and thereby less efficient. Here we propose a catalytic mechanism involving coupling
of the transition metal ions (TMI) Cu(I)/Cu(II) and Fe(II)/Fe(III) to rapidly convert HO$_2$ to H$_2$O in aerosols (Fig. 1).

2 Cu-Fe-HO$_x$ cycling

Cu and Fe are ubiquitous components of crustal and combustion aerosols. Concentrations in rural air are in the range 3–300 ng m$^{-3}$ for Cu and 55–14 500 ng m$^{-3}$ for Fe (Schroeder et al., 1987). The submicron size fraction generally associated with combustion aerosols accounts for 25–100 % of Cu mass and 15–50 % of Fe mass (Tables S1 and S2). Joint measurements of Cu and Fe in fine particles (PM$_{2.5}$) show that Cu/Fe ratio is typically below 0.1 (Table S3; Fig. S3). While Cu tends to fully dissolve at pH < 5 (Deguillaume et al., 2005), the solubility of Fe varies greatly, ranging from less than 1 % in soils to 81 % in oil combustion products (Schroth et al., 2009). Observations indicate that the dissolved Cu to Fe molar ratio (hereinafter “Cu/Fe”) is typically 0.01–0.1 (Table S4).

Cu-catalyzed HO$_2$ loss to H$_2$O$_2$ in acid aerosols proceeds by Reactions (RA1) and (RA2), with similar reactions involving O$_2^-$ for higher-pH conditions:

Cu(II) + HO$_2$ → Cu(I) + O$_2$ + H$^+$ \hspace{1cm} \text{(RA1)}

Cu(I) + HO$_2$ H$^+$ → Cu(II) + H$_2$O$_2$ \hspace{1cm} \text{(RA2)}

Cu(I) + O$_2$ H$^+$ → Cu(II) + HO$_2$ \hspace{1cm} \text{(RA3)}

Here the destruction of HO$_2$ is buffered by the internal production of HO$_2$ via Reaction (RA3) (Ervens et al., 2003). Fe-catalyzed HO$_2$ loss proceeds by a similar cycle though the rate constant of Fe(III) + HO$_2$ is two orders of magnitude slower than for Cu(II) (Mozurkewich et al., 1987).
The coupled Cu-Fe catalytic cycle for aqueous-phase HO$_2$ loss involves Reaction (RA1) and

\[\text{Cu(I)} + \text{Fe(III)} \rightarrow \text{Cu(II)} + \text{Fe(II)} \]

(RA4)

with three likely pathways for Fe(II) to close the cycle:

\[\text{Fe(II)} + \text{HO}_2 \rightarrow \text{Fe(III)} + \text{H}_2\text{O}_2 \]

(RA5)

Net: \(\text{HO}_2 + \text{HO}_2 \rightarrow \text{H}_2\text{O}_2 + \text{O}_2 \)

\[\text{Fe(II)} + \text{H}_2\text{O}_2 \rightarrow \text{Fe(III)} + \text{OH} + \text{OH}^- \]

(RA6)

Net: \(\text{HO}_2 + \text{H}_2\text{O}_2 \rightarrow \text{OH} + \text{O}_2 + \text{H}_2\text{O} \)

\[\text{Fe(II)} + \text{OH} \rightarrow \text{Fe(III)} + \text{OH}^- \]

(RA7)

Net: \(\text{HO}_2 + \text{OH} \rightarrow \text{O}_2 + \text{H}_2\text{O} \)

The electron transfer reaction Cu(I) + Fe(III) (RA4) is rapid with a rate constant of \(1.3 \times 10^7 \text{ M}^{-1} \text{ s}^{-1} \) (Bjergbakke et al., 1976; Sedlak and Hoigne, 1993). It has been found previously to regulate the observed diurnal pattern of the Fe(II)/Fe(III) ratio in cloud water (Ervens et al., 2003; Deguillaume et al., 2004). Aerosol chemistry models suggest that Reaction (RA1) is the dominant sink for Cu(II) (Jacob et al., 1989), and we show below that Reaction (RA4) is then the dominant sink for Cu(I) over the expected range of Cu/Fe ratios. The implications for HO$_x$ depend on the fate of Fe(II). Reaction (RA5) converts HO$_x$ to H$_2$O$_2$ while Reaction (RA7) converts HO$_x$ to H$_2$O. Reaction (RA6) also effectively leads to HO$_x$ loss by converting H$_2$O$_2$ to H$_2$O.

