Radon activity in the lower troposphere and its impact on ionization rate: a global estimate using different radon emissions

K. Zhang¹, J. Feichter¹, J. Kazil², H. Wan¹, W. Zhuo³, A. D. Griffiths⁴, H. Sartorius⁵, W. Zahorowski⁴, M. Ramonet⁶, M. Schmidt⁶, C. Yver⁶, R. E. M. Neubert⁷, and E.-G. Brunke⁸

¹Max Planck Institute for Meteorology, Hamburg, Germany
²Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado, USA
³Institute of Radiation Medicine, Fudan University, Shanghai, China
⁴Australian Nuclear Science and Technology Organisation, NSW, Australia
⁵Federal Office for Radiation Protection (BfS), Salzgitter, Germany
⁶Laboratoire des Sciences du Climat et de l'Environnement, IPSL, CEA, UVSQ, CNRS, Gif-sur-Yvette, France
⁷Centre for Isotope Research, University of Groningen, Groningen, The Netherlands
Lower tropospheric radon and ionization

K. Zhang et al.
Abstract

The radioactive decay of radon and its progeny can lead to ionization of air molecules and consequently influence aerosol size distribution. In order to provide a global estimate of the radon-related ionization rate, we use the global atmospheric model ECHAM5 to simulate transport and decay processes of the radioactive tracers. A global radon emission map is put together using regional fluxes reported recently in the literature. The near-surface radon concentrations simulated with this new map compare well with measurements.

Radon-related ionization rate is calculated and compared to that caused by cosmic rays. The contribution of radon and its progeny clearly exceeds that of the cosmic rays in the mid- and low-latitude land areas in the surface layer. In winter, strong radon-related ionization coincides with low temperature in China, USA, and Russia, providing favorable condition for the formation of aerosol particles. This suggests that it is probably useful to include the radon-induced ionization in global models when investigating the interaction between aerosol and climate.

1 Introduction

In recent years the impact of atmospheric ions on aerosol formation and life cycle has attracted increasing attention (see, e.g., Yu and Turco, 2000; Lovejoy et al., 2004; Kulmala et al., 2004; Kazil et al., 2006, among others). Atmospheric ions can enhance the production of ultrafine aerosol particles because they greatly stabilize small clusters with respect to evaporation (Ramamurthi et al., 1993; Lovejoy et al., 2004). In addition, ions can attach to existing aerosol particles (either neutral or charged), change their charge status, and thus the coagulation rates (Clement and Harrison, 1992). Through the influence on aerosol number and size distribution, ions can eventually exert an impact on the Earth’s climate. Kazil et al. (2010) show that in the global aerosol-climate model ECHAM5-HAM, the charged H$_2$SO$_4$/H$_2$O nucleation induces
a -1.15 W/m^2 (global and annual mean) flux of shortwave radiation at the top of the atmosphere via the direct, semi-direct and indirect aerosol effects. This value is considerably larger than the fluxes caused by cluster activation (-0.235 W/m^2) and neutral $\text{H}_2\text{SO}_4/\text{H}_2\text{O}$ nucleation (-0.05 W/m^2). In that work only the galactic cosmic rays are considered when computing the ionization rate. Although galactic cosmic rays play a major role in the upper troposphere and lower stratosphere, over the oceans and in the polar regions, other natural processes also cause ionization, the main contributors being the radioactive decay of radon (^{222}Rn), thoron (^{220}Rn) and their progeny, as well as terrestrial gamma radiation (Harrison and Carslaw, 2003). Near the land surface, almost half of the ionization of the air is related to radon, thoron and their daughter products (Emsley, 2001).

Radon, the decay product of ^{226}Ra, is the most prominent natural radionuclide in the surface air. It is a noble gas with very low solubility in water. After being transpired into the air, radon can be redistributed into the middle and upper troposphere and over synoptic distance in the horizontal, due to its half-life of 3.8 days. The radioactive decay of ^{222}Rn and its progeny ^{218}Po, ^{214}Pb and ^{214}Bi produces highly energetic α and β particles (Fig. 2a) which ionize air molecules. A previous laboratory study by Vohra et al. (1984) showed that under typical near-surface conditions over land, ionization caused by radioactive decay of radon series can cause significant enhancements in particle formation. To find out whether it is necessary to consider radon-related nucleation in global aerosol models, we use the global climate model ECHAM5 to compare the radon-related ionization rate with that caused by cosmic rays.

In order to obtain a realistic estimate of radon-related ionization rate, one needs sufficiently accurate information about radon emission flux on global scale as well as a reasonable representation of radon-related transport and decay processes by a numerical model. Early studies have shown that the average continental radon emission flux ranges from 0.7 to 1.2 atom cm$^{-2}$ s$^{-1}$ (Turekian et al., 1977; Lambert et al., 1982). Based on this estimate, highly simplified emission fluxes have been used in model intercomparison studies. For example, the World Climate Research Program
Cambridge Workshop of 1995 (Rasch et al., 2000) specified a uniform continental emission of 1 atom cm$^{-2}$ s$^{-1}$ between 60° S and 60° N, 0.5 atom cm$^{-2}$ s$^{-1}$ between 60° N and 70° N (excluding Greenland), and zero flux elsewhere. On the other hand, Lee and Feichter (1995) and Guelle et al. (1998) showed that taking into account the regional emission gradient can lead to results more consistent with the observed radon concentrations, especially near the surface and at high latitudes. Cohen and Robertson (2002) proposed a northward decreasing source (linear decrease from 1 atom cm$^{-2}$ s$^{-1}$ at 30° N to 0.2 atom cm$^{-2}$ s$^{-1}$ at 70° N) without zonal gradient. This emission assumption was tested with a global transport model by Robertson et al. (2005). Before our work presented in this paper, the global radon flux map by Schery and Wasiolek (1998) (hereafter SW1998) was the only one that includes detailed regional information and seasonal variation over land surfaces. It has been used in several subsequent studies of transport modelling (see, e.g., Koch et al., 2006; Hirao et al., 2008). (Goto et al., 2008, showed limited results from a radon exhalation rate distribution model, but without comprehensive evaluation.) One of the weak points of the SW1998 map is the lack of overall normalization. The annual and global mean emission rate over land (1.6 atom cm$^{-2}$ s$^{-1}$) is higher than that given by many previous estimates (Schery and Wasiolek, 1998; Schery, 2004). Thus it is suggested (S. Schery, personal communication, 2009) that one could let the overall normalization be a free parameter. As an example, Koch et al. (2006) arbitrarily reduced the emission by a factor of 0.5 in their work.

In the past years several research groups have derived detailed radon flux maps for different regions using various methods. For example, Szegvary et al. (2007) and Szegvary et al. (2009) established a method for deriving radon emission from terrestrial gamma dose rate. The radon fluxes they get are in good agreement with in situ measurements in Finland and Hungary. The new flux map was applied within the TM5 atmospheric tracer model and results showed that it improves the average model predictions (Szegvary, 2007). Russia and USA flux maps are now also available from their website at http://radon.unibas.ch. Zhuo et al. (2008) published radon...
emission estimates for China based on the soil ^{226}Ra content and a global ecosystems database. The annual mean values given by their idealized model range from 0.5 to 2.7 atom cm$^{-2}$ s$^{-1}$ at different locations. Furthermore, Griffiths et al. (2010) reported a time-dependent map of radon flux density at high resolutions for Australia. For the oceans, Schery and Huang (2004) calculated radon flux from the surface wind speed and sea water ^{226}Ra content using a gas transfer model. Based these studies, we compile a new global radon emission map in this work. The details are given in Sect. 2.2.

