Cloud condensation nuclei (CCN) from fresh and aged air pollution in the megacity region of Beijing

S. S. Gunthe¹, D. Rose¹, H. Su¹, R. M. Garland¹,* P. Achten², A. Nowak², A. Wiedensohler², M. Kuwata³, N. Takegawa³, Y. Kondo³, M. Hu⁴, M. Shao⁴, T. Zhu⁴, M. O. Andreae¹, and U. Pöschl¹

¹Biogeochemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
²Leibniz Institute for Tropospheric Research, Leipzig, Germany
³RCST, University of Tokyo, Tokyo, Japan
⁴State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China
Abstract

Atmospheric aerosol particles serving as cloud condensation nuclei (CCN) are key elements of the hydrological cycle and climate. CCN properties were measured and characterized during the CAREBeijing-2006 campaign at a regional site south of the megacity of Beijing, China. Size-resolved CCN efficiency spectra recorded for a supersaturation range of $S = 0.07\%$ to 0.86% yielded average activation diameters in the range of $190\,\text{nm}$ to $45\,\text{nm}$. The corresponding effective hygroscopicity parameters (κ) exhibited a strong size dependence ranging from ~ 0.25 in the Aitken size range to ~ 0.45 in the accumulation size range. The campaign average value ($\kappa = 0.3 \pm 0.1$) was similar to the values observed and modeled for other populated continental regions.

The hygroscopicity parameters derived from the CCN measurements were consistent with chemical composition data recorded by an aerosol mass spectrometer (AMS) and thermo-optical measurements of apparent elemental and organic carbon (EC_a and OC). The CCN hygroscopicity and its size dependence could be parameterized as a function of AMS based organic and inorganic mass fractions using the simple mixing rule $\kappa_p \approx 0.1 \cdot f_{\text{org}} + 0.7 \cdot f_{\text{inorg}}$.

When the measured air masses originated from the north and passed rapidly over the center of Beijing (fresh city pollution), the average particle hygroscopicity was reduced ($\kappa = 0.2 \pm 0.1$), which is consistent with enhanced mass fractions of organic compounds ($\sim 50\%$) and EC_a ($\sim 30\%$) in the fine particulate matter (PM_{1}). Moreover, substantial fractions of externally mixed weakly CCN-active particles were observed at low supersaturation ($S = 0.07\%$), which can be explained by the presence of freshly emitted soot particles with very low hygroscopicity ($\kappa < 0.1$). Particles in stagnant air from the industrialized region south of Beijing (aged regional pollution) were on average larger and more hygroscopic, which is consistent with enhanced mass fractions ($\sim 60\%$) of soluble inorganic ions (mostly sulfate, ammonium, and nitrate). Accordingly, the number concentration of CCN in aged air from the megacity region was higher than in fresh city outflow ($(2.5–9.9) \times 10^3 \, \text{cm}^{-3}$ vs. $(0.4–8.3) \times 10^3 \, \text{cm}^{-3}$) although the total
aerosol particle number concentration was lower \(1.2 \times 10^4 \text{ cm}^{-3}\) vs. \(2.3 \times 10^4 \text{ cm}^{-3}\). A comparison with related studies suggests that the fresh outflow from Chinese urban centers generally may contain more, but smaller and less hygroscopic aerosol particles and thus fewer CCN than the aged outflow from megacity regions.

1 Introduction

Atmospheric aerosol particles that enable the condensation of water vapor and the formation of cloud droplets at a given level of water vapor supersaturation are called cloud condensation nuclei (CCN). These aerosol particles play an important role in the formation of clouds and precipitation, and thus influence atmospheric chemistry and physics, and the hydrological cycle and climate (Seinfeld and Pandis, 2006; Lohmann and Feichter, 2005). Elevated concentrations of CCN tend to increase the concentration and reduce the size of the droplets in a cloud. Apart from changing the optical properties and the radiative effects of clouds on climate, this may lead to the suppression of precipitation in shallow and short lived clouds and to a greater convective overturning and more precipitation in deep convective clouds (Rosenfeld et al., 2008). The response of cloud characteristics and precipitation processes to increasing anthropogenic aerosol concentrations, however, represents one of the largest uncertainties in the current understanding of climate change (Andreae et al., 2005; IPCC, 2007). To incorporate the effects of CCN in meteorological models at scales from large eddy simulations (LES) to global climate models (GCMs), knowledge of the spatial and temporal distribution of CCN in the atmosphere is essential (Huang et al., 2007; Andreae and Rosenfeld, 2008; Stevens and Feingold, 2009; Pöschl et al., 2010).

In recent years, anthropogenic emissions of aerosol particles and precursors from Asia have increased significantly due to rapid industrialization (Streets et al., 2000, 2008; Richter et al., 2005; Shao et al., 2006), and numerous studies indicate that anthropogenic aerosol particles have changed cloud microphysical and radiative properties (Xu, 2001; Liu et al., 2004; Massie et al., 2004; Zhang et al., 2004; Wang et al., 2005).
Thus, CCN data are required for assessing the impact of anthropogenic aerosol on regional and global climate. Several earlier and recent studies have reported CCN measurements from various regions around the world, however, only few CCN measurements have been made in Asia and in the vicinity of megacities and city-clusters, which are major source regions of air particulate matter (e.g., Matsumoto et al., 1997; Yum et al., 2005, 2007; Kuwata et al., 2007, 2008, 2009; Wiedensohler et al., 2009; Rose et al., 2010a,b).

Beijing, the capital of China, is a megacity with a population of about 22 million people (http://www.chinadaily.com.cn/china/2010-02/26/content_9511839.htm). The city is located in Northeastern China, it is surrounded by the Yan Shan Mountains from the west to the northeast, and has heavily industrialized areas from the southwest to the east (Chen et al., 2007; Streets et al., 2007). Due to the rapid economic growth and the increase in motor traffic during the last decade, the pollution in Beijing is a complex mixture of domestic, industrial, and traffic emissions combined with regional pollution originating from the highly industrialized areas to the south (i.e., Hebei province and Tianjin Municipality) (Xia et al., 2007; Wehner et al., ACP, 2008). The “Campaign of Air Quality Research in Beijing and Surrounding Region 2006” (CAREBeijing-2006) took place in summer 2006. Its objectives were to study the origin of the regional air pollution and to advise the local authorities on measures to reduce local particulate pollution during the Olympic Games to be held in Beijing in August 2008. A suburban measurement location, Yufa, located ∼50 km south of the center of Beijing, enabled investigations of the southerly inflow into the city to probe the impact of aged regional pollution on the city’s air quality, as well as investigations of the city outflow when winds were northerly (fresh city pollution).

In this study we report on the first size-resolved measurements of CCN in the megacity region of Beijing, and we parameterize the effective aerosol particle hygroscopicity and CCN activity as a function of chemical composition determined by aerosol mass spectrometry (AMS).
2 Methods

2.1 Measurement location, aerosol inlets and supporting data

The measurements were performed during the CAREBeijing-2006 campaign (10 August to 9 September 2006) at a suburban site on the campus of Huang Pu University in Yufa (39.51467° N, 116.30533° E), which is located ~50 km south of the city center of Beijing (Fig. 1). The instruments were located on the third and the top floor of a four story school building with the sample inlets and a meteorological station mounted on the roof (Achtert et al., 2009; Garland et al., 2009; Takegawa et al., 2009a,b; Wiedensohler et al., 2009). The average meteorological parameters (arithmetic mean ± standard deviation) recorded during the campaign period at the aerosol inlet were: 24.6 ± 4.4 °C ambient temperature, 71.0 ± 18.3% ambient relative humidity (RH), and 1005 ± 4 hPa ambient pressure. The winds were generally light (1.70 ± 1.38 m s⁻¹ average local wind speed) and came mostly from the south (172 ± 93° average local wind direction) with occasional shifts to northerly directions as detailed in the results section. Back trajectory analyses can be found in Garland et al. (2009).

