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1 First referee’s comments

1.1

Referee

The use of Legendre polynomials is a common tool in discontinuous Galerkin methods for hyperbolic

problems (cite for instance the introductory paper by Cockburn).

It is possible to perform the positivity tests and the redistribution procedure in the Legendre basis.

Authors

We agree it would be useful to provide a reference about the Legendre polynomials. We believe

a standard reference about their role in approximation theory would be more useful than a paper

about DG methods, so have cited the book by Dahlquist and Björck (1974). Please see Sect. 2.4

in the manuscript where the new reference is added.
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Indeed the positivity test can be performed easily in the Legendre basis. However, doing so for

the redistribution procedure is more complicated. This is because the grid divisions µ must be

transformed into χ using Eq. (13) in the manuscript. Because m0, m` and mr in this equation are

different for different bins, this transformation is not uniform across bins. We found this to be less

convenient than performing the redistribution in the standard polynomial basis.

1.2

Referee

The phrase extra work should be comment with some numbers concerning the additional flops.

The error measures should be explained more precisely. How is the root-mean-square error related

to the L1 error? Since the bins are not equally spaced in the first example the L1 error should be

a more appropriate measure. The error plots (Fig. 2 and Fig. 4) may be dominated by the time

error for increasing number of bins. The computations should be repeated for a smaller time step.

It should be mentioned that the error plots are half logarithmic.

Authors

Good point. The extra computing time required when the cubic scheme is implemented is shown

in the (new) Sect. 3.3 in the revised manuscript.

We agree with the referee and switch to L1 errors. The formula used to compute the errors is given

by Eq. (29) in the revised manusript.

In Sect. 3.1 (the first numerical test), the time step is decreased from 1.0 s in the original manuscript

to 0.1 s in the revised manuscript. Experiments with a time step less than 0.1 s in the first test

(Sect. 3.1) and less than 1.0 s in the second test (Sect. 3.2) show little difference.

The logarithmic scale of the errors is indicated in the captions of Figs. 2 and 4 in the revised

manuscript.
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1.3

Referee

The initial and the exact solution should be presented as a continuous curve (use more points for

plotting). The bin number axes should be avoided. Take the radius axes above. Indicate the type

of plotting (linear or logarithmic). A comparison for finer grid resolution may be also useful. There

is some feeling, that the chosen resolution is very crude (at least from a mathematical point of

view). It is possible to make some order studies which confirms that the new interpolation leads to

a better approximation order.

Authors

The initial and exact solutions have been interpolated into the coarse grid so that they can be

compared directly with the numerical solutions. For this reason it is helpful to leave these curves

at the same resolution as the numerical solutions.

We decided to retain both the radii and the bin numbers on the axes of Figs. 1 and 3. We think

that the bin numbers are helpful for the readers to locate the solutions with respect to the grid.

Our cubic scheme is not, in fact, a higher order accurate approximation because we do not use the

cubic sub-bin structure to compute the microphysical tendencies. In practice, bin schemes are not

implemented at very high resolutions. Thus, improvements in accuracy by the cubic scheme must

be demonstrated at relatively low resolutions, and the real-world advantages of the cubic scheme do

not depend on it being higher-order. Please also see the last paragraph of Sect. 3.3 in the revised

manuscript. There we briefly discuss the relevance of the cubic scheme to cloud resolving models

that are in the intermediate range of resolutions.
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1.4

Referee

The examples are simple by the chosen growth rate function. A test with the growth rate function

mentioned in the appendix of the seminal paper by Chen and Lamb would be very interesting.

Their non-monotonic behavior allows the simultaneously condensation and evaporation of different

bins.

Authors

We agree that it is important to test the scheme in a variety of settings. Toward this end we have

investigated the test suggested by the referee. We report on those results below. However, we felt

this test yielded results similar to those already presented, and since it is most applicable to very

small droplets during their activation state, it does not add much generality to our results. Therefore

we have included different third test, involving a more complex two-dimensional simulation of thin

cirrus clouds.

Here are the results for the Chen and Lamb problem. When the curvature and solute effects are

included, the growth rate of cloud drops is

dr

dt
=
B

r

(
S − α

r
+
β

r3

)
,

where r is the radius of cloud drops, S is the supersaturation ratio, and α, β and B are independent

of r. The above growth rate is most applicable to droplets during the activation stage. For this

test let S = 0.01, α = 1.2× 10−9 m−1, β = 1.5× 10−22 m−3. There is no analytical solution for

this case. The solutions obtained by the linear and cubic schemes at low resolution are compared

with a numerical solution obtained by either scheme at very high solution (500 bins).