Transport of radon from its source regions occurs due to turbulence-induced vertical diffusion, cumulus convection, and large scale advection. It is not at all a trivial task to realistically represent these processes in a numerical model. In the 1990s two coordinated model intercomparisons of radon transport were carried out (Jacob et al., 1997; Rasch et al., 2000), which revealed considerable discrepancies between different models as well as between simulation and observation. Regarding the global climate model ECHAM, radon transport simulations have been performed using earlier model versions (see Rasch et al., 2000, for the ECHAM3 results, and Dentener et al., 1999, for ECHAM4). The current version, ECHAM5, uses the transport scheme of Lin and Rood (1996), and features a model climate moderately different from its predecessor’s. Aghedo et al. (2010) carried out a series of experiments with ECHAM5 to investigate the sensitivity of tracer transport to model resolution, meteorology and tracer lifetime. Since the tracer sources specified therein were highly idealized, it was not possible to validate their results against measurements. Ross (2010) made some careful modifications in ECHAM5 regarding convective tracer transport as well as operator splitting methods in physics calculations, and obtained realistic simulations of the background concentration of ^{85}Kr, an anthropogenic tracer released from point sources. In this work we simulate radon concentration using ECHAM5, aiming at obtaining an estimate of the radon-induced ionization rate. The model evaluation presented here also reveals the overall performance of ECHAM5 in terms of tracer transport, which we believe useful for the users of this widely applied model.
The rest of this paper is organized as follows: Sect. 2 describes the numerical experiments. Section 3 evaluates the simulated surface radon concentration against measurements and discusses the impact of emission. Section 4 analyzes the radon-related ionization rate. Conclusions are drawn in Sect. 5.

2 Experimental design

In this section we first provide some further arguments for choosing the radon family as ionization agents in our simulations. Thereafter the newly derived global radon emission map is presented. We then briefly introduce the ECHAM5 model and explain how the radioactive decay and resulting ionization are implemented in the model. The numerical simulations are described in Sect. 2.7.

2.1 Ionization agents

In the atmosphere, apart from radon and its progeny there are also many other radionuclides that contribute to ionization at different magnitudes. Since our primary interest lies in climate modelling on the global scale, the focus of this study was chosen by two criteria: first, the source of ionizing energy has to be strong enough to cause a globally non-negligible effect; second, sufficient information needs to be available about the global distribution of the radionuclide and its sources, so that robust results can be obtained with our climate model. According to these criteria, we have chosen the radon decay series as the only subject in this study and excluded other airborne radioactive species. The radionuclide 85Kr, for example, has a long lifetime and fairly homogeneous background concentration worldwide, which makes it a continuous source of ionization. Over the oceans, its activity concentration can exceed that of radon. However, the decay energy of 85Kr is relatively low (mainly β decay, average energy 0.251 MeV), and the activity concentration near the surface is much lower than radon over the continents. The resulting ionization in the lower troposphere is thus...
probably negligible compared to radon and cosmic rays. Similarly, ionization caused by 14C in CO$_2$ can also be neglected due to its low decay energy (0.156 MeV) and low activity concentration (40 mBq m$^{-3}$). The thoron decay chain could be another potential subject for our study. Thoron (220Rn) and its direct daughter 216Po undergo essentially complete decay below an altitude of several meters over land (with half-lives being 56 s and 0.15 s, respectively). Though the next decay product, 212Pb, has a relatively long half-life of 10.6 h, its activity concentration is only about 1%–10% of that of radon. And moreover, there is the practical difficulty that information about thoron emission is very limited. To our knowledge there is no global map available, which prevents us from obtaining reliable distributions of thoron and its progeny. Given all the considerations above, we focus only on the radon-induced ionization in this study.

2.2 Radon emission

Based on previous studies in the literature, we compile a new global radon emission map in this work (Fig. 1). The new map uses the Szegvary et al. (2007) data for Europe, Russia and USA, Zhuo et al. (2008) for China, Griffiths et al. (2010) for Australia (pre-release), and the Schery and Wasiolek (1998) map for the other land areas but scaled by a factor of 1/1.6. The Schery and Huang (2004) estimates are used for the oceans. Table 1 shows the annual mean regionally averaged radon emission flux over land in this merged map. For intercomparison, simulations are performed using this merged map, the WCRP1995 recommendation, and the scaled (also by a factor of 1/1.6) SW1998 map. The decision of using 1/1.6 for the normalization instead of 2 as in Koch et al. (2006) is somewhat arbitrary. The idea is that 1/1.6 results in a land-surface mean of 1 atom cm$^{-2}$ s$^{-1}$, which is the value used for middle and low latitudes in the WCRP1995 protocol. On the other hand, we do not make it a strict rule that all three simulations must have the same global mean emission.
2.3 The climate model ECHAM5

ECHAM5 is an atmospheric general circulation model developed at the Max Planck Institute for Meteorology (Roeckner et al., 2003). Its spectral transform dynamical core solves the primitive equations in vorticity-divergence form. The horizontal resolution used in this study is T63, which applies a triangular truncation to the spherical harmonic series, and resolves horizontal patterns up to wave number 63. The corresponding Gaussian grid, on which the grid-point computations including physics parameterization are performed, has approximately 2°(latitude) × 2°(longitude) grid size. In the vertical, the model domain is unevenly divided into 31 layers in pressure-based terrain following coordinate, with the highest computational level located at 10 hPa. Roughly speaking, there are 6 layers below 850 hPa, 9 above 200 hPa, and 16 in between. The standard time step for this resolution is 12 min.

The large scale advection of tracers is handled by the Lin and Rood (1996) flux-form semi-Lagrangian algorithm, assuming piecewise parabolic sub-grid distribution. Within the physics parameterization package, the turbulent surface fluxes are calculated from the Monin-Obukhov similarity theory (Louis, 1979). Vertical diffusion coefficients are calculated as functions of turbulent kinetic energy (Brinkop and Roeckner, 1995). The parameterization of cumulus convection and convective transport of tracers are based on the bulk mass flux concept of Tiedtke (1989) with further modifications by Nordeng (1994).

2.4 Decay of radon and its progeny

The decay chain of radon is shown in Fig. 2a. Half-lifes and α decay energy noted therein are collected from the most recent Evaluated Nuclear Structure Data File (ENSDF). Among the decay products, \(^{218}\text{Po}\) and \(^{214}\text{Po}\) have half-lifes much shorter than the time step of the climate model. Thus we assume \(^{222}\text{Rn}\) decays directly to \(^{214}\text{Pb}\) and releases two α particles with 11.71 MeV decay energy (Fig. 2b). Similarly \(^{214}\text{Pb}\) is assumed to directly decay into \(^{210}\text{Pb}\) and release one α particle and one β...
particle, with the decay energy being 11.15 MeV. The decay of ^{210}Pb is ignored since it happens very slowly (mostly not in the atmosphere but on the ground) and produces negligible energy (0.064 MeV). In this study we describe the abundance of radon and its progeny using their activity concentrations. The activity concentration is the product of atom number concentration and decay constant. The simplified decay chain can be described by an ordinary differential equation system and solved analytically within each model time step (cf., e.g., Vinuesa et al., 2007, and Appendix A of this paper).