The main aerosol inlet used in this study was equipped with a Rupprecht & Patashnick PM₁₀ inlet that was optimized for isokinetic flow conditions with a cyclone for the 10 μm size cut-off (flow rate 16.7 L min⁻¹). The sample flow passed through stainless steel tubing (1.9 cm inner diameter, 5.1 m length) to a diffusion dryer with silica gel/molecular sieve cartridges (alternating regeneration with dry pressurized air, regeneration cycles 15–50 min, average RH = 29 ± 5%; Tuch et al., 2009). After drying, the sample flow was split into separate lines. One line (stainless steel, 0.94 cm inner diameter (i.d.), ~7 m length, 1.5 L min⁻¹ flow rate) was for the CCN measurement setup described below, and another one was used for the aerosol size distribution measurements with a Twin Differential Mobility Particle Sizer (TDMPS, 3–900 nm particle diameter; Birmili et al., 1999; Achtert et al., 2009; Wiedensohler et al., 2009). The aerosol mass spectrometer (AMS) measurements presented in this paper were performed
using a separate inlet and sampling line as described by Takegawa et al. (2009a,b).

The mass concentrations of apparent elemental carbon (EC\textsubscript{a}) (Andreae and Gelencsér, 2006) and organic carbon (OC) were measured using a Sunset Laboratory semicontinuous EC\textsubscript{a}/OC analyzer operated by the University of Tokyo and Peking University (Kondo et al., 2006). The time resolution was 1 h, which included a sampling time of 40 min and an analysis time of 15 min. The sample line for the EC\textsubscript{a}/OC analyzer was a stainless steel tube with an ID of 10 mm and a length of ∼9 m. The ambient particles were collected on a quartz filter and then analyzed on the basis of the thermal-optical-transmittance method and temperature protocol was based on that proposed by the National Institute for Occupational Safety and Health (NIOSH). More details regarding EC\textsubscript{a}/OC measurement techniques and results during CAREBeijing-2006 are discussed elsewhere (Takegawa et al., 2009a). The campaign average values of EC\textsubscript{a}/OC data reported in this study include only data points for which also CCN data were available.

2.2 CCN measurements and data analysis

Size-resolved CCN efficiency spectra (activation curves) were measured with a Droplet Measurement Technologies continuous flow CCN counter (DMT-CCNC, Roberts and Nenes, 2005; Lance et al., 2006) coupled to a Differential Mobility Analyzer (DMA; TSI 3071; sheath flow 10 L min\(^{-1}\)) and a condensation particle counter (CPC; TSI 3762; sample flow 1.0 L min\(^{-1}\); Frank et al., 2006; Rose et al., 2008). The CCNC was operated at a total flow rate of 0.5 L min\(^{-1}\) with a sheath-to-aerosol flow ratio of 10.

The effective water vapor supersaturation (S) was regulated by the temperature difference between the upper and lower end of the CCNC flow column (ΔT) and calibrated with ammonium sulfate aerosol as described by Rose et al. (2008, 2010a; Köhler model AP3; calibration line \(S = k_S \Delta T + S_0\) with \(k_S = 0.0793\% K^{-1}\), \(S_0 = -0.0909\%, R^2 = 0.9083\); relative uncertainty ΔS/S < 10%).

For each CCN measurement cycle, ΔT was set to 5 different levels (2.0–11.9 K) corresponding to S values in the range of 0.07–0.86%. For each ΔT and the respective S,
the diameter of the dry aerosol particles selected by the DMA (D) was set to 9 different values in the range of 20–290 nm depending on the supersaturation selected. At each D, the number concentration of total aerosol particles (condensation nuclei, CN), N_{CN}, was measured with the CPC, and the number concentration of CCN, N_{CCN}, was measured with the CCNC. The integration time for each measurement data point was 30 s, the recording of a CCN efficiency spectrum (N_{CCN}/N_{CN} vs. D) took \sim 16 min (including a 50 s adjustment time for each new particle size and 4 min for adjustment to the next supersaturation level), and the completion of a full measurement cycle comprising CCN efficiency spectra at 5 different supersaturation levels took \sim 85 min (including 5 min of settling time for the changeover from highest to lowest S).

Approximately 300 measurement cycles, corresponding to \sim 1500 CCN efficiency spectra, were performed during the CAREBeijing-2006 campaign, with occasional short term interruptions and one long term interruption (24 August to 1 September) for instrument calibration and maintenance. The measurement data of the CCN efficiency spectra were corrected for the effects of multiply charged particles, differences in the CCNC and CPC counting efficiencies with a correction factor f_{corr} ($f_{\text{corr}} = x_1 - x_2 \cdot x_3^D$; $x_1 = 0.9108$, $x_2 = 0.2489$, and $x_3 = 0.9746$), and the DMA transfer function as described in detail by Rose et al. (2010a). For the multiple charge correction, we used the total aerosol particle number size distributions that were measured in parallel with CCN measurements by the TDMPS. For several CCN measurement cycles, TDMPS data were not available, and hence no charge correction was applied. However, the CCN data from these cycles remained comparable with the corrected ones, because the effect of the charge correction was generally small ($<5\%$ change in the activation diameters and other parameters used for further analysis; Rose et al., 2008, 2010a).

The uncertainties of N_{CCN}, N_{CN} and N_{CCN}/N_{CN} were estimated to be $<20\%$ for individual measurement data points and $<10\%$ for average values and fit parameters (Rose et al., 2008, 2010a).

By fitting with a cumulative Gaussian distribution function (CDF), the following parameters were derived from each measured CCN efficiency spectrum (Rose et al.,...
2010a; Gunthe et al., 2009): the maximum activated fraction MAF, the midpoint activation diameter D_a, and the standard deviation σ_a of 3-parameter CDF fits, as well as the midpoint activation diameter D_t and the standard deviation σ_t of 2-parameter CDF fits with MAF set to 1. Note that the CCN efficiency measured at the largest diameter of each spectrum (MAF$_m$ = N_{CCN}/N_{CN} at D_{max}) was generally in good agreement with MAF as derived from the 3-parameter CDF fit (deviations $<10\%$).

As detailed by Rose et al. (2010a) the activation diameters and standard deviations derived from the 3-parameter and 2-parameter CDF fits are not the same for CCN efficiency spectra with MAF$_f$ < 1: the 3-parameter fit results represent the average properties of the CCN-active aerosol particle fraction, whereas the 2-parameter fit results are proxies for the effective overall properties of the external mixture of CCN-active and CCN-inactive particles. In the remainder of this study we will focus on the 3-parameter fit results.