3 Formulation of HO$_2$ reactive uptake by aerosols

We conducted box model simulations of aqueous aerosol chemistry to examine the effect of Cu-Fe-HO$_x$ cycling by Reactions (RA1)–(RA7) on the HO$_x$ chemical budget. The
chemical mechanism mainly draws from Jacob (2000) and Deguillaume et al. (2004), with a number of modifications and updates (Tables S8 and S9). A few complexes are included to take into account the speciation of Fe and Cu: Fe(OH)$^+$, Fe(OH)$_2^+$, Fe(SO$_4$)$_2^+$, Fe(OH)$_2^{2+}$, and CuSO$_4$(aq). Our simulations are for $T = 298$ K as kinetic data are often not available at low temperatures.

Modeling aerosol aqueous chemistry must account for ionic strength corrections. We use the aerosol inorganic model (Clegg et al., 1998), to calculate the ionic strength and activity coefficients for major ions (i.e. NH$_4^+$, H$^+$, HSO$_4^-$, SO$_4^{2-}$) (Table S6). Activity coefficients for trace metal ions and neutral species are calculated based on specific ion interaction theory or estimated following Ross and Noone (1991) (Supplement, summarized in Table S7). We also account for the salting out effect on Henry’s law constants. We assume Henry’s law equilibrium for H$_2$O$_2$, O$_3$, and O$_2$ because of their long lifetimes. Gas uptake of OH is negligible compared to its aqueous production so that OH(aq) is calculated from aqueous-phase steady state. Concentrations of total dissolved Cu and Fe are held fixed throughout the simulation at their initial values.

The HO$_2$ uptake and volatilization rates R_{in} and R_{out} (molecules cm$^{-3}$ s$^{-1}$) for a monodisperse aqueous aerosol of radius a can be approximated as (Jacob, 2000):

$$R_{in} = \left(\frac{a}{D_g} + 4 \frac{v\alpha}{\nu} \right)^{-1} A n_{HO_2}$$

and

$$R_{out} = \left(\frac{a}{D_g} + 4 \frac{v\alpha}{\nu} \right)^{-1} A \frac{[HO_2]_{surf}}{H^*}$$

where n_{HO_2} is the gas phase concentration of HO$_2$, A is the aerosol surface area per unit volume of air, ν is the mean molecular speed, α is the mass accommodation coefficient assumed to be unity (Thornton and Abbatt, 2005), D_g is the HO$_2$ gas phase.
diffusion constant (0.25 cm2 s$^{-1}$), $[\text{HO}_2]_{\text{surf}}$ is the concentration at the aerosol surface, and H^* is the Henry’s law constant corrected by ionic strength.

The chemical loss rate of aqueous HO$_2$ is the difference between R_{in} and R_{out}. $\gamma(\text{HO}_2)$ is then defined as the ratio of chemical loss rate to R_{in}. Given the short lifetime of aqueous HO$_2$ ($\sim 10^{-5}$ s) against reaction with Cu(II) by Reaction (RA1), the bulk concentration $[\text{HO}_2]_{\text{bulk}}$ and surface concentration $[\text{HO}_2]_{\text{surf}}$ may differ substantially. On the basis of the solution to a steady state diffusion equation, their relationship can be expressed as (Jacob, 1986):

$$[\text{HO}_2]_{\text{surf}} = \frac{P_{\text{HO}_2}}{k^l} + \left(\frac{[\text{HO}_2]_{\text{bulk}} - P_{\text{HO}_2}}{k^l}\right) \cdot \left[3 \left(\frac{\coth q}{q} - \frac{1}{q^2}\right)\right]^{-1}$$

(3)

where k^l is the first-order loss constant of HO$_2$, P_{HO_2} is the aqueous-phase production rate of HO$_2$, and $q = a(k^l D_{\text{aq}})^{1/2}$ is the diffuso-reactive parameter, in which D_{aq} is the HO$_2$ aqueous phase diffusion constant. P_{HO_2} is mainly from Reaction (RA3).