In the atmosphere, radon decay initiates ion chemical reactions which can lead to the formation of nanometer-sized charged clusters. Radon decay products can also attach to existing particles (Porstendörfer, 1994; Papastefanou, 2008). Both the unattached and attached radon decay products are subject to dry and wet scavenging. Near the ground, dry deposition of these decay products may play a role under certain conditions. However, Lupu and Cuculeanu (1999) showed that even above vegetated ground (where dry deposition velocity is larger than above bare ground), the effect of dry deposition on the concentration of radon decay products above 5 m is relatively small compared to the effect of turbulent mixing. Given the facts above and that scavenging happens at time scales much longer than the life-times of the progeny, it is ignored in our simulations.

2.5 Ionization

The production of one ion pair in the air consumes 35–36 eV energy from α particles (Valentine and Curran, 1958; Jesse, 1968; Papastefanou, 2008), or 32–34 eV from β particles (Jesse, 1968; Papastefanou, 2008). In this study, we use the value 35.6 eV for α particles and 32.5 eV for β particles (Papastefanou, 2008). Using these numbers and the decay energy noted in Fig. 2b, the time step mean ionization rate ψ is diagnosed by
\[\psi_i = \bar{c}_i \left(n_\alpha \frac{E_{\alpha,i}}{E_{\alpha,p}} + n_\beta \frac{E_{\beta,i}}{E_{\beta,p}} \right), \quad i = 1, 2, 3. \] (1)

Here \(\bar{c}_i \) stands for the time step mean activity concentration (unit: Bq m\(^{-3}\), equivalent to m\(^{-3}\) s\(^{-1}\)) of species \(i \) during the decay process (see Appendix A for detailed expression); \(n_\alpha \) and \(n_\beta \) denote the number of released particles; \(E_{\alpha,i} \) and \(E_{\beta,i} \) stand for the corresponding decay energy (unit: eV); \(E_{\alpha,p} \) and \(E_{\beta,p} \) are the energy (unit: eV) needed for producing one ion pair for \(\alpha \) decay and \(\beta \) decay, respectively.

The ionization rate induced by galactic cosmic rays is computed as in Kazil et al. (2010), which takes into account the 11-year cycle of the solar activity.

2.6 Coupling of different processes

In ECHAM5 there are four processes directly affecting the concentration of radon and its progeny. These are:

- \(\mathcal{A} \): large-scale advection;
- \(\mathcal{T} \): turbulent mixing (vertical diffusion) with radon emission being the lower boundary condition;
- \(\mathcal{D} \): radioactive decay and ionization;
- \(\mathcal{C} \): cumulus convection.

The computation sequence can be summarized using the notation of Williamson (2002) as follows:

\[c_i(t + \Delta t) = C \left(\mathcal{D} \{ \mathcal{T} [c_i(t - \Delta t)], \mathcal{A}[c_i(t - \Delta t)] \} \right) \]

\[(i = 1, 2, 3). \] (2)
Large-scale advection and turbulence are computed first, using process splitting in Williamson’s terminology (or parallel splitting according to Dubal et al., 2004). Thereafter the radioactive decay and cumulus convection are computed using time splitting (sequential splitting). Note that the ECHAM5 model employs the leapfrog time stepping scheme, thus on the r.h.s. of Eq. (2) we start from time step $t - \Delta t$. This means the $c_i(t)$ and Δt on the r.h.s. of Eqs. (A5)–(A13) are replaced by $c_i(t - \Delta t)$ and $2\Delta t$, respectively.

2.7 Simulations

Numerical simulations are carried out for the period 1 October 1998–31 December 2003 forced by the AMIP II sea surface temperature and sea ice cover (Taylor et al., 2000). The model meteorology is constrained by the ERA40 reanalysis (Uppala et al., 2005) using the nudging technique (Jeuken et al., 1996). “Free” runs without nudging are also performed and briefly discussed in section 3.3.

As already mentioned earlier, three simulations are performed with different radon emission maps: one with the WCRP1995 recommendation, one with the scaled Schery and Wasiolek (1998) map, and the third with the new map compiled in this study (Fig. 1). In the merged map, the global average radon emission flux over land between 60°S and 60°N is around 0.96 atom cm$^{-2}$ s$^{-1}$ (Table 1). In the scaled SW1998 map we have reset the flux over the oceans to zero, because a preliminary simulation revealed that the constant flux of 0.00417 atom cm$^{-2}$ s$^{-1}$ over the ocean caused unacceptably high radon concentration at many locations.

In our simulations, the initial concentrations of all radioactive species are set to zero. 3-hourly instantaneous tracer concentrations and ionization rate are archived as well as the monthly means. The first three months of the simulation period are discarded as spin-up.
3 Radon concentration in the lower troposphere

In this section we present the simulated surface radon concentration, compare the results obtained using different emission maps, and evaluate the simulations against measurements. For clarity, we emphasize again that in this paper the amount of radon in the air is described by its activity concentration and we use the unit mBq m$^{-3}$ STP, i.e., millibecquerel per cubic meter at the standard atmospheric condition (273.15 K, 1013.25 hPa) to compare different sets of data and model results. When discussing radon emission, we follow the convention and use the atom number flux (unit: atom cm$^{-2}$ s$^{-1}$).

3.1 Measurements

Zhang et al. (2008) used surface radon measurements at 28 sites to evaluate radon transport in a global model. In this study we have extended that data set by including recent measurements from observers and publications, as well as some earlier data of the period 1955–1987. One site used in Zhang et al. (2008), Puy de Dome, is excluded here because it is strongly affected by small-scale topography that cannot be resolved in climate models at the resolution we have chosen. There are some studies in the literature which reported on annual mean radon concentrations but without seasonal variation (e.g., Lockhart et al., 1966; Nagaraja et al., 2003). These data are not included in our analysis. Detailed information about the measurements used in this study and their references are given in Table 2. The sites are shown in Fig. 3. As radon measurements at some locations were reported in other units, they are converted to mBq m$^{-3}$ STP. For quantitative comparison between observation and simulation, model output is linearly interpolated to the location of the observations.

It should be noted that the data listed in Table 2 were measured using different methods (e.g. one-filter method and two-filter method). The difference between measured radon concentrations by using different methods at the same location could be a few ten percents under certain conditions (Xia et al., 2010). The one-filter method, for example,
needs an assumption about the disequilibrium factor between counted progeny and its precursor radon (Levin et al., 2002). The disequilibrium factor depends on local meteorological conditions and the height of the air inlet above ground and could vary with time. For some measurement methods, it could be possible, that the system cannot separate thoron progenies from radon progenies and the whole detected activity is accounted to radon (C. Schlosser, personal communication, 2010). We should take these uncertainties into account when comparing the model with measurements collected by using different instruments.