The difference between unity and the maximum observed CCN efficiency (1-MAF$_m$ or 1-MAF$_f$) represents the fraction of externally mixed CCN-inactive particles at D_{max} or averaged over the diameter range of D_a to the largest diameter of the measured spectrum (D_{max}). The CDF standard deviations are general indicators for the mixing state and heterogeneity of particle composition in the investigated aerosol: σ_a characterizes the CCN-active particles in the size range around D_a, and σ_t is a measure for the overall heterogeneity of CCN-active and -inactive particles in the size range around D_t. Under ideal conditions, the CDF standard deviations should be zero for an internally mixed, fully monodisperse aerosol with particles of homogenous chemical composition. Even after correcting for the DMA transfer function, however, calibration aerosols composed of high purity ammonium sulfate exhibit small non-zero σ_a values that correspond to $\sim3\%$ of D_a and can be attributed to heterogeneities of the water vapor supersaturation profile in the CCNC or other non-idealities, such as DMA transfer function or particle shape effects. Thus, increasing values of the normalized CDF standard deviation or “heterogeneity parameter” indicate increasing heterogeneity of particle composition (Rose et al., 2010a; Gunthe et al., 2009; Su et al., 2010).
For all data pairs of supersaturation and activation diameter derived from the CCN efficiency spectra measured in this study, effective hygroscopicity parameters κ were calculated using the κ-Köhler model equations and parameters specified in Rose et al. (2010a) (surface tension 0.072 J m$^{-2}$, temperature 298 K). Note that the κ values derived from CCN measurement data through Köhler model calculations assuming the surface tension of pure water have to be regarded as “effective hygroscopicity parameters” that account not only for the reduction of water activity by the solute (“effective Raoult parameters”) but also for surface tension effects (Petters and Kreidenweis, 2007; Mikhailov et al., 2009; Pöschl et al., 2009; Gunthe et al., 2009; Rose et al., 2010a).

The parameter κ_a calculated from the data pairs of S and D_a characterizes the average hygroscopicity of CCN-active particles in the size range around D_a. κ_t calculated from D_t is an approximate measure (proxy) for the effective hygroscopicity of mixtures of CCN-active and -inactive particles in the size range around D_t (Rose et al., 2010a).

As discussed in earlier studies (Gunthe et al., 2009, Rose et al., 2010a,b), κ_a is better suited for comparison with κ values predicted from AMS measurements, because κ_a is not influenced by CCN-inactive particles consisting mostly of insoluble and refractory materials like mineral dust and soot (or biopolymers that tend to char upon heating), which are also not (or less efficiently) detected by AMS. On the other hand, κ_t is better suited for the calculation of CCN number concentrations when CCN-active particles are externally mixed with CCN-inactive particles (Gunthe et al., 2009; Rose et al., 2010a,b).

The statistical uncertainty in the determination of activation diameters by curve fitting (standard error of the CDF fit parameters) was on average \sim 2–3 nm (\sim 1–5%). According to the relative sensitivities specified by Kreidenweis et al. (2009), the uncertainty of 1–5% in diameter corresponds to an uncertainty of 3–15% in κ, and the uncertainty of $<$ 10% in supersaturation reported above corresponds to an uncertainty of $<$ 20% in κ (Su et al., 2010). The reported campaign average values of CCN parameters include all available data points unless mentioned otherwise.
2.3 AMS measurements and data analysis

An Aerodyne quadrupole aerosol mass spectrometer (Q-AMS, hereafter referred to as “AMS” for brevity) was used to measure the size-resolved chemical composition of non-refractory (vaporized at $\sim 600^\circ\text{C}$ under vacuum) submicron aerosol particles (Jayne et al., 2000). Sampling information, data analysis technique, and performance of the AMS during the CAREBeijing-2006 campaign is described in detail by Takegawa et al. (2009a). The AMS data used in this study comprise a time series of mass size distributions ($dM/d\log D_{\text{va}}$, ~ 10 min time resolution) where D_{va} is the vacuum aerodynamic diameter (DeCarlo et al., 2004). The mass size distributions were calculated for inorganic ions (SO_4^{2-}, NH_4^+, NO_3^-, Cl^-) and organic matter (Org) in the size range between 45 nm and 1.4 µm.

The mass concentration data of every size bin were averaged with the two adjacent size bins to minimize the influence of noise. To make the size-resolved AMS results directly comparable with the CCN measurement results, all calculations and plots in this study using AMS data were based on approximate mobility equivalent diameters that have been calculated by division of the AMS vacuum aerodynamic diameter through a density scaling factor of 1.6. The scaling factor is based on the assumption of an effective particle density of 1.6 g cm$^{-3}$ (Achtert et al., 2009; van Pinxteren et al., 2009). Accordingly, the scaled AMS mass size distributions span a mobility size range of 29 nm to 900 nm.

Size-resolved mass fractions were calculated diameter-wise from the size distributions of mass concentration. The mass fraction of one chemical component is its mass concentration divided by the sum of the masses of all components at this diameter. To describe the chemical composition of the particles activated at the midpoint of the CCN efficiency spectrum, the AMS mass concentrations were integrated over the size interval of $D_a - \sigma_a$ to $D_a + \sigma_a$ (activation diameter \pm CDF standard deviation). The mass concentrations within these intervals (m_D) were used to calculate mass fractions of inorganic and organic compounds (f_{inorg}, f_{org}) for correlation analysis. For this purpose,
the AMS data set was adjusted to the time resolution of the CCN data. The AMS data point corresponding to a CCN data point was chosen to be the one that is closest in time within a time interval of ± 10 min. If, for a CCN data point no corresponding AMS data point was available, the CCN data point was excluded from the analysis. The campaign average values of AMS data reported in this study include only data points for which also CCN data were available (see time series plots).

3 Results and discussion

3.1 Campaign averages

Figure 2 shows campaign averages of the CCN efficiency spectra (Fig. 2a), the effective hygroscopicity of CCN-active particles (Fig. 2b), the CN and CCN number size distributions (Fig. 2c), and the mass size distributions as obtained by the AMS (Fig. 2d). The average parameters derived from the CCN efficiency spectra are summarized in Table 1 (arithmetic mean ± standard deviation), and the corresponding median values are given in the online supplementary material (Table S1).

The midpoint activation diameters, \(D_a \), increased with decreasing \(S \) as expected from Köhler theory (Fig. 2a). At medium to high supersaturation levels (\(S = 0.26\% \) to 0.86\%), the CCN efficiency spectra generally reached up to one (maximum activated fraction \(\text{MAF}_f \approx 1 \)) and the normalized standard deviations were small (\(\sigma_a/D_a \approx 10\% \)), which implies that nearly all aerosol particles larger than the midpoint activation diameter (\(D > D_a \)) were CCN-active. At the lowest supersaturation level (\(S = 0.07\% \)), however, the maximum activated fraction remained on average below one, which indicates externally mixed weakly CCN-active particles with much lower hygroscopicity. The average value of \(\text{MAF}_f \) was \(\sim 0.8 \) and the minimum values were as low as \(\sim 0.4 \), implying that on average \(\sim 20\% \) and up to \(\sim 60\% \) of the aerosol particles with diameters around \(\sim 250 \) nm were not CCN-active at \(S = 0.07\% \). According to the \(\kappa \)-Köhler model, particles larger than \(\sim 250 \) nm that are not activated at \(S = 0.07\% \) must have
effective hygroscopicity parameters $\kappa < 0.1$. Most of these particles, however, can activate at $S = 0.26\%$, corresponding to a minimum value of $\kappa = 0.01$. Similarly high proportions of externally mixed weakly CCN-active particles in polluted megacity air have been reported by Rose et al. (2010a,b) for Guangzhou in the Pearl River Delta (PRIDE-PRD2006). Most likely these are externally mixed soot particles freshly emitted from strong local and regional sources, which is consistent with the relatively high EC$_a$ concentrations and EC$_a$/OC ratios observed in this study ($\sim 6 \mu g m^{-3}$ EC, EC/OC ≈ 1, Table 3) and with the findings of related recent studies (Rose et al., 2010a,b; Achtert et al., 2009; Garland et al., 2008, 2009; Cheng et al., 2009; Wehner et al., 2009; Su et al., 2010). The abundance, properties, and effects of the externally mixed, weakly CCN-active particles shall be specifically addressed in follow-up studies.

