Change of the Asian dust source region deduced from the relationship between anthropogenic radionuclides in surface soil and precipitation in Mongolia

Y. Igarashi¹, H. Fujiwara², and D. Jugder³

¹ Atmospheric Environment and Applied Meteorology Research Department, Meteorological Research Institute, 1-1 Nagamine, Tsukuba, Ibaraki 305-0052, Japan
² Soil Environment Division, National Institute for Agro-Environmental Sciences, 3-1 Kannondai, Tsukuba, Ibaraki 305-8604, Japan
³ Institute of Meteorology and Hydrology, Ulaanbaatar 46, Mongolia

Received: 6 September 2010 – Accepted: 2 November 2010 – Published: 24 January 2011

Correspondence to: Y. Igarashi (yigarash@mri-jma.go.jp)

Published by Copernicus Publications on behalf of the European Geosciences Union.
Abstract

The Asian dust source region may be expanding primarily as a result of recent climate change, especially during the 2000s. This change was investigated by examining anthropogenic radionuclides contained in surface soil samples from Mongolia. Surface soil was globally labeled by radioactive fallout from nuclear testing during the late 1950s and early 1960s. There are no current direct sources for anthropogenic radionuclides in the air, so the radionuclides in the atmosphere are mainly carried by dust from wind-blown surface soil, that is, aeolian dust. Asian dust carries ^{90}Sr, ^{137}Cs, and other anthropogenic radionuclides; the heaviest deposition occurs in spring and has been recorded in Japan since the early 1990s. The composition of anthropogenic radionuclides in atmospheric depositions would be affected by a change in the dust source. Previous studies of atmospheric depositions at long-term monitoring sites (e.g. in Tsukuba, Japan) have detected changes in the $^{137}\text{Cs}/^{90}\text{Sr}$ ratio and in the specific activity of the radionuclides. These changes in the composition of observed atmospheric depositions should be a reflection for a change in the climatic conditions of the dust source region. To investigate this dust source change, a field survey for radionuclides (^{90}Sr and ^{137}Cs) in surface soil samples was conducted in September 2007 in the eastern and southern regions of Mongolia, where dust storms have occurred more frequently since 2000. It was found that specific activities of both radionuclides as well as the $^{137}\text{Cs}/^{90}\text{Sr}$ ratio in the surface soil correlated well with annual average precipitation in the Mongolian desert-steppe zone. The higher specific activities and the higher $^{137}\text{Cs}/^{90}\text{Sr}$ ratio were found in the grassland region with the greater precipitation. This finding suggests that the increased specific activities and the activity ratio detected in the atmospheric depositions in Japan during years of the frequent Asian dust transport event since 2000 should be a sign of grassland degradation.
1 Introduction

1.1 Aeolian dust studies and available chemical tracers

Asian dust is the second largest aeolian dust source on Earth. Current estimates of annual global dust emissions range between about 1000 and 3000 Tg y$^{-1}$. Saharan dust and Asian dust contribute about 50–70% and 10–25% of that amount, respectively (Tanaka and Chiba, 2006; Tegen and Schepanski, 2009). Aeolian dust impacts the global climate through scattering and absorbing solar radiation, changing cloud properties, and affecting bio-geochemical cycles (e.g. Maher et al., 2010; Miller et al., 2004; Mikami et al., 2006, 2007; Sassen et al., 2003). It also impacts human health through its effect on air quality in leeward regions (e.g. Chen et al., 2004; Ichinose et al., 2005; Kwon et al., 2002; Tamamura et al., 2007). Thus, research on Asian dust has not only scientific but also social implications. Although research on Asian dust has advanced rapidly in the past decade (Iwasaka, 2006, 2009; Mikami, 2006; Osada, 2007; Shao and Dong, 2006), further research is still necessary to gain a full understanding of temporal changes in dust sources, features of transportation and related controlling factors (Hara et al., 2006; Tian et al., 2007). In addition, the possibility of an eastward expansion of the source of Asian dust was suggested by Kurosaki and Mikami (2003) and Lim and Chun (2006) and later confirmed by Kim (2008). We have been investigating features of the continental and local dust source using 90Sr and 137Cs, which are anthropogenic radionuclides contained in the surface soil with half-lives of 30 years (Igarashi, 2004, 2009a, b; Igarashi et al., 2001, 2005, 2006, 2009; Fukuyama and Fujiwara, 2008; Fujiwara, 2010; Fujiwara et al., 2007).

