Interactive comment on “Combining Bayesian methods and aircraft observations to constrain the HO+ + NO\textsubscript{2}- \rightarrow HNO\textsubscript{3} reaction rate” by B. H. Henderson et al.

Anonymous Referee #1

Received and published: 10 October 2011

In this paper the authors apply Baysian methods to aircraft observations of the NO\textsubscript{2}/HNO\textsubscript{3} ratio obtained during the INTEX-A aircraft campaign in order to constrain chemical reaction rates in the upper troposphere. They use a simple convective turnover model of the upper troposphere to examine how uncertainties in chemical rate constants affect their comparison to observations. The authors find that the OH + NO\textsubscript{2} \rightarrow HNO\textsubscript{3} rate constant is currently too high by 22%. They interpret this as a lower temperature sensitivity than currently recommended. These are significant results obtained using an elegant and innovative approach. The assumptions are clearly described. The paper is well written and organized in a clear way. I only have very minor comments as listed below.

Section 2.2: page 24197 line 20-23. What is assumed for the heterogeneous uptake of N\textsubscript{2}O\textsubscript{5}? Given its relevance to the NO\textsubscript{2}/HNO\textsubscript{3} ratio it would be useful to have a bit more detail beyond referring to “GEOS-Chem model version 9-01-01” which is a very opaque reference for most readers.

Are all the observations always between 8-10 km? If would be useful to mention this again in the figure caption of figure 2 as well as in Tables A1-3.

Similarly it would be useful to reiterate the criteria used to choose the ‘initial conditions’ in Table A1.