Figure 2b shows that the campaign average effective hygroscopicity of CCN-active particles increased strongly with particle size. In the Aitken size range ($\sim 40–70$ nm), κ_a was on average between 0.2 and 0.3, which is consistent with inorganic mass fractions $< 50\%$. In the accumulation size range ($\sim 70–200$ nm), κ_a increased up to ~ 0.5, which is due to enhanced mass fractions of sulfate and other soluble inorganic ions as illustrated in Fig. 2d and discussed in Sect. 3.3. The observed increase of CCN hygroscopicity with increasing particle diameter is also consistent with the size dependence of aerosol hygroscopic growth factors reported by Achtert et al. (2009). Averaged over the entire range of aerosol particle sizes and water vapor supersaturations measured during the CAREBeijing-2006 campaign, the arithmetic mean value and standard deviation of the effective hygroscopicity parameters for the CCN-active particles (κ_a) as well as for the total ensemble of aerosol particles (κ_t, Sect. 2.2.2) were $\kappa_a \approx \kappa_t \approx 0.3 \pm 0.1$ (Table 1). This is consistent with other measurements, estimates and model calculations for the effective average hygroscopicity of aerosols in populated regions (Andreae and Rosenfeld, 2008; Bugiaiatioti et al., 2009; Chang et al., 2010; Juranyi et al. 2010; Kammermann et al., 2010; Pöschl et al., 2009; Pringle et al., 2010; Rose et al., 2010a,b; Shinozuka et al., 2009; and references therein).
As illustrated in Fig. 2c, the campaign average number size distribution of total aerosol particles (CN) peaked near \(\sim 100 \text{ nm} \), and the mean and median values of \(N_{CN,\text{tot}} \) were \(1.6 \times 10^4 \text{ cm}^{-3} \) (Table 1) and \(1.0 \times 10^4 \text{ cm}^{-3} \) (Table S1), respectively. At \(S = 0.07\% \) the average CCN activation diameter was much larger than the modal diameter of the CN size distribution (\(\sim 200 \text{ nm} \)), and the CCN size distributions accounted only for \(\sim 10\% \) of \(N_{CN,\text{tot}} \) (\(\sim 20\% \) of \(N_{CN,30} \), Table 1). At the higher supersaturation levels, the CCN activation diameters were smaller, and the integral CCN efficiencies reached up to \(\sim 70\% \) of \(N_{CN,\text{tot}} \) (\(\sim 80\% \) of \(N_{CN,30} \), Table 1). Compared to the global mean value of \(N_{CCN,S}/N_{CN,\text{tot}} \approx 0.36 \) at \(S \approx 0.4\% \) suggested by Andreae (2009), the campaign average value was higher \((N_{CCN,S}/N_{CN,\text{tot}} \approx 0.5) \) but the average value for the fresh city pollution period discussed below was lower \((N_{CCN,S}/N_{CN,\text{tot}} \approx 0.2) \).

The best fit parameters for a monomodal lognormal distribution fitted to the average CN size distribution are listed in Table 2 (mean) and in Table S2 (median), respectively. The campaign average number concentrations of CCN were in the range of \(N_{CCN,S} \approx 2 \times 10^3 \text{ cm}^{-3} \) at \(S = 0.07\% \) to \(N_{CCN,S} \approx 1 \times 10^4 \text{ cm}^{-3} \) at \(S = 0.86\% \) (Table 1). This is consistent with the values recently reported by Deng et al. (2011) for Wuqing, a town located between Beijing and Tianjin in the Northern China plain.

The campaign average mass size distributions measured by AMS peaked at mass equivalent diameters around \(\sim 200 \text{ nm} \) for organic matter and around \(\sim 350 \text{ nm} \) for sulfate, nitrate and ammonium ions (Fig. 2d). As discussed by Takegawa et al. (2009a), the peak diameter of the sulfate mass size distribution exhibited an increase with aging time due to strong secondary sulfate formation. On average, the total mass concentration determined by AMS and integrated over the investigated size range (29–900 nm) was \(\sim 26 \mu \text{g m}^{-3} \) with an organic mass fraction of \(\sim 40\% \) and a sulfate mass fraction of \(\sim 30\% \) sulfate. The mass fractions of other inorganic ions are listed in Table 3.

3.2 Time series and focus periods

Figure 3 shows the temporal evolution and variability of several parameters characteristic for the meteorological conditions, CCN properties, and aerosol composition.
observed throughout the measurement campaign. For clarity, the CCN parameters are plotted only for the lowest and the highest supersaturation level investigated. The temporal evolution of these parameters determined at intermediate supersaturation levels was generally similar to the one at $S = 0.86\%$.

Most parameters exhibited more or less pronounced diurnal cycles and some episodes with drastically different characteristics. For example, the integral CCN efficiencies ($N_{CCN}/N_{CN,\text{tot}}$, $N_{CCN}/N_{CN,30}$), the maximum activated fraction at low supersaturation (MAF$_f$ at $S = 0.07\%$), and the inorganic mass fraction determined by AMS exhibited a strong decrease on 20 August and on 3 September. Similar temporal patterns and episodes were reported by Garland et al. (2009), Achtert et al. (2009), and Takegawa et al. (2009a), who found that major changes in aerosol optical properties and chemical composition during CAREBeijing-2006 could be attributed to changes in the prevailing meteorological conditions: e.g. wind speed, wind direction, and air mass origin (back trajectories). To explore the relationship between air mass origin and CCN properties, we highlight two distinct focus periods:

1. A focus period of “aged regional pollution”, when stagnant air masses came from the highly industrialized regions south of Beijing, where numerous power plants and factories are located, and passed over the measurement site with relatively low wind speed (17 August 00:00 to 18 August 23:59 LT; shaded red in Fig. 3).

2. A focus period of “fresh city pollution”, when clean air masses came from the mountain regions in the north, passed over the city center of Beijing with relatively high wind speed (frontal passage), and arrived at the measurement site from wind directions ranging from northeast to northwest (20 August 00:00 to 21 August 23:59 LT, and 3 September 15:00 to 4 September 15:00 LT; shaded green in Fig. 3).

The dates of these focus periods were selected according to the back trajectory analysis and the air mass classification in Table 2 of Garland et al. (2009), taking into account the availability of the CCN and AMS data. For both periods, Fig. 4 shows the
average number size distributions of CN and CCN as well as the mass size distributions of organic matter and inorganic ions determined by AMS. Characteristic parameters of aerosol composition and CCN activity are summarized in Tables 1, 2, and 3 (mean values), and in the supplementary Tables S1, S2, and S3 (median values).

