Interactive comment on “Isotope effects in N\textsubscript{2}O photolysis from first principles” by J. A. Schmidt et al.

R. Marcus (Referee)

ram@caltech.edu

Received and published: 20 July 2011

The paper of Schmidt et al. is interesting and merits publication. It is, we believe, an excellent example of a benchmark calculation, serving both in its own right and in testing a common approximation used for treating electronic spectra, in the present case the Franck-Condon principle used by Chen et al., (2010) to treat isotopic fractionation. We will submit a detailed discussion of the comparison elsewhere, but as the authors point out, the agreement is good. We are not aware of any previous benchmark computational test of the Franck-Condon principle for isotopic fractionation of a triatomic molecule. We note that there are at least three versions of this principle (Heller, 1978 and Schinke 1993; Lee et al. 1983; Chen et al. 2008), differing somewhat in their treatment of the potential energy and zero-point energy of the ground state. We used the
actual potential energy difference of the ground and excited states (Chen et al. 2008, 2010). This method (Chen et al. 2008, 2010) conserves positions of atoms and momenta during a transition, as in the original Condon approach (Condon, 1928; Berry et al., 2000), and weights each value of the coordinates in accordance with the square of the amplitude of the molecular wavefunction in each initial quantum state. This form of the Franck-Condon principle is also the starting point of a systematic quantum mechanical spectral moment perturbation treatment of the Franck-Condon principle (Sovkov and Ivanov, 1998).

The question of adjustable parameter enters. In neither case were any adjustable parameters derived from isotopic fractionation data employed. In Schmidt et al. (2011), there was an adjustment (a shift of 300 cm$^{-1}$) to match oscillations in the spectrum and an adjustment of the peak intensity by a factor of 1.4 to match the absolute absorption intensity, and in our case, with a less refined pair of potential energy surfaces, there was an adjustment of peak height (a factor of 1.6) and a shift of the absorption spectral peak (a shift of 800 cm$^{-1}$) to match the experimental absorption spectrum. For neither paper, in our view, does the term “semi-empirical” appropriately characterize both papers on that account, although that terminology is appropriate for a situation where isotopic fractionation data are used to fit other isotopic fractionation data. There is some parallel in numerous other topics, for example in the calculation of electron transfer rates or rates of unimolecular reactions, where existing thermodynamic data are used, in conjunction with computations or approximate analytic theory to compute reaction rates, rather than calculate everything \textit{ab initio}.

Both the present paper (Schmidt et al., 2011) and previous work (Chen et al. 2010) do not treat specifically the rotations of the molecule. In some systems, such as NO$_2$, Coriolis and other rotational effects can play a role (Bezel et al., 1999) and, for a benchmark calculation, an extension that includes rotational coordinates would be needed. In the meanwhile, however, the present article serves as a double accomplishment, the treatment of isotopic fractionation itself and a test of the Franck-Condon principle.
for \(N_2O\) for that purpose, and merits publication.

References

