Interactive comment on “Yields of oxidized volatile organic compounds during the OH radical initiated oxidation of isoprene, methyl vinyl ketone, and methacrolein under high–NO_x conditions” by M. M. Galloway et al.

G. Tyndall (Referee)
tyndall@ucar.edu

Received and published: 26 May 2011

This paper described measurements of oxidized products, notably glyoxal (GLX) and methylglyoxal (MGLY), during the oxidation of isoprene, methyl vinyl ketone (MVK) and methacrolein (MACR). The experiments were carried out at the Caltech environmental chamber. The results demonstrate quite convincingly for the first time that glyoxal can be formed as a primary product in the oxidation of isoprene. This observation, along with associated measurements using mass spectrometry, allow some constraints on proposed mechanisms of isoprene oxidation.

The measurements appear to have been carefully done. The novel part of the paper is the use of laser-induced phosphorescence to measure GLX and MGLY in conjunction with other, more conventional techniques. The demonstration of the method is noteworthy. However, the paper requires a little more detail before it comes up to the standard that is required of laboratory determinations, such that other workers will later be able to reproduce or possibly reinterpret the data as needed. In particular, I would prefer to see plots showing some of the other chemical species in a couple of places to verify the chemistry. The writing is also a little terse (e.g. page 10703, lines 22-27), and could use some separation of ideas.

Comments: Other than on page 10704, line 8, I didn’t notice any mention of the supplemental figures and table in the text. The text should contain some pointers to the supplemental material (e.g. the discussion of the OH concentration on page 10700).

The experiments last for upward of 8 hours. Please give details of the NO, NO2 and O3 concentrations, especially in the later stages of the runs. At what point was the isoprene depleted?

Was HONO added continuously to the chamber, or just at the beginning?

There are some general statements regarding the quality of the fits of MGLY and glycolaldehyde, but it would be nice to see somewhere a composite figure with loss of starting material, production of major and minor products, and model fits for a typical run.

Page 10701, line 13: should be Table 2?

Page 10702, line 9: Check the yields from Paulot. Table 2 gives 20% for hydroxyacetone and 0% for MGLY, but you say their MGLY is much higher than yours. Should also be 20%?

Page 10703, line 13: Define MBO here.
Page 10703, line 23: the modeled glycolaldehyde [from MVK] appears to be less than the measurements, not more. Also, it says that measured methyl glyoxal (not shown) is double modeled concentrations, but in Table 2 the MGLY yield (27%) is identical to the MCM value (29%).

Similar comment for MACR. I think you may be referring to the final value, but again without a figure it's hard to know.

Page 10705: I am not surprised that the GLX yields from the C5 carbonyls are less than in the MCM. Berndt and Boge [J. Phys. Chem. A. 111, 2007, 12099-12105] studied the oxidation of 4-hydroxybutenal and found only 17% glyoxal. This is evidence that the majority of the oxy radicals decompose to HCO and a dihydroxy aldehyde, rather than to GLX. So, I would suspect that the yields of GLX and MGLY from C5 hydroxycarbonyls are less than 50% but, in reality, probably greater than zero.

Furthermore, the rate constants used in the MCM for OH + C5 carbonyls look low. A more rapid reaction (say 2x) might make it more difficult to distinguish between primary and secondary GLX production. A little extra modeling should be done to test this.

Table 2: The yields listed for hydroxyacetone from MVK should be for methylglyoxal (25% from Tuazon, and 26.5% from Paulot). The yield of MGLY from MACR inferred by Paulot et al. should be 20%? The yield of MGLY from MACR in the MCM should be 8%, not zero.

Supplement, Fig S4: The yield of MGLY from MACR is here given as 15%.

Overall a good paper, but needs more data in the Figures in order to be able to assess potential problems with secondary chemistry. Also, the information in the Supplemental file needs to be referenced in the paper and explained a little better.

Interactive comment on Atmos. Chem. Phys. Discuss., 11, 10693, 2011.

C3971