During the focus period for aged regional pollution (shaded red in Fig. 3), the meteorological parameters as well as the aerosol and CCN properties were qualitatively similar to the campaign average conditions outlined above (Sect. 3.1, Fig. 2). The total aerosol particle number size distribution peaked at a larger diameter (∼120 nm, Fig. 4a), and the mass concentrations determined by AMS were enhanced by factors of 1.5–2 (Fig. 4b, Table 3). The concentrations of sulfate and other inorganic ions were more strongly enhanced than that of organic compounds, which led to an increase in the hygroscopicity of CCN active particles (κ_a = 0.35 ± 0.05). Moreover, the maximum activated fractions of CCN measured at low supersaturation were enhanced (MAF_f = 0.91 at S = 0.07%), which indicates a relatively low abundance of externally mixed weakly CCN-active particles. Due to the increased particle size, increased hygroscopicity, and decreased fraction of externally mixed weakly CCN-active particles, the integral CCN efficiencies were also higher than the campaign average values: from ∼20% of N_{CN,tot} (∼20% of N_{CN,30}) at S = 0.07% up to ∼80% of N_{CN,tot} (∼90% of N_{CN,30}) at S = 0.86% (Table 1).

During the focus period for fresh city pollution (shaded green in Fig. 3), the aerosol and CCN properties differed drastically from the focus period for aged regional pollution. The total aerosol particle number size distribution peaked at a much lower diameter in the Aitken size range (∼70 nm, Fig. 4c), and the mass concentrations determined by AMS were reduced by factors of 2 to 8 (Fig. 4d, Table 3). The concentrations of sulfate and other inorganic ions were more strongly reduced than that of organic compounds, which led to a decrease in the hygroscopicity of CCN active particles (κ_a = 0.22 ± 0.07). Moreover, the maximum activated fractions of CCN measured at low supersaturation were reduced (MAF_f = 0.66 at S = 0.07%), which indicates a relatively high abundance of externally mixed weakly CCN-active particles. Due to the
strongly decreased particle size, decreased hygroscopicity, and increased fraction of externally-mixed weakly CCN-active particles, the integral CCN efficiencies were substantially lower than during the aged regional pollution period: from \(\sim 2\% \) of \(N_{CN,\text{tot}}^\text{30} (\sim 4\% \) of \(N_{CN,\text{tot}}^\text{30}\)) at \(S = 0.07\%\) up to \(\sim 40\% \) of \(N_{CN,\text{tot}}^\text{30} (\sim 60\% \) of \(N_{CN,\text{tot}}^\text{30}\)) at \(S = 0.86\%\) (Table 1). Thus, the number concentrations of CCN were lower by as much as a factor of \(\sim 7\) at \(S = 0.07\%\) to a factor of \(\sim 1.2\) at \(S = 0.86\%\) although the total aerosol particle number concentrations were higher by a factor of \(\sim 2\).

3.3 Relationship and size dependence of aerosol chemical composition and hygroscopicity

As outlined above and in earlier studies, the effective hygroscopicity of CCN-active particles can be efficiently linked to the organic and inorganic mass fractions determined by AMS measurements (Gunthe et al., 2009; Dusek et al., 2009; Rose et al., 2010b).

Figure 5 shows the correlation of \(\kappa_a\) with the organic mass fraction determined by integration over the relevant diameter range in the AMS mass size distribution \((D_a \pm \sigma_a,\text{Sect. 2.2.3})\) using the data points for which the mass concentration in the integration interval was larger than \(1 \mu g \text{ m}^{-3}\) \((R^2 = 0.78)\). Using all available data points, we obtained a weaker correlation \((R^2 = 0.37)\), which can be explained by the limited reliability of mass fractions calculated from AMS data with low concentration in the relevant size range \((m_D < 1 \mu g \text{ m}^{-3}, \text{Rose et al., 2010b})\).

Extrapolation of the fit line in Fig. 5 to \(f_{\text{org}} = 1\) yields an estimate of \(\kappa_{\text{org}} = 0.06 \pm 0.01\) for the effective average hygroscopicity of the non-refractory organic particulate matter in the investigated aerosols. This is consistent with the average value of \(\kappa_{\text{org}} \approx 0.1\) derived from earlier field and laboratory studies (Gunthe et al., 2009; Shinozuka et al., 2009; Dusek et al., 2010; Rose et al., 2010b; King et al., 2009; Roberts et al., 2010; Jimenez et al., 2010). Extrapolation of the fit line to \(f_{\text{org}} = 0\) yields an estimate of \(\kappa_{\text{inorg}} = 0.68 \pm 0.02\) for the effective average hygroscopicity of the non-refractory inorganic particulate matter. This is similar to the characteristic values for ammonium sulfate and related compounds (Petters and Kreidenweis, 2007) and consistent with
the average values of $\kappa_{\text{inorg}} \approx 0.6–0.7$ derived from earlier field studies (Gunthe et al., 2009; Dusek et al., 2010; Rose et al., 2010b).

Based on the observed correlation, and in analogy to earlier studies, we can use the following simple mixing rule to predict effective hygroscopicity parameters from AMS measurement data (Gunthe et al., 2009; Dusek et al., 2009; Rose et al., 2010b):

$$\kappa_p = \kappa_{\text{org}} \cdot f_{\text{org}} + \kappa_{\text{inorg}} \cdot f_{\text{inorg}}$$

As illustrated in Fig. 6, the size dependence of the particle hygroscopicity as predicted from the AMS measurement data with rounded average values of $\kappa_{\text{org}} = 0.1$ and $\kappa_{\text{inorg}} = 0.7$ generally agrees well with the effective average hygroscopicity parameters derived from the CCN measurements. An apparent overprediction of κ_a in the Aitken size range during the focus period of fresh city pollution (<100 nm, Fig. 6c) is likely due to enhanced mass fractions of soot and elemental carbon (Table 3), which are not captured by the AMS data. Possibilities for improvement using additional data from complementary measurement techniques (e.g., from volatility or hygroscopicity tandem differential mobility analyzers; Rose et al., 2010b; Su et al., 2010) and the impact on the prediction of CCN and cloud droplet number concentrations will be explored in follow-up studies.

3.4 Comparison between the megacity regions of Beijing and the Guangzhou/Pearl River Delta

Directly before the CAREBeijing-2006 campaign, the same instrumentation and experimental setup had been used in the PRIDE-PRD2006 campaign to measure the CCN properties and chemical composition of the aerosol particles at a rural site (Backgarden) ∼60 km northwest of the emerging megacity Guangzhou in the Pearl River Delta (PRD) (Rose et al., 2010a,b). During the PRIDE-PRD2006 campaign, the air masses generally originated from the southeast, and passed over the highly industrialized PRD region, which includes Hong Kong, Guangzhou and several other cities, before arriving at the Backgarden measurement site (southeasterly monsoon circulation prevailed.
During PRIDE-PRD2006 the meteorological conditions were less variable than during CAREBeijing-2006, and the sampled air masses contained a mix of city pollution from Guangzhou, and regional pollution from the Pearl River Delta (Garland et al., 2008; Rose et al., 2010a,b). For the comparison with Beijing, we used the PRIDE-PRD2006 data set “entire campaign excluding the biomass burning event” from Rose et al. (2010a,b). In this data set, the highly polluted period of 23–26 July 2006, which was characterized by intense local biomass burning, was excluded. A similar comparison between data from CAREBeijing-2006 and PRIDE-PRD2006 has been done for the aerosol optical properties by Garland et al. (2009).