3.2 Overview of model results

The scatter plots in Fig. 4 provide a compact overview of the model results in comparison with measurements. Each point in the figure represents one seasonal or monthly mean at one site. At the locations where measurements are available at frequencies higher than monthly, we compute the monthly mean before making the plot; at the places where only seasonal data are available, we simply take the seasonal mean, and average the model results accordingly.

On the whole, all three simulations agree reasonably well with the observations. Taking into account all seasons and sites, more than 70% samples are consistent with observation within a factor of 2. The winter and summer results are of similar quality. The outliers in Fig. 4a and g indicate the underestimation of radon concentrations at Dumont d'Urville (especially in summer), which will be discussed in Sect. 3.4. Comparing the three columns in Fig. 4, one can see clearly that the merged emission map leads to better results than the other two simulations. The correlation between simulation and observation increases significantly. The overestimated concentrations in the WCRP1995 and scaled SW1998 simulations in the range between 4×10^2–6×10^3 mBq m$^{-3}$ STP are improved considerably.

To identify the reasons for the improvement, results in different regions are shown separately in Fig. 5. In the European regions southward of 60° N (excluding the Iberian Peninsula), the WCRP1995 flux of 1 atom cm$^{-2}$ s$^{-1}$ is considerably stronger than the
other two emission setups (cf. Fig. 1), thus in Fig. 5a the green dots reveal clear over-
estimation compared to the other two panels in the same row. Over Scandinavia the
WCRP1995 and SW1998 fluxes are about 0.5 atom cm$^{-2}$ s$^{-1}$ at most grid points, which
seems still too high since almost all the pink markers in Fig. 5a and b lie outside the
factor of 2 region. In contrast, the emissions derived by Szegvary et al. (2007) from the
terrestrial gamma dose lead to much better results in this region (Fig. 5c).

India and China are characterized by high radon emission and strong spatial
gradient. The constant flux of WCRP1995 thus causes relatively low simulation-
to-observation correlation and a clear underestimate in surface radon concentra-
tion (Fig. 4d). The scaled SW1998 map results in a better correlation, while the data
from Zhuo et al. (2008) in China (used in our merged map) provide the most realistic
results in the second row of Fig. 4. A similar situation can be seen for the United States,
although biases associated with the scaled SW1998 are positive. In South America the
three simulations are not very different. Our merged map uses the same emission as
the scaled SW1998 map, thus gives almost identical results; the WCRP1995 emission
leads to reasonable, although slightly overestimated surface concentration.

3.3 Nudged versus climatological simulations

As mentioned in the previous section, we have also performed simulations without
nudging the model meteorology toward reanalysis. The main purpose is to evaluate
the ECHAM5 model’s ability in tracer transport in a case of “free” simulation. It turns
out that without nudging, the simulated radon concentration still compares well with
the measurements. To demonstrate this, we present in Fig. 6 the comparison between
simulated and observed monthly mean concentrations for all the sites shown in Fig. 3.
On the whole the results are very similar to the nudged simulations (Fig. 4). The corre-
lation coefficients and factor of 2 percentages are slightly lower than in the nudged runs
due to less accurate meteorological fields. However, there is no severe deterioration of
the overall quality in any of the simulations.
3.4 Radon concentration at individual sites

The scatter plots discussed above are derived from seasonal or monthly mean surface radon concentrations. The correlation between simulation and observation is mainly determined by the model’s ability to reproduce the spatial distribution of radon concentration at regional to global scales. In this subsection we zoom in to individual sites to evaluate the simulated temporal distribution and seasonal cycle by analyzing the box plots in Figs. 7–10.

A box plot provides detailed information on distribution statistics. The two whiskers attached to each box denote the 10th (lower) and 90th (upper) percentiles. The lower and upper hinges are the 25th and 75th percentiles, respectively, which bound the middle half of the population. The middle hinge and the dot are the population median and mean, respectively. In the figures, boxes are drawn for all samples at the site, and for each season separately. The observed distribution is shown in black; simulation with the WCRP1995 emission is shown in green, the scaled SW1998 map in blue, and the merged map in red. The simulated distributions are derived from 3-hourly model output. The observed distributions are derived from the original high frequency data if available. At the sites where only monthly or seasonal mean can be obtained, the seasonal mean is plotted.

Following Kazil et al. (2010) we have diagnosed in our simulations the ion production caused by galactic cosmic rays (GCR). Assuming that in the near-surface layer radon and its progeny are in equilibrium, one can easily determine (see, e.g., Laakso et al., 2004) the radon activity concentration that would result in the same ionization rate (hereafter referred to as equivalent radon concentration). In Figs. 7–10, the lower and upper boundaries of the filled gray areas are the 10th and 90th percentiles of the equivalent radon concentrations. Note that these reference percentiles are not derived from data at each single site, but rather from the 3-hourly model output at all surface grid points with altitude lower than 2000 m. (Locations of surface elevation higher than 2000 m are excluded because they are exposed to much stronger GCR...
than lower altitudes, thus feature considerably higher ionization rate. In our study there are no measurements from such high elevations, except for those measured at Mauna Loa.) It should also be noted that in reality radon and its progeny are not always in equilibrium. The wide range of disequilibrium in individual measurements (see, e.g. Anspaugh et al., 2000) implies a degree of uncertainty in our estimate of the equivalent radon concentration described above. On the other hand, equilibrium factors between 0.5 and 0.7 are regarded as typical by Anspaugh et al. (2000) for outdoor environment, and the value 0.6 was recommended (see points 122 and 123 of Annex B therein). In other words, in a typical outdoor environment, the actual potential alpha energy concentration related to the short-lived progeny is about 50%–70% of the value that would prevail in the equilibrium case. Under such condition, the equivalent radon concentrations, corresponding to the cosmic ray ionisation rate, will be underestimated by (roughly) a factor of 2. One should bear this uncertainty in mind when interpreting the box plots in Figs. 7–10.

The panels in Fig. 7 confirm our findings from the scatter plots that over Europe, the WCRP1995 emission is on the high side, while the merged map leads to most realistic results. At Freiburg, Schauinsland, Hohenpeissenberg, Gif-sur-Yvette, and Lutjewad, where continuous and high frequency data (German Federal Office for Radiation Protection, Zellweger et al., 2006; Yver et al., 2009; van der Laan et al., 2009) allow for derivation of the concentration distribution, the simulated concentration populations agree quite well with measurements. One can also see in these panels that the seasonal variation of radon concentration is well simulated. It is worth noting that according to any of the emission maps in Fig. 1, Europe and Russia feature the lowest fluxes among all the continental areas (except the ice-covered Greenland and Antarctica). Even so, the observed and simulated radon concentration often exceeds the 90th percentile of the equivalent concentration derived from the GCR-induced ionization.

Figure 8 shows results at six Chinese city sites. In the southern (e.g., Hongkong, Wuhan) and western (e.g., Xi’an) part of China, the simulated mean concentrations agree better with observations when the Zhuo et al. (2008) emissions are applied
(see left column in Fig. 8). Note that the concentrations are typically at the order of 5000 mBq m\(^{-3}\) STP or higher, implying ionization rates of 3.2 pairs cm\(^{-3}\) s\(^{-1}\) STP or stronger. Furthermore, it is worth noting that the selected cities are located in the East Asian monsoon region. The fact that the ECHAM5 model reasonably reproduces the seasonal cycle of surface radon concentration indicates that the East Asian monsoon circulation and its effect on large scale tracer transport is well represented by the model.