4 Atmospheric model simulations

Figure 2 shows the aqueous-phase chemical budgets of O$_2$ ($-$I) \equiv HO$_2$(aq) + O$_2^-$, H$_2$O$_2$, Cu, and Fe for a 0.35 µm (dry radius) NH$_4$HSO$_4$ aerosol at RH = 85 %, with dissolved Cu of 2.9 x 10$^{-3}$ M and Cu/Fe = 0.05 (molar). The concentration of Cu is estimated from the measured size distribution of Cu in rural aerosols with total Cu of 3.1 ng m$^{-3}$ (Ross and Noone, 1991). Reactions responsible for less than 1 % of total production or loss are not shown. In particular, we find that Fe(III) + Cu(I) completely dominates over other pathways for Fe(III) reduction including photolysis and Fe(III) + HO$_2$.

In contrast to cloud chemistry (Jacob, 2000), the HO$_x$ budget in aerosols is mainly controlled by TMI chemistry because TMI concentrations are so high. Aqueous OH production and loss are dominated by Reactions (RA6) and (RA7), respectively. Aque-
ous HO₂ production within the aerosol accounts for less than 2% of its loss as Reaction (RA4) dominates over Reaction (RA3). The major sinks of aqueous HO₂ are Reactions (RA1) and (RA5). As shown in Fig. 2, 70% of HO₂ taken up from the gas phase is chemically lost, with the remainder volatilizing. Therefore γ(HO₂) under these conditions is equal to 0.7.

The Cu/Fe ratio is a critical factor in this model calculation. When Cu/Fe > 1, Reactions (RA2) and (RA3) are the dominant sinks for Cu(I), leading to the conversion of HO₂ to H₂O₂. Aerosol pH is also critical. Acid-base dissociation of HO₂(aq)/O₂⁻ at higher pH decreases the HO₂ volatilization flux as the reaction rate constants of Cu or Fe with O₂⁻ can be two orders of magnitude faster than with HO₂(aq). The speciation of Cu and Fe is affected by pH, and we account for some of the complexation equilibria as described in Sect. 3. Precipitation of Fe(OH)₃ could take place at pH > 4, but we assume this to be negligible due to high ionic strength (A(Fe³⁺) = 0.01) and slow kinetics.

Figure 3a shows the pH dependence of our calculated γ(HO₂) for ammonium-sulfate aerosol at various Cu/Fe ratios. Aerosol pH is held fixed throughout each simulation. For a given Cu/Fe, γ(HO₂) approaches unity with increasing pH, reflecting enhanced chemical loss of O₂⁻ and therefore reduced volatilization flux. This pH dependence of γ(HO₂) is consistent with laboratory measurements. Mozurkewich et al. (1987) found higher γ(HO₂) with neutral Cu-doped aerosols (LiNO₃) (γ(HO₂) = 0.94) than acidic Cu-doped aerosols (NH₄HSO₄) (γ(HO₂) = 0.40). At fixed pH, γ(HO₂) increases with decreasing Cu/Fe ratio, resulting from the suppressed HO₂ production by Reaction (RA3) and enhanced HO₂ loss by Fe(III) + O₂⁻ (−I).

The TMI chemistry initiated by HO₂ uptake from the gas phase can lead to either production or loss of H₂O₂ (Fig. 1), and this can be expressed as a positive or negative H₂O₂ yield (Y_H₂O₂) associated with γ(HO₂). Figure 3b shows the pH dependence of over a range of Cu/Fe ratios. Y_H₂O₂ = 0.5 indicates that all HO₂ is converted to H₂O₂, Y_H₂O₂ = 0 indicates that all HO₂ is converted to H₂O, and Y_H₂O₂ < 0 indicates a reactive uptake of H₂O₂. When Cu/Fe ≤ 0.05, Y_H₂O₂ decreases with increasing pH. This is in
part due to the enhanced loss of aqueous HO\textsubscript{2} by Reaction (RA1) and Fe(III) + O\textsubscript{2}(-I), resulting in suppressed production of H\textsubscript{2}O\textsubscript{2} by Reaction (RA5). On the other hand, at higher pH, the oxidation of Fe(II) is enhanced by Fe(OH+) + H\textsubscript{2}O\textsubscript{2} which is five orders of magnitude faster than Fe2+ + H\textsubscript{2}O\textsubscript{2}. Reactions (RA6) and (RA7) then become the dominant sinks for Fe(II) and may lead to a reactive uptake of H\textsubscript{2}O\textsubscript{2} (Y\textsubscript{H\textsubscript{2}O\textsubscript{2}} < 0). The slight increase of at Cu/Fe = 0.1 while pH increases from 0 to 3 is mainly due to the enhanced H\textsubscript{2}O\textsubscript{2} production by Reaction (RA2). This pathway becomes unimportant at lower Cu/Fe.