The parameter values characterizing the composition and CCN activity of aerosols observed during PRIDE-PRD2006 fell mostly between the values observed in the different focus periods of CAREBeijing-2006, but were closer to the focus period of aged regional pollution (Tables 1 and 2). Compared to this focus period, the aerosols sampled during PRIDE-PRD2006 exhibited similar hygroscopicity parameters for CCN-active particles ($\kappa_a \approx 0.35$) but higher proportions of externally mixed weakly CCN-active particles ($\sim 27\%$ vs. $\sim 9\%$ at $S \approx 0.07\%$), smaller peak diameters of the CN size distribution ($\sim 70\text{ nm}$ vs. $\sim 90\text{ nm}$), and lower integral CCN efficiencies ($\sim 5\%$ vs. $\sim 22\%$ at $S \approx 0.07\%$ and $\sim 70\%$ vs. $\sim 84\%$ at $S \approx 0.86\%$). Thus, the CCN concentrations at low supersaturation were smaller ($\sim 0.8 \times 10^3 \text{ cm}^{-3}$ vs. $\sim 2.5 \times 10^3 \text{ cm}^{-3}$ at $S \approx 0.07\%$), although the total CN number concentrations were larger ($\sim 1.8 \times 10^4 \text{ cm}^{-3}$ vs. $\sim 1.2 \times 10^4 \text{ cm}^{-3}$).

Compared to the focus period of fresh city pollution in CAREBeijing-2006, the aerosols sampled during PRIDE-PRD2006 exhibited substantially higher hygroscopicity parameters for CCN-active particles (~ 0.35 vs. ~ 0.22), lower proportions of externally mixed weakly CCN-active particles ($\sim 27\%$ vs. $\sim 34\%$ at $S \approx 0.07\%$), larger peak diameters of the CN size distribution ($\sim 70\text{ nm}$ vs. $\sim 50\text{ nm}$), and higher integral CCN efficiencies ($\sim 5\%$ vs. $\sim 2\%$ at $S \approx 0.07\%$ and $\sim 70\%$ vs. $\sim 42\%$ at $S \approx 0.86\%$). Thus, the CCN concentrations were generally larger ($\sim (0.8–13) \times 10^3 \text{ cm}^{-3}$...
vs. ~ (0.4–8) × 10³ cm⁻³), although the total CN number concentrations were smaller (~ 1.8 × 10⁴ cm⁻³ vs. ~ 2.2 × 10⁴ cm⁻³).

Overall, both the meteorological conditions and the CCN properties of PRIDE-PRD2006 represent a mix of aged regional pollution from the Pearl River Delta and fresh city pollution from Guangzhou, whereas the meteorological conditions and CCN properties of CAREBeijing-2006 exhibited a clear separation between aged regional pollution in stagnant air masses, and fresh city pollution in the outflow from Beijing during frontal passages.

4 Summary and conclusions

During the CAREBeijing-2006 campaign, we performed the first size-resolved CCN measurements in the megacity region of Beijing. The CCN hygroscopicity exhibited a strong size dependence, ranging from κₐ = 0.25 to 0.45, i.e., particles in the Aitken size range were much less hygroscopic than in the accumulation size range. Averaged over the entire range of measured aerosol particle size and water vapor supersaturation, the mean value and standard deviation of the CCN hygroscopicity were κₐ ≈ 0.3 ± 0.1. This is consistent with other measurements, estimates and model calculations for the effective average hygroscopicity of aerosols in populated regions (Rose et al., 2010a,b; Juranyi et al., 2010; Kammermann et al., 2010; Chang et al., 2010; Shinozuka et al., 2009; Bugaïti et al., 2009; Andreae and Rosenfeld, 2008; Pöschl et al., 2009; Pringle et al., 2010, and references therein).

The CCN hygroscopicity and its size dependence could be parameterized as a function of AMS-based organic and inorganic mass fractions using the simple mixing rule κₚ ≈ 0.1·f_{org} + 0.7·f_{inorg}. An apparent overprediction of κₐ in the Aitken size range during the focus period of fresh city pollution was likely due to enhanced mass fractions of soot and elemental carbon, which are not captured by the AMS. Possibilities for improvement by additional data from complementary measurement techniques (e.g., from volatility or hygroscopicity tandem differential mobility analyzers; Rose et al., 2010b; Su
et al., 2010) and the impact on the prediction of CCN and cloud droplet number concentrations will be explored in follow-up studies.

When the measured air masses originated from the north and passed rapidly over the center of Beijing (fresh city pollution), the average particle hygroscopicity was reduced ($\kappa = 0.2 \pm 0.1$), which is consistent with enhanced mass fractions of organic compounds ($\sim 50\%$ of PM$_1$) and elemental carbon ($\sim 30\%$ of PM$_1$). Moreover, substantial fractions of weakly CCN-active particles with much lower hygroscopicity were observed at low supersaturation ($S = 0.07\%$), which can be explained as being from freshly emitted, externally mixed soot particles. Particles in stagnant air from the industrialized megacity region south of Beijing (aged regional pollution) were on average larger and more hygroscopic, which is consistent with enhanced mass fractions ($\sim 60\%$) of soluble inorganic ions (mostly sulfate, ammonium, and nitrate). Accordingly, the number concentration of CCN in aged air from the megacity region was higher ($(2.5–9.9) \times 10^3$ cm$^{-3}$ vs. $(0.4–8.3) \times 10^3$ cm$^{-3}$) although the total aerosol particle number concentration was lower than in the fresh city outflow (1.2×10^4 cm$^{-3}$ vs. 2.3×10^4 cm$^{-3}$).

Prior to CAREBeijing-2006, the same experimental equipment and scientific approach had been used in the PRIDE-PRD2006 campaign to characterize the CCN properties and chemical composition of aerosol particles at a rural location in the megacity region of Guangzhou in the Pearl River Delta (Rose et al., 2010a,b). Both the meteorological conditions and the CCN properties of PRIDE-PRD2006 were characteristic for a mix of aged regional pollution from the Pearl River Delta and fresh urban pollution from Guangzhou. The systematic analysis and comparison of the data sets from CAREBeijing-2006 and PRIDE-PRD2006 suggest that the fresh outflow from Chinese megacity centers may generally contain more, but smaller and less hygroscopic aerosol particles, and thus fewer CCN than the aged outflow from megacity regions.
Acknowledgements. The CAREBeijing-2006 (Campaign of Air Quality Research in Beijing and surrounding areas in 2006) was supported by the Beijing Council of Science and Technology (HB200504-6, HB200504-2). This study was supported by Max Planck Society (MPG), the Leibniz Institute for Tropospheric Research (IfT), the University of Tokyo (UT), and Peking University (PKU). The authors gratefully acknowledge SEDAC (Socioeconomic Data and Application Center) for the population density data used in this publication. Thanks are owed to all the team members of CAREBeijing-2006 for support during the campaign and fruitful discussions afterword.

The service charges for this open access publication have been covered by the Max Planck Society.