From Fig. 9 we see again that the SW1998 emission, even though scaled down by a factor of 1.6, is too high in the USA. The inter-city differences suggest that taking into account the regional gradient in radon flux improves the results in general.

In Fig. 10, results are presented for eight coastal and remote ocean sites. Bermuda and Mauna Loa are typical examples of remote ocean sites, while Cape Grim and Cape Point are coastal sites, all strongly affected by horizontal transport. At these sites the model is able to reproduce not only the correct magnitude and seasonal cycle of the population mean, but also the characteristic shapes of the concentration distribution. The strongly asymmetric distributions at Cape Grim and Cape Point are well captured. This indicates that both the variations in large scale circulation and the radon emission in source regions are reasonably represented in the model.

Kerguelen and Crozet are also remote ocean sites, but feature extremely low radon concentration because of their location in the Southern Ocean. At these two sites we again see a strong sensitivity to emission. Over the ocean, both the WCRP1995 recommendation and the modified SW1998 map have zero radon flux, while the merged emission map utilizes the space- and time-dependent estimates of Schery and Huang (2004). In the storm track over the Southern Ocean, the surface radon flux are relatively large due to strong surface winds. In the region 40° S–60° S, 0° E–180°, the annual mean exceeds 0.005 atom cm\(^{-2}\) s\(^{-1}\) (cf. Fig. 1 in Schery and Huang, 2004). Although the flux is very weak compared to that over the continents, taking it into account does improve the results over the remote oceans significantly (Fig. 10, row 3).
Simulating radon concentration at Dumont d’Urville in Antarctica has always been a difficult task (see, e.g., Heimann et al., 1990; Taguchi et al., 2002; Josse et al., 2004). When assuming zero local emissions, radon concentration at this site is completely determined by long-range transport. This is what happens in the simulation using the WCRP1995 emission setup. Note that WCRP1995 specified zero emission also over the oceans, thus all the radon atoms over Antarctica originate from other continents. In this simulation we get not only unacceptably low concentrations at Dumont d’Urville and Mawson, but also wrong seasonal cycles that completely disagree with observations (see green boxes in the last row of Fig. 10). The scaled SW1998 map and the merged emission assume a constant flux of 0.00417 atom cm\(^{-2}\) s\(^{-1}\) over Antarctica all year round, which results in a much better seasonal cycle in the simulated radon concentration, although the values are now on the high side. We have performed an additional experiment using the merged emission map, but set the radon flux over Antarctica to zero. Compared to WCRP1995, this simulation has non-zero fluxes over the Southern Oceans (Schery and Huang, 2004), which, through transport, can affect Antarctica. It turns out that the concentrations at Dumont d’Urville and Mawson become slightly higher than in the WCRP1995 simulation (not shown), but there is no essential improvement either in the magnitude of the concentration or in its seasonal cycle. This indicates that (at least in the ECHAM5 model) transport from the ocean and remote continents alone can not explain the observed radon concentration over Antarctica. Local emissions need to be included. Ideally one should replace the constant radon flux of 0.00417 atom cm\(^{-2}\) s\(^{-1}\) by some detailed map with horizontal and seasonal variation. This can not be achieved now due to severe lack of measurements in this region.

3.5 A brief summary on model evaluation

From the analysis presented in this section, we see that the ECHAM5 model performs reasonably well in simulating the lifecycle and global distribution of radon. Using the most up-to-date emission estimates, we are able to reproduce the main features of the
temporal and spatial distribution of the surface radon concentration. At most of the sites shown in Fig. 3, the model results agree not only qualitatively but also quantitatively well with measurements. On the one hand, there is still quite some room for improvement, for example, by compiling even more detailed and accurate emission maps, and by enhancing the model resolution so as to better resolve the atmospheric circulation and surface properties at scales smaller than 200 km; On the other hand, the simulations shown in here are reasonable, and compare well with other models (see, e.g., Dentener et al., 1999; Taguchi et al., 2002; Hauglustaine et al., 2004; Koch et al., 2006, among others). This provides a solid base for estimating the radon-related ionization rate.

4 Radon-related ionization

In this section we present the simulated ionization rate caused by radon and its progeny. In the simplified decay chain (Fig. 2b) there are three sources of ionizing radiation: the decay of 222Rn, 214Pb and 214Bi. Since the lifetimes of the two daughters are relatively short compared to the model time step (12 min), their concentrations are not strongly affected by transport, but rather determined by how much radon is locally available for radioactive decay. Thus the global distribution of the resulting ionization closely resembles that of radon concentration (not shown). For brevity, in the following we will refer to the radon-related ionization rate as IPRR (as ψ in Eq. 1).

4.1 Global distribution

Figure 11 displays the annual and seasonal mean IPRR in the surface layer simulated with different radon emission data. The highest ionization rates appear where there is strong emission and stable boundary layer. In boreal winter, the suppressed vertical transport due to increased atmospheric stability leads to high IPRR over $9 \text{ cm}^{-3} \text{s}^{-1}$ (Fig. 11d–f). The summer ionization rates are considerably lower due to the ventilation effect of convective transport (Fig. 11g–i).
Discrepancies among the three columns in Fig. 11 indicate the impact of radon emission. The scaled SW1998 map leads to stronger ionization over West US and Europe than in the other two simulations, while in China the IPRR is highest when the Zhuo et al. (2008) emission is applied (Fig. 11c, f, i). These are all consistent with what we have seen in Fig. 1. Considering the model evaluation results in Sect. 3, the IPRR given by the merged emission map is probably the most accurate in the above-mentioned regions. It is worth noting that panels d–f of Fig. 11 reveal large discrepancies over Russia as well. There the SW1998 emission map gives the highest IPRR among the three simulations (Fig. 11e), while the Szegvary et al. (2007) emission corresponds to the lowest values (Fig. 11f). Due to lack of long-term observation, we are not yet able to judge the quality of the simulations in this area. Nevertheless differences between the two panels are still informative because they provide an (although far from conclusive) estimate about the uncertainty of the IPRR in this area.

Figure 12 presents the annual and seasonal mean IPRR in the lower troposphere in terms of zonal mean over land area, and compares them with the GCR-induced ionization. The radon-related ionization, primarily determined by radon emission and transport, shows a completely different pattern compared to the GCR-induced counterpart. The radon-related ionization is more concentrated in the lower troposphere and in middle- and low-latitude areas, where its magnitude clearly exceeds the GCR-induced ionization (Fig. 12, right most column). It should be noted that in boreal winter, very high ionization rates appear between 20° N and 50° N (Fig. 12d). The major contributor to these maxima in the zonal mean is the high IPRR in Asia (China, Myanmar, and north of India), as can be seen from the east-west cross section in Fig. 13. As this region is also associated with relative high near-surface SO$_2$ (precursor of sulfuric acid gas) concentrations, the high ionization rate may contribute significantly to aerosol nucleation under favorable conditions.
4.2 Ionization rate and ambient temperature

Similar to the neutral nucleation process, ion-induced nucleation also depends significantly on ambient temperature. Figure 14 shows the joint probability density distribution (PDF) of air temperature and the radon-related ionization rate for different regions (China, Europe, North America, and Russia, as indicated in Fig. 11e,f by dashed black lines). The PDFs are computed for the lowest model level using the 3-hourly data in winter (DJF). According to the evaluations in the previous section, the simulation using the merged radon emission is the most accurate in China, Europe, and North America. Therefore only this simulation is shown for these regions (Fig. 14a–c).