Let the initial drop spectrum be Eq. (24) in the manuscript, with N0 = 2.0× 108 m−3 and mc =

9.0× 10−16 kg here. The latter is the mass of a drop of radius 0.6 µm. The bin grid is defined
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according Eqs. (26)–(28), where rmin = 0.1 µm and rmax = 4 µm.

For this case, special time discretization techniques (see Chen and Lamb (1994, Appendix)) are

necessary to take a time step that is not impractically small. However, since this is a theoretical

test for the discretization along the mass axis, we will simply use the forward Euler’s time stepping

method. This requires a very small time step 4t = 5× 10−5 s.

The solutions at 1 s obtained by the linear and cubic schemes at 10 bins are shown here in Fig. 1.

The errors in the solutions at 1 s obtained by the linear and cubic schemes as functions of bin

resolution are shown in Fig. 2. Similar to other cases presented in the manuscript, the cubic

scheme performs better than the linear scheme.

1.5

Referee

How often does the algorithm switch back to linear approximation?

Authors

We agree this should be discussed and it is now covered at the end of Sect. 3.1.3. In particular,

in the evaporation problem (Sect. 3.1 in the manuscript), the cubic scheme switches from cubic

to linear approximations in respectively 14 % and 4 % of the time at 20 and 80 bins. In the

depositional growth problem (Sect. 3.2 in the manuscript), the cubic scheme switches from cubic

to linear approximations in respectively 25 % and 4 % of the time at 6 and 20 bins. At higher

resolutions the cubic approximation is used more often because the discretized numerical solution

is smoother.
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2 Second referee’s comments

2.1

Referee

P. 21639, line 5: Values from this equation will not be within the range −1 and 1, thus violates

the definition of χ on p. 21637, line 16. Will this cause a problem? If not, then the definition of χ

should be modified.

Authors

Good point; χ should be defined such that it varies between −1 and 1 as m varies between m` and

mr. When m = mL, which is smaller than m`, χ is smaller than −1. When m = mR, which is

larger than mr, χ is greater than 1. Since values of χ may be outside the [−1, 1] range, the sentence

“χ is an independent variable defined between −1 and 1” is wrong. We have shortened it to “χ is

an independent variable” in the revised manuscript.

2.2

Referee

P. 21643, Section 3.2: Mathematically, this case is the same as that presented in the previous

section. The only difference is to allow supersaturation to vary with time (i.e. open system versus

closed system), but this variation is of no numerical importance. Besides, ice crystal growth has

its own complexity that comes from the shape effects. I suggest the authors focusing on the

numerical methods and conduct more thorough analysis, such as comparing the results for case 1

with increasing resolutions (such as those given in Table 1). One should see the results to converge

at high resolutions.
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Authors

In addition to the difference pointed out by the referee, the bin grids are defined differently in the

two tests. By showing the second test, we demonstrate the robust performance of the cubic scheme

over different grids. Furthermore, in the first test, the numerical solutions are compared with an

analytical solution. In the second test, there is no analytical solution because the growth rate of

particles is more complex. In this case the numerical solutions at low resolutions are compared

with a numerical solutions obtained at a very high resolution.

We elected to keep the second test because it serves as a transition to the third test in Sect. 3.3.

The microphysics of ice crystals in the second test is similar to that in the third test. Sect. 3.3 is

a new section which was not in the original manuscript.

The decrease in the errors as bin resolution increases (Figs. 2 and 4 in the revised manuscript)

indicates that the two schemes converge at high resolution. We think that further analyses of the

convergence of the schemes at very high resolutions are not necessary because this has little use

in practice. Most cloud resolving models fall into the range of intermediate resolutions (less than

100 bins). For further discussions of this issue, please see the last paragraph of Sect. 3.3 in the

revised manuscript.

2.3

Referee

P. 21645, lines 5-6: “For the same accuracy, the number of bins required for the cubic scheme is

less than that of the linear scheme.” The authors addressed only the computation accuracy but

not the computation efficiency. A reduction of bin number by might not be much, considering that

the cubic method necessarily use more computation time than the linear method on the individual

bin bases. Does the reduced bin number (by) enough to compensate the extra computation? The

authors need to provide a CPU-time analysis.
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Authors

These are indeed important points. We added Sect. 3.3 into the revised manuscript to address the

referee’s concerns. In this new section, we evaluate the accuracy as well as the computing time of

the linear and cubic schemes in a two-dimensional cloud resolving model. We have been using this

model to simulate thin cirrus in the tropical tropopause layer.

In this model, there is a significant improvement in accuracy when the the cubic scheme is used.

This is achieved at only 5 % increase in computing time. For our own research using this model,

we are willing to pay the additional cost to achieve the improved accuracy.

Alternatively, the cubic scheme can be used at lower resolution than the linear scheme to save

computing time. This is achieved without loss of accuracy. In the tests that we performed, the

computing time saved by reducing the bin resolution outweighs the additional time required to run

the cubic scheme.