To identify the source region of Asian dust, researchers have studied a variety of tracers, including stable isotopes such as 87Sr/86Sr and 143Nd/144Nd ratios (Chen et al., 2007; Grousset et al., 2003; Kanayama et al., 2002; Lee et al., 2010; G. Li et al., 2009; Nakano et al., 2004), electron spin resonance and crystalinity of quartz (Nagashima et al., 2007; Ono et al., 1998; Sun et al., 2007), and various luminescences (Nagashima et al., 2010). Concerning the radionuclides, naturally occurring thorium was used in the
observation studies of Hirose and Sugimura (1984), but anthropogenic radionuclides in the surface soil could also be used as chemical tracers. In addition to the 90Sr and 137Cs described here, plutonium isotopes are also candidates for use as tracers (Hirose et al., 2003, 2010). The various tracers have been mostly used to determine the geographical region of the dust source. Here a novel approach using 90Sr and 137Cs to gain knowledge about the climatic change in the dust source regions is presented.

1.2 The origin of anthropogenic radionuclides in surface soil

Global radioactive fallout caused by atmospheric nuclear explosions, especially during the late 1950s to the early 1960s, resulted in the broad contamination of the Earth’s land surface as well as the waters (Aoyama et al., 2006). Surface soil all over the world still contains a small amount of these anthropogenic radionuclides. Given that there are no longer any major atmospheric contamination sources, the anthropogenic radionuclides in the air mainly exist when they are transported by wind-blown dust arising from surface soil. Because 137Cs is tightly bound to soil particles, it has been widely used for land erosion studies (e.g. Ritchie and McHenry, 1990; Liu et al., 2008). The use of 90Sr and 137Cs as tracers for aeolian dust research, however, is a novel approach based on the long-term monitoring of atmospheric depositions (e.g. Igarashi et al., 2001).

The inventories of 90Sr and 137Cs in the soil column are anticipated to be proportional to the amount of precipitation because their global fallout was deposited over the Earth’s surface mainly by rain and snow. In addition, as the elution of 90Sr is faster than that of 137Cs (e.g. Miller and Reittemeier, 1963; Forsberg and Strandmark, 2001) because of their different distribution coefficients, K_d (Kamei-Ishikawa et al., 2008), the 137Cs/90Sr activity ratio in the surface soil directly reflects the amount of precipitation (Igarashi et al., 2001, 2006, 2009). Accordingly, the specific activities of the two radionuclides and the 137Cs/90Sr ratio in dust depositions can be interpreted as a proxy for climate conditions in the dust source region. If the source of aeolian dust extended to a region with substantially differing precipitation, the composition of the 90Sr and 137Cs activity ratio in the dust source region should change.
137Cs in the uplifted dust would change accordingly. Distinctive 90Sr and 137Cs signatures in the soil could be used as tracers between source and receptor regions.

In the present paper, we present the results of a 2007 survey of 90Sr and 137Cs levels in soil in Mongolia, one of the source regions of the recent Asian dust outbreak. We generated an average annual precipitation map of Mongolia based on long-term meteorological observations. We used the map to examine the relationship between annual precipitation and 90Sr and 137Cs composition at the sampling sites. We confirmed our hypothesis that the composition of the anthropogenic radionuclides in the surface soil is largely controlled by the precipitation rate in the dust source region. Finally, we use this evidence to argue that a change in the Asian dust source would be reflected by a variation in the composition of anthropogenic radionuclides in atmospheric depositions at downwind deposition sites. Hence, even without matching deposition signatures to source signatures, we can use long-term monitoring of depositions to detect whether change in the source region has occurred, even if we cannot precisely suggest where the new source regions are located.

2 Sampling and analytical methods

2.1 Soil sampling and shipment

Some of the authors conducted a local survey in eastern and southern Mongolia in autumn 2007. Sampling was conducted at 60 sites, which ranged from 700 to 1500 m in altitude; care was taken to avoid areas disturbed by human activities (Fig. 1). At each location, at spots as far from vehicular traffic and ruts as possible, an approximate 1-kg sample of undisturbed surface soil was collected to a depth of 5 cm by using a core sampler and packed into a plastic bag without eliminating stones, pebbles, grasses, or roots. The soil samples were later repacked into heat resistant bags, packaged in tightly covered containers to avoid any damage, and airlifted from Mongolia to Japan. An autoclave treatment, which is required by Japanese regulations, was performed
at the Plant Protection Station at the Narita Airport in Japan. After treatment, the samples were transported to the laboratory at the Meteorological Research Institute (MRI), Tsukuba, Japan.