References

Matsumoto, K., Tanaka, H., Nagao, I., and Ishizaka, Y.: Contribution of particulate sulfate and

Table 1. Characteristic CCN parameters (arithmetic mean values ± standard deviations) listed for the entire campaign and for the focus periods of aged regional pollution and of fresh city pollution: midpoint activation diameters (D_a, D_t), maximum activated fractions (MAF, MAFm), heterogeneity parameters (σ_D/D_a, σ_t/D_t), hygroscopicity parameters (K_a, K_t), number concentrations of total aerosol particles ($N_{\text{CN,tot}}$) and with $D > 30$ nm ($N_{\text{CN,30}}$), number concentrations of cloud condensation nuclei ($N_{\text{CCN,S}}$), integral CCN efficiencies ($N_{\text{CCN,S}}/N_{\text{CN,tot}}$, $N_{\text{CCN,S}}/N_{\text{CN,30}}$). n_{ES} and n_{SD} are the numbers of averaged CCN efficiency spectra and size distributions, respectively. Subscripts a and t stand for parameters derived from 3-parameter and 2-parameter CDF fits to the measured CCN efficiency spectra, respectively. The last section of the table shows data from the PRIDE-PRD2006 campaign (entire campaign excluding biomass burning event, Rose et al., 2010a). For corresponding median values see Table S1.

| S (%) | D_a (nm) | D_t (nm) | MAF | MAFm | α_a (m) | α_t (m) | δ_D/D_a | δ_t/D_t | K_a | K_t | $N_{\text{CN,tot}}$ | $N_{\text{CN,30}}$ | $N_{\text{CCN,S}}$ | $N_{\text{CCN,S}}/N_{\text{CN,tot}}$ | $N_{\text{CCN,S}}/N_{\text{CN,30}}$ | n_{ES} | n_{SD} |
|---------|-----------|-----------|------|------|----------------|----------------|----------------|----------------|------|------|----------------|----------------|----------------|----------------|----------------|----------------|--------|--------|
| Entire campaign | | | | | | | | | | | | |
| 0.07 | 191.1 ± 10.1 | 203.9 ± 25.0 | 0.81 ± 0.13 | 0.81 ± 0.13 | 12.2 ± 6.6 | 32.6 ± 24.4 | 0.036 ± 0.004 | 0.151 ± 0.096 | 0.46 ± 0.07 | 0.40 ± 0.11 | 16.10 ± 6.99 | 11.62 ± 4.00 | 1.70 ± 1.10 | 0.13 ± 0.10 | 0.16 ± 0.10 | 269 | 269 |
| 0.25 | 88.3 ± 8.3 | 88.8 ± 12.0 | 0.90 ± 0.10 | 0.91 ± 0.10 | 8.5 ± 6.6 | 12.8 ± 10.7 | 0.095 ± 0.006 | 0.134 ± 0.092 | 0.34 ± 0.09 | 0.31 ± 0.10 | 18.53 ± 8.92 | 11.67 ± 4.10 | 0.86 ± 0.26 | 0.41 ± 0.21 | 0.49 ± 0.19 | 285 | 285 |
| 0.46 | 63.2 ± 8.0 | 64.4 ± 9.2 | 0.95 ± 0.07 | 0.95 ± 0.07 | 5.9 ± 5.1 | 7.0 ± 6.3 | 0.087 ± 0.003 | 0.100 ± 0.074 | 0.28 ± 0.08 | 0.27 ± 0.01 | 18.60 ± 9.10 | 11.72 ± 4.18 | 0.76 ± 2.45 | 0.54 ± 0.23 | 0.85 ± 0.19 | 271 | 271 |
| 0.56 | 52.6 ± 6.9 | 53.7 ± 7.9 | 0.95 ± 0.08 | 0.95 ± 0.08 | 6.0 ± 4.5 | 7.1 ± 5.7 | 0.107 ± 0.008 | 0.124 ± 0.080 | 0.24 ± 0.08 | 0.23 ± 0.08 | 16.70 ± 8.91 | 11.66 ± 4.17 | 0.67 ± 2.08 | 0.50 ± 0.23 | 0.74 ± 0.16 | 278 | 278 |
| 0.86 | 44.3 ± 5.4 | 44.8 ± 5.9 | 0.96 ± 0.06 | 0.96 ± 0.06 | 4.6 ± 2.9 | 5.1 ± 3.4 | 0.100 ± 0.005 | 0.109 ± 0.059 | 0.23 ± 0.08 | 0.22 ± 0.08 | 16.42 ± 8.94 | 11.47 ± 3.85 | 0.49 ± 3.72 | 0.66 ± 0.23 | 0.82 ± 0.14 | 269 | 269 |

PRIDE-PRD2006 entire campaign excluding BBE (from Rose et al., 2010a).

0.068 | 187.4 ± 9.4 | 211.8 ± 21.5 | 0.73 ± 0.13 | 0.73 ± 0.14 | 17.3 ± 10.1 | 56.9 ± 26.7 | 0.000 ± 0.005 | 0.261 ± 0.011 | 0.46 ± 0.07 | 0.33 ± 0.10 | 0.84 ± 0.51 | 0.05 ± 0.03 | 378 | 282 |

0.27 | 79.8 ± 7.2 | 83.1 ± 9.5 | 0.94 ± 0.09 | 0.93 ± 0.10 | 7.7 ± 5.6 | 12.5 ± 8.5 | 0.004 ± 0.006 | 0.143 ± 0.010 | 0.30 ± 0.09 | 0.35 ± 0.11 | 0.64 ± 0.40 | 0.34 ± 0.16 | 376 | 282 |

0.47 | 58.3 ± 5.8 | 59.1 ± 6.6 | 0.95 ± 0.07 | 0.98 ± 0.08 | 4.0 ± 4.0 | 5.7 ± 4.9 | 0.081 ± 0.006 | 0.092 ± 0.096 | 0.28 ± 0.08 | 0.29 ± 0.08 | 11.03 ± 3.60 | 0.80 ± 0.21 | 275 | 258 |

0.67 | 48.0 ± 5.0 | 48.8 ± 5.0 | 0.96 ± 0.07 | 0.98 ± 0.08 | 4.8 ± 4.2 | 5.4 ± 4.2 | 0.091 ± 0.007 | 0.118 ± 0.088 | 0.29 ± 0.08 | 0.28 ± 0.08 | 11.03 ± 3.60 | 0.80 ± 0.21 | 375 | 282 |

0.87 | 40.2 ± 3.7 | 40.2 ± 3.7 | 0.98 ± 0.06 | 1.01 ± 0.08 | 3.9 ± 2.5 | 4.2 ± 2.8 | 0.090 ± 0.006 | 0.140 ± 0.080 | 0.350 ± 0.080 | 0.310 ± 0.09 | 18.64 ± 8.11 | 1931 | 1420 |

For the entire campaign and for the focus periods of aged regional pollution and of fresh city pollution: midpoint activation diameters (D_a, D_t), maximum activated fractions (MAF, MAFm), heterogeneity parameters (σ_D/D_a, σ_t/D_t), hygroscopicity parameters (K_a, K_t), number concentrations of total aerosol particles ($N_{\text{CN,tot}}$) and with $D > 30$ nm ($N_{\text{CN,30}}$), number concentrations of cloud condensation nuclei ($N_{\text{CCN,S}}$), integral CCN efficiencies ($N_{\text{CCN,S}}/N_{\text{CN,tot}}$, $N_{\text{CCN,S}}/N_{\text{CN,30}}$). n_{ES} and n_{SD} are the numbers of averaged CCN efficiency spectra and size distributions, respectively. Subscripts a and t stand for parameters derived from 3-parameter and 2-parameter CDF fits to the measured CCN efficiency spectra, respectively. The last section of the table shows data from the PRIDE-PRD2006 campaign (entire campaign excluding biomass burning event, Rose et al., 2010a). For corresponding median values see Table S1.
Table 2. Best-fit parameters of monomodal lognormal size distribution functions fitted to the mean number size distribution of aerosol particles (CN) for the entire campaign and focus periods (aged regional pollution, fresh city pollution): integral number concentration (N_{CN}), count median or geometric mean diameter (D_g), and geometric standard deviation (σ_g). The last row represents the lognormal size distribution parameters fitted to the mean number size distribution observed during PRIDE-PRD2006 (entire campaign excluding biomass burning episode, Rose et al., 2010a).