2.4

Referee

P. 21645, Summary: Bin models also need to deal with collision processes. One of the key benefits

of the cubic method is to reduce the number of bins for condensation/deposition calculation. But

reducing the bin number necessarily causes large error in the collision growth processes, unless the

cubic method can also be easily applied to such calculations. The authors discussed a little bit

about this in the Summary section and provided a seemly good solution, i.e. use less bins with

the cubic method for the condensation-dominant sizes, whereas apply more bins with the linear

method for the collision-dominant sizes. However, the most critical collisions are raindrop initiation

collisions between large cloud drops, which is still in the condensation-dominant size regime. Also,

the condensation process tends to narrow the cloud drop spectrum, and often only very few bins

(may be a little as 1 if the bin sizing factor is above 2) contain cloud drops. Yet, most bin models

do not consider collisions within a bin. If only 1 bin contains cloud drops, there will be no collision
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in such models. So, decreasing the bin number in the condensation-dominant size regime inevitably

causes artificial reduction in rain initiation by collision. Therefore, reducing the bin number is not

necessary the best numerical strategy.

Authors

We agree that one cannot arbitrarily plan to reduce the bin resolution if one switches to the cubic

scheme. We trust that microphysical modelers will use a variety of physical considerations to decide

what the minimum bin resolution should be in each size range.

The reduction in resolution applies only when the particle spectrum is sufficiently resolved by the

bin grid. If the spectrum of particles is contained within only one bin, the resolution is far too

coarse to resolve the spectrum. In that case neither the linear nor the cubic scheme performs well.

A brief discussion concerning the resolutions applicable to cloud resolving models is contained in

the last paragraph of Sect. 3.3 of the revised manuscript.

We do not suggest reducing the number of bins over the size range in which collision is impor-

tant. As indicated in the title of the manuscript, so far we have applied the cubic scheme to the

evaporation/condensation problem only.

2.5 Minor comments

• Referee: P. 21633, line 17: “aggregation”. The traditional term for drop-drop interaction is

coalescence.

Authors: We rewrote this sentence accordingly.

• Referee: p. 21635, line 6: “µ1, µ2, . . . , µN+1”. Why not just use m1,m2, ...,mN+1 as done

in the previous page? If mi are intended to be variable (i.e. Lagrangian boundaries), then

modify the previous notation of m with m.
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Authors: We use µ1, µ2, . . . , µN+1 for the grid divisions. For each bin resolution, i.e. for

each N , the grid divisions are fixed, whereas the variable m may change over different time

steps. m1 and m2 in the original manuscript denote the left and right boundaries of each

bin. During the bin shift procedure, the bins are shifted with respect to the grid. Thus the

grid divisions should be distinguished from the variable m. To eliminate this confusion, we

decided to change m1 and m2 to m` and mr.

• Referee: P. 21636: “the assumption that the growth rate of particles in the bin is equal to the

growth rate of the mean mass is least accurate at the bin boundaries.” It is better explaining

this earlier on the previous page.

Authors: We feel that this sentence is most appropriate there. This is where we discuss the

best choice for the additional points necessary to rewrite the distribution from linear to cubic.

• Referee: P. 21637, line 20: How is this equation calculated for partially empty bins?

Authors: We do not correct the distribution function for positivity when calculating the

coefficients for the cubic polynomial. It is the correction for positivity that results in the

bin being partially empty. This correction is performed after the cubic coefficients have been

found and if the resulting cubic polynomial is negative in part of the bin.

• Referee: P. 21638, Eq. 16: Should the exponent in the denominator be 3 instead of 2?

Authors: We checked the equation and think that the exponent in the denominator should

be 2.
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• Referee: P. 21642, line 20: RMS errors. Can you also show the RMS error for mass?

Authors: As suggested by the first referee, we switched to L1 errors in the revised manuscript.

The L1 errors for mass are now shown in the revised manuscript.

• Referee: With Figs. 2 and 4, Tables 1 and 2 are redundant.

Authors: We agree and have removed the tables from the manuscript.
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Figure 1: Numerical solutions in (a) number and (b) mass of drops obtained by the linear and cubic
schemes at 1 s in the droplet activation problem. The low resolution solutions (blue and red curves) are
obtained at 10-bin-resolution. The high resolution solution (black, dashed curve) is obtained at 500-
bin-resolution. The initial and final solutions are normalized by the maximum of the high resolution
solutions at respectively the initial and final time. The radii corresponding to the masses at the bin
centers are indicated at the top of the plot.
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Figure 2: L1 errors in (a) number and (b) mass of drops of the solutions at 1 s obtained by the linear
and cubic schemes in the droplet activation problem. The errors are plotted in logarithmic scale.
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