The most prominent feature in the first row of Fig. 14 is that ionization is much stronger over China and associated with lower temperature. The PDF of temperature peaks around 260 K. At this temperature, ionization rate of $15 \text{ cm}^{-3} \text{s}^{-1}$ is not at all uncommon (Fig. 14a). In extreme cases, the ionization rate can even reach $50 \text{ cm}^{-3} \text{s}^{-1}$ at temperatures as low as 250 K (not shown). With such low temperature and high ionization rate, and abundant sulfuric acid gas, charged $\text{H}_2\text{SO}_4/\text{H}_2\text{O}$ nucleation can be strong and significantly influence the aerosol size distribution. In the US ionization is also strong, and peaks around 0°C (Fig. 14b). Europe, on the other hand, features very low ionization rate which probably has only limited influence on nucleation.

The second row of Fig. 14 shows the joint PDF in Russia for all three simulations since it is not clear which is more accurate. Although the simulated ionization rates are lower than in China and the US, the effect of low temperature may dominate and still leads to strong particle formation.

5 Conclusions

In this study global simulations are performed with the ECHAM5 model to simulate radon activity in the lower troposphere and its effect on ion production. The decay chain of radon in the model is simplified by removing short-lived radon daughters. The
solution of the decay equation is computed analytically within each model time step, and coupled with tracer transport caused by advection, cumulus convection and turbulent mixing. The radon-related ionization rate is estimated based on the activity concentration of radon and its daughter species, and well-accepted values of the decay/ionization energy.

Based on recent reports in the literature on radon emission, an up-to-date global radon emission map is compiled with regional details and seasonal variation. The simulated radon activity concentration is evaluated against surface radon measurements at 51 locations. Results show that the global model ECHAM5 can reasonably reproduce the variations of surface radon concentrations observed at various locations. On the whole, the newly compiled emission map leads to better results compared to the WCRP1995 protocol and the widely used SW1998 map. The merged map is not only helpful for this study, but probably also useful for other researchers working on numerical modelling of radon transport and the transport and deposition processes of \(^{210}\)Pb (e.g., Balkanski et al., 1993).

The radon-related ionization rate is computed and compared with the GCR-ionization rate. It is found that in boreal winter, the suppressed vertical transport due to increased atmospheric stability leads to seasonal mean IPRR as high as \(9 \text{ cm}^{-3} \text{ s}^{-1}\). In middle- and low-latitude continental areas, the zonal mean radon-induced ionization rate clearly exceeds the GCR-induced counterpart in the near-surface levels up to 800 m elevation. At many continental sites, the observed and simulated surface radon activity concentration often occurs well above the 90th percentile of the equivalent concentration derived from the GCR-induced ionization. Further analysis on the joint PDF of ionization rate and temperature show that in China and USA, strong radon-related ionization often occur in winter at low ambient temperature, which provide favorable condition for the charged \(\text{H}_2\text{SO}_4/\text{H}_2\text{O}\) nucleation. In Russia, the ionization rate is not as high, but the very low and persistent winter temperature may play a more important role and still favor strong nucleation. Based on these results we conclude that it will be useful to extend the work of Kazil et al. (2010) to investigate the effect of radon-related ionization on
nucleation, as well as the consequences in aerosol size distribution, cloud properties, and climate effect.

Appendix A

Analytical solution of the decay chain

The simplified decay chain system (Fig. 2b) can be described by an ordinary differential equation system with four unknowns (in activity concentration form):

\[
\begin{align*}
\frac{dc_1}{dt} &= -\lambda_1 c_1, \\
\frac{dc_2}{dt} &= \frac{\lambda_1}{\lambda_2} c_1 - \lambda_2 c_2, \\
\frac{dc_3}{dt} &= \frac{\lambda_2}{\lambda_3} c_2 - \lambda_3 c_3, \\
\frac{dc_4}{dt} &= \frac{\lambda_3}{\lambda_4} c_3,
\end{align*}
\]

where \(c_1, c_2, c_3, \text{ and } c_4\) are the activity concentration of \(^{222}\)Rn, \(^{214}\)Pb, \(^{214}\)Bi, and \(^{210}\)Pb, respectively, and \(\lambda_1, \lambda_2, \lambda_3, \text{ and } \lambda_4\) are the corresponding decay constants. For each model time step (\(\Delta t = 12\) min), the analytical solution of the decay chain at \(t + \Delta t\) reads

\[
\begin{align*}
c_1(t + \Delta t) &= c_1(t) e^{-\lambda_1 \Delta t}, \\
c_2(t + \Delta t) &= c_2(t) e^{-\lambda_2 \Delta t} + \chi_{21} \eta_{12} c_1(t), \\
c_3(t + \Delta t) &= c_3(t)e^{-\lambda_3 \Delta t} + \chi_{31} \chi_{31} \eta_{13} c_1(t) + \chi_{32} \eta_{23} (c_2(t) - \chi_{21} c_1(t)),
\end{align*}
\]

where

\[
\chi_{ij} = \frac{\lambda_i}{\lambda_i - \lambda_j},
\]

\[
\chi_{ij} = \frac{\lambda_i}{\lambda_i - \lambda_j}.
\]
\eta_{ij} = e^{-\lambda_i \Delta t} - e^{-\lambda_j \Delta t}. \tag{A9}

By integrating Eqs. (A5)–(A7) from \(t \) to \(t + \Delta t \), the time-step average concentration can be obtained:

\begin{align}
\bar{c}_1 &= \theta_1 c_1(t) , \\
\bar{c}_2 &= \theta_2 c_2(t) + \chi_{21}(\theta_1 - \theta_2)c_1(t) , \\
\bar{c}_3 &= \theta_3 c_3(t) + \chi_{21}\chi_{31}(\theta_1 - \theta_3)c_1(t) + \chi_{32}(\theta_2 - \theta_3)(c_2(t) - \chi_{21}c_1(t)) . \tag{A12}
\end{align}

where

\theta_i = \frac{\lambda_i - e^{-\lambda_i \Delta t}}{\lambda_i \Delta t} . \tag{A13}

Since the decay of \(^{210}\)Pb is ignored, its concentration is not computed in the model.

Supplementary material related to this article is available online at: http://www.atmos-chem-phys-discuss.net/11/3251/2011/acpd-11-3251-2011-supplement.pdf.

Acknowledgements. The authors thank F. Conen and T. Szegvary for providing their radon flux maps, and S. Rast for preparing the nudging data and making the internal review. We are also grateful to S. Schery, S. Whittlestone, C. Schlosser and J.-F. Vinuesa for their very helpful comments. The German BfS, French RAMCES, and Australian ANSTO monitoring networks are acknowledged for providing the new radon measurements used in this study. This work was jointly supported by the Max Planck Society and the EUCAARI project. All simulations were performed at the German Climate Computing Center (Deutsches Klimarechenzentrum GmbH, DKRZ).