Figure 3c examines the sensitivity of γ(HO\textsubscript{2}) to a decrease of Cu concentrations from the 2.9 × 10-3 M assumed in the standard simulation, keeping a fixed Cu/Fe = 0.05. We find that the sensitivity is weak as long as Cu remains above 5 × 10-4 M. For example, at pH = 3, γ(HO\textsubscript{2}) only decreases from 0.85 to 0.61 with a five-fold decrease of Cu concentrations. This weak response is mainly because uptake of HO\textsubscript{2} is limited by diffusion in the aqueous phase, reflecting its very fast reaction with Cu(II). As Cu(II) concentrations drop to values sufficiently low for HO\textsubscript{2} to become well-mixed into the aerosol, γ(HO\textsubscript{2}) then decreases rapidly with decreasing Cu. This dependence of γ(HO\textsubscript{2}) on Cu concentrations also appears to be consistent with laboratory measurements (Mozurkewich et al., 1987).

5 Global implications for atmospheric oxidant chemistry

We examine the potential global implications of Cu-Fe-HO\textsubscript{x} cycling by incorporating the corresponding HO\textsubscript{2} uptake in the GEOS-Chem global model of aerosol-oxidant chemistry (v9-01-01, http://www.geos-chem.org). Values in Fig. 3a indicate γ(HO\textsubscript{2}) in the range 0.4–1 depending on pH and the Cu/Fe ratio at 298 K; γ(HO\textsubscript{2}) is more likely to approach 1 at colder temperatures because of the higher solubility of HO\textsubscript{2} (Mao et al., 2010). At these high values of γ(HO\textsubscript{2}), HO\textsubscript{2} uptake can be limited by gas-phase diffusion with little residual dependence on γ(HO\textsubscript{2}) (Fig. S1). Thus we assume here γ(HO\textsubscript{2}) = 1 as a reasonable upper limit, and we further assume Y\textsubscript{H\textsubscript{2}O\textsubscript{2}} = 0 (Fig. 3b),...
since observations suggest that the dissolved Cu/Fe ratio is usually below 0.1 (Table S4); in fact, it appears from Fig. 3b that $Y_{H_2O_2}$ is more likely to be negative than positive. Finally, we assume as an upper limit that this reactive uptake of HO$_2$ proceeds on all non-cloud aerosol surfaces in GEOS-Chem (Martin et al., 2003), i.e., that Cu and Fe are internally mixed and that all aerosol particles are aqueous. The GEOS-Chem simulation has been successfully evaluated against global observations of aerosol optical depth (van Donkelaar et al., 2010). There remain large uncertainties in the aerosol phase and mixing state, and so the calculations presented here should only be viewed as illustrative of the potential effect. Other mechanisms than the Cu-Fe-HO$_x$ redox chemistry described here could also contribute to HO$_2$ conversion to H$_2$O in aqueous aerosols (Sect. 2 in the Supplement) and help explain the fast HO$_2$ loss (γ(HO$_2$) \sim 1) inferred from field studies (Table 1).

Figure 4 shows the difference of annual mean surface air concentrations of OH, HO$_2$, CO, and O$_3$ during 2005 as a result of this HO$_2$ uptake. The effects are largest in the extratropical Northern Hemisphere, where aerosol loading is high and the gas-phase photochemistry controlling HO$_x$ levels is relatively slow. Surface OH and HO$_2$ concentrations decrease by 20–30 % and 40–60 %, respectively over that region; the decrease in OH is partly compensated by an increase in NO$_x$ concentrations. The global mean (mass-weighted) tropospheric OH concentration in GEOS-Chem decreases by 12 % from 12.4×10^5 to 11.0×10^5 molecules cm$^{-3}$, improving agreement with observational constraints from methylchloroform data ($10.8 \pm 0.8 \times 10^5$ molecules cm$^{-3}$) (Prinn et al., 2005). The N/S interhemispheric OH ratio decreases from 1.09 to 1.02, in better agreement with the best estimate of 0.98 derived from methylchloroform observation (Krol and Lelieveld, 2003). The conversion of HO$_2$ to H$_2$O is critical for this effect. A sensitivity simulation with γ(HO$_2$) = 1 and $Y_{H_2O_2}$ = 0.5 shows only a 3 % decrease in global mean OH concentration.