<table>
<thead>
<tr>
<th>Period</th>
<th>N_{CN} (cm$^{-3}$)</th>
<th>D_g (nm)</th>
<th>σ_g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entire campaign</td>
<td>15 600</td>
<td>75</td>
<td>2.8</td>
</tr>
<tr>
<td>Aged regional pollution</td>
<td>11 250</td>
<td>125</td>
<td>2</td>
</tr>
<tr>
<td>Fresh city pollution</td>
<td>22 600</td>
<td>45</td>
<td>2.1</td>
</tr>
<tr>
<td>PRIDE-PRD2006 (entire campaign excl. BBE)</td>
<td>15 125</td>
<td>66</td>
<td>1.90</td>
</tr>
</tbody>
</table>
Table 3. Mass concentrations and corresponding mass fractions of organic matter and inorganic ions determined by aerosol mass spectrometry (AMS). Apparent elemental and organic carbon (EC$_a$, OC) mass concentrations determined by thermo-optical measurements and mass fractions of EC$_a$ and OC relative to the estimated total concentration of fine particulate matter ($\text{PM}_{1} \approx \Sigma \text{AMS} + \text{EC}_a$). Arithmetic mean values and standard deviations are listed for the entire campaign and for the focus periods of aged regional pollution and of fresh city pollution.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Entire campaign</th>
<th>Mass concentration (µg m$^{-3}$)</th>
<th>Aged regional pollution</th>
<th>Fresh city pollution</th>
<th>Entire campaign</th>
<th>Mass fraction</th>
<th>Aged regional pollution</th>
<th>Fresh city pollution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organics</td>
<td>10.83 ± 7.79</td>
<td>15.4 ± 4.00</td>
<td>5.59 ± 4.12</td>
<td>0.410</td>
<td>0.317</td>
<td>0.731</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO$_4^{2-}$</td>
<td>8.20 ± 7.46</td>
<td>18.13 ± 4.92</td>
<td>1.02 ± 2.71</td>
<td>0.311</td>
<td>0.374</td>
<td>0.133</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH$_4^+$</td>
<td>4.07 ± 3.23</td>
<td>8.29 ± 3.26</td>
<td>0.52 ± 2.91</td>
<td>0.154</td>
<td>0.171</td>
<td>0.068</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO$_3^-$</td>
<td>2.88 ± 2.51</td>
<td>5.74 ± 3.19</td>
<td>0.45 ± 1.89</td>
<td>0.109</td>
<td>0.118</td>
<td>0.059</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl$^-$</td>
<td>0.41 ± 0.61</td>
<td>0.98 ± 0.91</td>
<td>0.07 ± 1.17</td>
<td>0.016</td>
<td>0.020</td>
<td>0.009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΣAMS</td>
<td>26.4 ± 19.8</td>
<td>48.5 ± 20.1</td>
<td>7.6 ± 8.2</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC$_a$</td>
<td>6.0 ± 3.1</td>
<td>4.8 ± 1.4</td>
<td>3.1 ± 2.1</td>
<td>0.18</td>
<td>0.09</td>
<td>0.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OC</td>
<td>6.4 ± 4.0</td>
<td>7.0 ± 2.7</td>
<td>3.9 ± 3.6</td>
<td>0.20</td>
<td>0.13</td>
<td>0.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Sigma \text{AMS + EC}_a$</td>
<td>32.4</td>
<td>53.3</td>
<td>10.7</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig. 1. Measurement location Yufa (blue cross) in the megacity region of Beijing, China. The map is color-coded by population density (km$^{-2}$).
Fig. 2. Campaign-average CCN efficiency spectra (a), hygroscopicity parameters (b), number size distributions (c) and mass size distributions (d). Data points and lines represent median values; error bars represent lower and upper quartiles. (a) Size-resolved CCN efficiency spectra at different supersaturation levels ($S = 0.07–0.86\%$): activated particle fraction $N_{\text{CCN}}/N_{\text{CN}}$ plotted against mobility equivalent diameter D. The lines are 3-parameter cumulative Gaussian distribution function (CDF) fits. (b) Effective hygroscopicity of CCN-active particles (κ_a) plotted against the midpoint activation diameter (D_a). The black line represents the modeled/predicted hygroscopicity parameter (κ_p) as calculated from organic and inorganic mass fractions derived from AMS measurements averaged over the CCN measurement period and using rounded off values as obtained by extrapolating a linear fit in Fig. 5. (c) Number size distributions of total aerosol particles (CN) and of cloud condensation nuclei (CCN) averaged over the entire campaign (CCN measurement period where TDMPS data were available). The CCN size distributions were calculated by multiplying the median CN size distribution with the median CCN efficiency spectra. (d) Mass size distributions of organic matter and inorganic ions as determined by AMS and averaged over all AMS data available during the CCN measurement period (Fig. 3).
Fig. 3. Time series of meteorological parameters, CCN properties, and aerosol composition: (a) temperature, (b) wind speed (black) and relative humidity (red), (c) and wind direction for all observed wind speeds (grey shade) and for wind speed > 2 m s\(^{-1}\) (blue); (d) effective hygroscopicity of CCN-active particles, (e, f) heterogeneity (normalized width) and maximum activated fraction (amplitude) of 3-parameter CDF fit to observed CCN efficiency spectra, (g) number concentrations of total aerosol particles \(N_{\text{CN, tot}}\), particles with \(D > 30\) nm \(N_{\text{CN,30}}\), and of cloud condensation nuclei, (h) integral CCN efficiencies relative to \(N_{\text{CN, tot}}\) and to \(N_{\text{CN,30}}\); (i) organic and inorganic mass fractions determined by AMS. All the parameters are plotted against the date in August–September 2006 (local time). The CCN parameters are plotted for the lowest and the highest investigated supersaturation level \((S = 0.07\%\) and 0.86\%).
Fig. 4. Number size distributions of total aerosol particles (CN) and of cloud condensation nuclei (CCN) for different supersaturation levels averaged over the aged regional pollution period (a, c respectively) and mass size distributions of organic and inorganic compounds determined by AMS averaged over the fresh city pollution period (b, d respectively).
Fig. 5. Correlation between the effective hygroscopicity parameter of CCN-active particles (κ_a) and the organic mass fraction (f_{org}) as determined by size-resolved AMS measurements. The black line is a linear least square fit with the following equation, correlation coefficient, and number of data points: $y = 0.684 - 0.623x$, $R^2 = 0.78$, $n = 271$.
Fig. 6. Size distributions of mass fractions of organic (green), inorganic (blue), and sulfate (red) as determined by the AMS cut-off at 50 nm, and the observed effective hygroscopicity parameter of CCN-active particles (κ_a, black data points, median values with error bars extending to upper and lower quartiles) averaged over entire campaign (a), aged regional pollution period (b), and fresh city pollution period (c). Grey line in each panel indicates the effective hygroscopicity parameter (κ_p) modeled/predicted from the corresponding median organic and inorganic mass fractions as determined by size resolved AMS measurements calculated by using rounded off values as obtained by extrapolating a linear fit in Fig. 5: $\kappa_p = (f_{org} \cdot 0.1 + f_{inorg} \cdot 0.7)$. Data points at which $m_D < 1 \mu g \ m^{-3}$ were excluded.