The service charges for this open access publication have been covered by the Max Planck Society.
References

Jacob, D. J. and Prather, M. J.: Radon-222 as a test of convective transport in a general circu-
Jacob, D. J., Prather, M. J., Rasch, P. J., Shia, R.-L., Balkanski, Y. J., Beagley, S. R.,
Bergmann, D. J., Blackshear, W. T., Brown, M., Chiba, M., Chipperfield, M. P., Grandpré, J.,
Dignon, J. E., Feichter, J., Genthon, C., Grose, W. L., Kasibhatla, P. S., Köhler, I., Kritz, M. A.,
Law, K., Penner, J. E., Ramonet, M., Reeves, C. E., Rotman, D. A., Stockwell, D. Z.,
Van Velthoven, P., Verver, G., Wild, O., Yang, H., and Zimmermann, P.: Evaluation and
intercomparison of global atmospheric transport models using \(^{222}\)Rn and other short-lived
Jesse, W. P.: Precision measurements of \(W\) for polonium alpha particles in various gases,
Jeuen, A., Siegmund, P., Heijboer, L., Feichter, J., and Bengtsson, L.: On the potential of
assimilating meteorological analyses in a global climate model for the purposes of model
Jin, Y., Iida, T., Wang, Z., Ikebe, Y., and Abe, S.: A subnationwide survey of outdoor and
indoor \(^{222}\)Rn concentrations in China by passive method. Radon and thoron in the human
environment, in: Radon and Thorn in the Human Environment, in: Proceedings of the 7th
Tohwa University International Symposium, edited by: Katase, A. and Shimo, M., World
Josse, B., Simon, P., and Peuch, V. H.: Radon global simulations with the multiscale chemistry
Kazil, J., Lovejoy, E. R., Barth, M. C., and O’Brien, K.: Aerosol nucleation over oceans and the
role of galactic cosmic rays, Atmos. Chem. Phys., 6, 4905–4924, doi:10.5194/acp-6-4905-
2006, 2006. 3253
Kazil, J., Stier, P., Zhang, K., Quaas, J., Kinne, S., O'Donnell, D., Rast, S., Esch, M., Ferr-
rachat, S., Lohmann, U., and Feichter, J.: Aerosol nucleation and its role for clouds and
Earth’s radiative forcing in the aerosol-climate model ECHAM5-HAM, Atmos. Chem. Phys.,
10, 10733–10752, doi:10.5194/acp-10-10733-2010, 2010. 3253, 3261, 3266, 3273
3270
Kulmala, M., Vehkamäki, H., Petäjä, T., Dal Maso, M., Lauri, A., Kerminen, V.-M., Birmili, W.,
and McMurry, P. H.: Formation and growth rates of ultrafine atmospheric particles: a review

3253
Nordeng, T. E.: Extended versions of the convective parametrization scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics, ECMWF Research Department, Technical Momorandum 206, European Centre for Medium-Range Weather Forecast, Reading, UK, 1994. 3259

3280
Ross, J. O.: Simulation of atmospheric krypton-85 transport to assess the detectability of clandestine nuclear reprocessing, Reports on Earth System Science 82, Max Planck Institute for Meteorology, Hamburg, 2010. 3256
Sesana, L., Ottobrini, B., Polla, G., and Facchini, U.: 222Rn as indicator of atmospheric tur-

Taylor, K. E., Williamson, D., and Zwiers, F.: The sea surface temperature and sea ice concentration boundary conditions for AMIP II simulations, Tech. Rep. 60, Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, Livermore, United States, 2000. 3262

3282
Zhang, K., Wan, H., Zhang, M., and Wang, B.: Evaluation of the atmospheric transport in a GCM using radon measurements: sensitivity to cumulus convection parameterization, At-
Table 1. Regionally averaged annual mean radon emission flux over land in the merged radon flux map.

<table>
<thead>
<tr>
<th>Region</th>
<th>Emission Flux (atom cm(^{-2}) s(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europe</td>
<td>0.62</td>
</tr>
<tr>
<td>China</td>
<td>1.41</td>
</tr>
<tr>
<td>Russia</td>
<td>0.39</td>
</tr>
<tr>
<td>USA</td>
<td>0.87</td>
</tr>
<tr>
<td>Australia</td>
<td>1.02</td>
</tr>
<tr>
<td>Others</td>
<td>0.92</td>
</tr>
<tr>
<td>Global (between 60° S and 60° N)</td>
<td>0.96</td>
</tr>
</tbody>
</table>
Table 2. Detailed information about the surface radon measurements used in this study. In the “Reference” column, DWD stands for Deutscher Wetterdienst (German Weather Service), BFS for Federal Office for Radiation Protection of Germany, IPSL for Institut Pierre-Simon Laplace, EML for DOE/Environmental Measurements Laboratory, and NCAR/EOL for National Center for Atmospheric Research Earth Observing Laboratory. The right most column categorizes the data source: I: Data already used for model evaluation in Zhang et al. (2008); II: Data of the period 1955–1987 compiled by J. Feichter; III: New measurements from observers; IV: New data from recent publications. Location of these site are also shown in Fig. 3.