The decrease of OH concentrations drives an annual mean increase of model CO concentrations by 20–30 ppb in the extratropical Northern Hemisphere, with maximum effect in spring. As shown in Fig. 5, this fully corrects the long-standing seasonal
GEOS-Chem bias in simulating CO observations at remote surface sites in that part of the world (Alvarado et al., 2010; Fisher et al., 2010; Kopacz et al., 2010). A similar CO bias in the extratropical Northern Hemisphere is found in other global models (Shindell et al., 2006) and may be similarly corrected.

Surface ozone concentrations decrease in general by 3–5 ppb over North America and most regions in Eurasia. The largest decreases (up to 20 ppb) are in East Asia and help to correct model overestimates of surface ozone in that region (Wang et al., 2008). Comparison with surface ozone observations in the US from the Clean Air Status and Trends Network (CASTNet) shows a decrease of mean model bias from +7 to +3 ppb (Fig. S2).

HO₂ conversion to H₂O in aqueous aerosols thus improves model simulations in several aspects and could have a major and previously unrecognized impact on atmospheric oxidant chemistry. Anthropogenic aerosol concentrations are expected to decrease globally in the coming decades as a result of policies for improving air quality (Meinshausen et al., 2011). Our work suggests that this could have a detrimental effect on ozone air quality while causing OH to increase. From a climate forcing perspective, our work suggests that decreasing aerosol could drive an indirect positive forcing due to increasing tropospheric ozone and an indirect negative radiative forcing due to faster oxidation of methane and hydrofluorocarbons (HFCs). Better understanding of aqueous HO₂ chemistry in an atmospheric context is clearly needed. Measurements of Cu and Fe speciation in atmospheric aerosols would be of particular value.

Supplementary material related to this article is available online at: http://www.atmos-chem-phys-discuss.net/12/27053/2012/acpd-12-27053-2012-supplement.pdf.

Acknowledgement. We thank Larry Horowitz and Hiram Levy II for careful review. We thank Vaishali Naik for helpful discussion on global mean OH. We thank Inna Megretskaia, Monika Kopacz, Drew T. Shindell and Junhua Liu for the help with global CO data. We thank Catherine
Raphael for the help with graphic design. D. J. J. and K. R. T. were supported by the NASA Atmospheric Composition Modeling and Analysis Program.

References

Radical loss in the atmosphere from Cu-Fe redox coupling in aerosols

J. Mao et al.

Table 1. Field evidence on HO$_2$ aerosol uptake.

<table>
<thead>
<tr>
<th>Location</th>
<th>Type</th>
<th>HO$_2$ Conc (pptv)a</th>
<th>Estimated y(HO$_2$)</th>
<th>Comments</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mauna Loa</td>
<td>remote</td>
<td>~ 15b</td>
<td>0.5–1</td>
<td></td>
<td>Cantrell et al. (1996)</td>
</tr>
<tr>
<td>Southern Ontario, Canada</td>
<td>rural</td>
<td>~ 10</td>
<td>~ 1</td>
<td>To reduce HO$_2$ by more than a factor of 2</td>
<td>Plummer et al. (1996)</td>
</tr>
<tr>
<td>Oki Island, Japan</td>
<td>remote</td>
<td>~ 10</td>
<td>~ 1</td>
<td>To reduce HO$_2$ by 50 %</td>
<td>Kanaya et al. (2000)</td>
</tr>
<tr>
<td>TRACE-P aircraft campaign</td>
<td>polluted troposphere</td>
<td>N/A</td>
<td></td>
<td>30–50 % loss of peroxy radicals onto aerosols</td>
<td>Cantrell et al. (2003a)</td>
</tr>
<tr>
<td>TOPSE aircraft campaign</td>
<td>remote</td>
<td>~ 5</td>
<td>N/A</td>
<td></td>
<td>Cantrell et al. (2003b)</td>
</tr>
<tr>
<td>Remote marine boundary layer</td>
<td>remote</td>
<td>~ 8</td>
<td>1</td>
<td></td>
<td>Sommariva et al. (2004); Haggerstone et al. (2005)</td>
</tr>
<tr>
<td>near Australia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saharan dust plume</td>
<td>plume</td>
<td>~ 15b</td>
<td>1</td>
<td>No H$_2$O$_2$ formed from HO$_2$ uptake. Also needs uptake for H$_2$O$_2$</td>
<td>de Reus et al. (2005)</td>
</tr>
<tr>
<td>Mace Head, Ireland</td>
<td>remote</td>
<td>~ 6</td>
<td>1</td>
<td></td>
<td>Sommariva et al. (2006)</td>
</tr>
<tr>
<td>Rishiri Island, Japan</td>
<td>remote</td>
<td>~ 6</td>
<td>1</td>
<td></td>
<td>Kanaya et al. (2007)</td>
</tr>
<tr>
<td>Jungfraujoch research stationc</td>
<td>remote</td>
<td>~ 6</td>
<td>1</td>
<td></td>
<td>Parker et al. (2009)</td>
</tr>
<tr>
<td>Biomass burning plumes in West</td>
<td>plume</td>
<td>N/A</td>
<td></td>
<td>Modeled HO$_2$ is higher than measured HO$_2$ by a factor of 5</td>
<td>Commane et al. (2010)</td>
</tr>
<tr>
<td>Africa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arctic spring</td>
<td>remote</td>
<td>~ 5</td>
<td>~ 1</td>
<td></td>
<td>Mao et al. (2010); Olson et al. (2012)</td>
</tr>
<tr>
<td>Arctic summer</td>
<td>remote</td>
<td>~ 10</td>
<td>~ 1</td>
<td></td>
<td>Olson et al. (2012)</td>
</tr>
</tbody>
</table>