<table>
<thead>
<tr>
<th>Site Location</th>
<th>Location Type</th>
<th>Period</th>
<th>Reference</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>North America</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Livermore, USA</td>
<td>Coastal</td>
<td>1965–1968</td>
<td>Lindleman (1968)</td>
<td>I</td>
</tr>
<tr>
<td>Socorro, USA</td>
<td>Continental</td>
<td>1961–1966</td>
<td>Wilkening (1968)</td>
<td>I</td>
</tr>
<tr>
<td>Cincinnati, USA</td>
<td>Continental</td>
<td>1959–1963</td>
<td>Gold et al. (1964)</td>
<td>I</td>
</tr>
<tr>
<td>Bermuda Island, USA</td>
<td>Oceanic</td>
<td>1991–1996</td>
<td>EML (Hutter et al., 1995)</td>
<td>I</td>
</tr>
<tr>
<td>Sterling, USA</td>
<td>Continental</td>
<td>1966–1967</td>
<td>Hoosler (1968)</td>
<td>II</td>
</tr>
<tr>
<td>Washington D.C., USA</td>
<td>Coastal</td>
<td>11 years</td>
<td>Lockhart (1964)</td>
<td>II</td>
</tr>
<tr>
<td>Griffin, USA</td>
<td>Continental</td>
<td>1997</td>
<td>NCAR/EOL, Balesin et al. (1995)</td>
<td>III</td>
</tr>
<tr>
<td>Europe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hohenpeissenberg, Germany</td>
<td>Continental</td>
<td>1999–2005</td>
<td>DWD (Zeliehner et al., 2006)</td>
<td>I</td>
</tr>
<tr>
<td>Mace Head, Ireland</td>
<td>Continental</td>
<td>1995–2001</td>
<td>IPSL (Ramonet et al., 2003)</td>
<td>I</td>
</tr>
<tr>
<td>Helsinki, Finland</td>
<td>Continental</td>
<td>1968</td>
<td>Mattsson (1970)</td>
<td>II</td>
</tr>
<tr>
<td>Joensuu, Finland</td>
<td>Continental</td>
<td>1968</td>
<td>Mattsson (1970)</td>
<td>II</td>
</tr>
<tr>
<td>Rovaniemi, Finland</td>
<td>Continental</td>
<td>1968</td>
<td>Mattsson (1970)</td>
<td>II</td>
</tr>
<tr>
<td>Freiburg, Germany</td>
<td>Continental</td>
<td>1999–2001</td>
<td>BFS; Xia et al. (2010)</td>
<td>III</td>
</tr>
<tr>
<td>Schauenburg, Germany</td>
<td>Continental</td>
<td>1999–2001</td>
<td>BFS; Xia et al. (2010)</td>
<td>III</td>
</tr>
<tr>
<td>Elba, Italy</td>
<td>Continental</td>
<td>1997–2008</td>
<td>Sesana et al. (2006)</td>
<td>IV</td>
</tr>
<tr>
<td>Heidelberg, Germany</td>
<td>Continental</td>
<td>1998</td>
<td>Chevillard et al. (2002)</td>
<td>IV</td>
</tr>
<tr>
<td>Zingst, Germany</td>
<td>Continental</td>
<td>1998</td>
<td>Chevillard et al. (2002)</td>
<td>IV</td>
</tr>
<tr>
<td>Asia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Giaoan, Korea</td>
<td>Oceanic</td>
<td>2001</td>
<td>Zahirouloev et al. (2005)</td>
<td>I</td>
</tr>
<tr>
<td>Hong Kong, China</td>
<td>Coastal</td>
<td>2001</td>
<td>Zahirouloev et al. (2005)</td>
<td>I</td>
</tr>
<tr>
<td>South America, Africa, Australia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Río de Janeiro, Brazil</td>
<td>Continental</td>
<td>1965–1966</td>
<td>Lockhart (1965)</td>
<td>I</td>
</tr>
<tr>
<td>Cape Point, South Africa</td>
<td>Continental</td>
<td>1803–1864</td>
<td>Brunk et al. (2003)</td>
<td>III</td>
</tr>
<tr>
<td>Remote ocean and polar regions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amsterdam Island, France</td>
<td>Continental</td>
<td>1982–1983</td>
<td>Pollan et al. (1986)</td>
<td>I</td>
</tr>
<tr>
<td>Crozet Island, France</td>
<td>Continental</td>
<td>1982–1983</td>
<td>Pollan et al. (1986)</td>
<td>I</td>
</tr>
<tr>
<td>Kerguelen, France</td>
<td>Continental</td>
<td>1983–1984</td>
<td>Pollan et al. (1986)</td>
<td>I</td>
</tr>
<tr>
<td>Mauna Loa, USA</td>
<td>Continental</td>
<td>2001</td>
<td>Zahorouloev et al. (2005)</td>
<td>IV</td>
</tr>
<tr>
<td>Macquarie Island, Australia</td>
<td>Continental</td>
<td>1987</td>
<td>Doney et al. (1987)</td>
<td>IV</td>
</tr>
<tr>
<td>Dumont d'Urville, Antarctica</td>
<td>Continental</td>
<td>1978–1979</td>
<td>Heimann et al. (1990)</td>
<td>I</td>
</tr>
</tbody>
</table>
Fig. 1. (a–c) Radon emission setups considered in this study. The quantity shown is the annual mean atom number flux (unit: atom cm$^{-2}$ s$^{-1}$). (d) Data source of the merged emission map shown in (c). S1 stands for Schery and Wasiolek (1998) (scaled), S2 for Schery and Huang (2004), G for Griffiths et al. (2010), Z for Zhuo et al. (2008), and S3 for Szegvary et al. (2007).
Fig. 2. (a) Radioactive decay of radon and its progeny. The half-life, decay type and decay energy of each species are also listed. (b) The simplified decay chain considered in our simulations.
Fig. 3. Location of surface radon measurements used in this study. See Table 2 for further information of the sites. Colors indicate observational sites in the five different regions that are analysed separately in Fig. 5. Enlarged maps for Europe, East Asia, and USA are shown in the Supplement.
Fig. 4. Scatter plots of the simulated and measured monthly or seasonal mean surface radon concentration (mBq m$^{-3}$ STP) at the 51 sites listed in Table 2 and shown in Fig. 3. The three columns correspond to simulations using the WCRP1995 recommended radon emission (left), the SW1998 emission maps scaled by a factor of 1/1.6 (middle), and the new emission maps prepared during this study. The first row contains results of all months/seasons (534 samples); the second row shows the 129 winter samples (DJF in the Northern Hemisphere, JJA in the Southern Hemisphere), and the third row shows only the 135 summer samples (JJA in the Northern Hemisphere, DJF in the Southern Hemisphere). The dashed lines indicate the range within a factor of 2 of the measurements. Also shown in each panel are the percentage of samples within this range (the P2 values) and the correlation coefficients between simulation and observation (the R values).
Fig. 5. Same as Fig. 4, but focusing on different regions. The four rows show results in (from top to bottom) Europe, China, the United States and South America. All seasons are included. The marker colors are consistent with Fig. 3.
Fig. 6. Same as Fig. 4, but for the climatological simulations without nudging.
Fig. 7. Box plots showing the simulated and observed distribution of surface radon concentration at six sites in Europe. The two whiskers of each box denote the 10th (lower) and 90th (upper) percentiles. Hinges from bottom to top are the 25th, 50th, and 75th percentiles, respectively. Seasonal and annual means are indicated by dots. The gray areas indicate magnitude of the equivalent radon concentration that would lead to the same ionization rate as caused by galactic cosmic rays. The lower and upper boundaries of the gray areas correspond to the 10th and 90th percentiles, respectively. See paragraph 3 of Sect. 3.4 for further details.
Fig. 8. Same as Fig. 7 but for six city sites in China.
Fig. 9. Same as Fig. 7 but for three sites in the United States.
Fig. 10. Same as Fig. 7 but for coastal and oceanic sites.
Fig. 11. Simulated annual and seasonal mean near-surface ionization rate induced by radon decay series (IPRR, unit: cm$^{-3}$ s$^{-1}$).
Fig. 12. Left column: simulated zonal mean ionization rate over the continents caused by the radioactive decay of radon and its progeny (IPRR, unit: cm$^{-3}$ s$^{-1}$); Middle column: as in the left column but caused by galactic cosmic rays (IPRC, unit: cm$^{-3}$ s$^{-1}$); Right column: the contribution of radon and its progeny to the total (IPRR + IPRC) ionization rate. All panels correspond to the simulation performed with the merged emission map.
Fig. 13. Height-longitude cross section of the 20° N–50° N mean ionization rate over land caused by radon and its progeny. The results are obtained using the newly merged radon emission map.
Fig. 14. Joint (bivariate) probability density distribution (PDF) of air temperature and radon-related ionization rate (IPRR) in different regions: (a) China (20° N–50° N, 75° E–120° E); (b) Europe (40° N–75° N, 10° W–40° E); (c) USA (30° N–50° N, 120° W–70° W); (d–f) Russia (50° N–80° N, 40° E–180° E). These regions are indicated by dashed black frames in Fig. 11. Labels next to the color bar are intensities of the PDF (unit:%). The PDFs are computed for the near-surface from the 3-hourly model output in winter months (DJF). Marginal area with white color indicate missing values. Note that scales of the temperature coordinate in (a–c) are not the same as those in (d–f).