a Noontime mean or median value.

b Estimated from the measured total peroxy radicals (HO$_2$ + RO$_2$).

c Estimated for the uptake on snow surface.
Fig. 1. Cu-Fe redox coupling in aqueous aerosols driven by HO$_2$ uptake from the gas phase. In the presence of dissolved Cu alone, HO$_2$ is converted to H$_2$O$_2$. In the presence of both dissolved Cu and Fe, HO$_2$ is converted to either H$_2$O$_2$ or H$_2$O and may also catalytically consume H$_2$O$_2$.
Fig. 2. Simulated aerosol budgets of $O_2(-I) = HO_2(aq) + O_2^-$, H_2O_2, dissolved Cu, and dissolved Fe. The main reaction pathways are indicated. The values shown are aqueous concentrations (M) and transformation rates (Ms^{-1}). Read $6.8(-5)$ as 6.8×10^{-5}. The Cu(I) + HO$_2$ Reaction (RA2) is not shown as it is negligibly small under these conditions. Model calculations assume an aqueous NH$_4$HSO$_4$ aerosol with dry radius of 0.35 µm at RH = 85% and $T = 298$K. This simulation is constrained with $HO_2(g) = 10$pptv, $H_2O_2(g) = 1$ppb, $O_3(g) = 30$ppb. Aerosol pH is 0.15 with ionic strength 7.8 molkg$^{-1}$ (the resulting activity coefficient $A(Cu^{2+}) = 0.067$). Dissolved Cu concentration is 2.9×10^{-3} M, adopted from Ross and Noone (1991). The dissolved Cu to Fe ratio is Cu/Fe = 0.05.
Fig. 3. Impacts of Cu-Fe-HO\textsubscript{x} cycling on aerosol chemistry for the model calculations described in the text. (A, B) pH dependence of the HO\textsubscript{2} reactive uptake probability γ(HO\textsubscript{2}) and the corresponding H\textsubscript{2}O\textsubscript{2} yield for different Cu/Fe molar ratios. (C) Dependence of γ(HO\textsubscript{2}) on Cu concentrations for different pH values with Cu/Fe = 0.05.
Fig. 4. Effect of HO$_2$ reactive uptake on non-cloud aerosols (γ(HO$_2$) = 1 producing H$_2$O) on surface air concentrations of OH, HO$_2$, CO, and O$_3$ in the GEOS-Chem model. Values are annual means for 2005 and are calculated by difference with a simulation including no HO$_2$ uptake.
Fig. 5. Seasonal variation of CO concentrations at remote surface sites in northern extratropics. Climatological observations from NOAA/GMD (1988–2007) are shown in black. GEOS-Chem model values are shown in red with no HO_2 uptake and in green with $\gamma(\text{HO}_2) = 1$ producing H_2O.