2.2 Analytical procedures for anthropogenic radionuclides

Once in the laboratory, the samples were immediately air-dried at room temperature. Stones, pebbles, grasses, and roots were carefully removed by hand. After the samples were dried, particle size distribution was measured with screens on a mechanical shaking apparatus to obtain the analytical sample. The fraction that passed through a 53 µm mesh (nominal) was then subjected to radioactivity analysis because this fraction was regarded as capable of being suspended and transported by strong wind. The screening procedure was the same as that applied to soil samples collected in areas neighboring the MRI in Tsukuba; details of the analytical procedures of that study are given in Otsuji-Hatori et al. (1996). After each sample was packed into a uniform plastic container, the samples were subjected to γ-ray measurement using a Ge semiconductor detector for 137Cs. After the γ-ray measurement, 90Sr was concentrated using radiochemical separation. The procedure involved several precipitation separation steps, including the fuming nitric acid method and others. Finally, the 90Sr was isolated and fixed as strontium carbonate on filter paper in a metal dish. The samples were left for a few weeks so that 90Sr and 90Y would reach radio-equilibrium, and the purified 90Sr source was then measured with a low-background 2π-gas flow β counter. Quality management of the analysis was achieved using a reference sample of fallout that was previously prepared by the MRI (Otsuji-Hatori et al., 1996).

2.3 Mean annual precipitation in Mongolia

To investigate the relationship between 90Sr and 137Cs in the soil and precipitation at the sampling sites, a gridded map of the precipitation of Mongolia was created (Fig. 2) based on the annual precipitation data collected by the Institute of Meteorology and
Hydrology of Mongolia for 25 sites from 1950 to 2007. The data were compared to mean annual precipitation data for the same sites from 1961 to 1990 published by the Japan Meteorological Business Support Center to assess consistency. The data for Ulgii (49.0° N, 90.0° E; WMO# 44214) were removed because of inconsistencies (the present data was shown three times as another). Precipitation data for areas outside of Mongolia were also necessary to estimate the distribution of precipitation at the boundary. The precipitation data of neighboring countries, such as China and Russia, were taken from the report of the World Meteorological Organization (WMO, 2009). The grid data were generated by the minimum curvature method using interpolation and extrapolation techniques (Fujiwara et al., 2007) on a grid with cell size of 20 × 20 km.

3 Results and discussion

3.1 \(^{90}\)Sr and \(^{137}\)Cs in Mongolian surface soil

The \(^{90}\)Sr and \(^{137}\)Cs specific activities and the \(^{137}\)Cs/\(^{90}\)Sr ratio of the Mongolian soil are summarized in Table 1 together with previously published values for surface soil in Tsukuba and the Taklimakan Desert (Igarashi et al., 2005). The median levels of specific activity of \(^{90}\)Sr and \(^{137}\)Cs in the Mongolian soil were higher than those of Tsukuba, about 8 times the size for \(^{90}\)Sr and twice the size for \(^{137}\)Cs. In addition, the maximum values for both radionuclides from Mongolia were more than 5 times those of Tsukuba. The median \(^{137}\)Cs/\(^{90}\)Sr ratio of the Mongolian soil was about half that of the Tsukuba soil. Liu et al. (2008) investigated \(^{137}\)Cs in Mongolian soil to study wind erosion rates. Although their data and analyses were different than ours (they used a 2-mm sieve), their data range (about 5 to 70 mBq g\(^{-1}\)) is consistent with ours. The range was also in agreement with Fujiwara et al.’s (2007) data for Inner Mongolia.

In Tsukuba, the soil samples were collected in rice paddies, vegetable fields, and similar locations where the fallout anthropogenic radionuclides in soil are diluted by plowing. On the other hand, the surface soil sampled in Mongolia had not been
disturbed by cultivation. In addition, the low amount of precipitation and freezing in
the winter climate in the desert-steppe zone should also help prevent the diffusion and
elution of the anthropogenic radionuclides into the deeper soil column. Although the
fallout amount of anthropogenic radioactivity in Mongolia was less than half of that in
Japan (Aoyama et al., 2006), 137Cs in Mongolia seems to be concentrated almost ex-
clusively in the surface and exhibited elevated specific activity, which was also found
by Fujiwara et al. (2007) and Liu et al. (2008) in Inner Mongolia and Mongolia, re-
spectively. Accordingly, it is reasonable to assume that depositions of aeolian dust in
Japan with elevated 90Sr and 137Cs specific activities derive from continental grassland
surface soil (Akata et al., 2007; Fujiwara et al., 2007).

Mongolian surface soils have higher specific activities of both radionuclides and a
higher 137Cs/90Sr ratio than Taklimakan Desert soil and dust. The difference in pre-
cipitation could be the reason. The Taklimakan Desert receives less than 100 mm yr$^{-1}$
of precipitation (Yuan and Li, 1999), and the precipitation in the middle of the desert
is estimated to be less than 20 mm yr$^{-1}$ (Xuan et al., 2004) compared with more pre-
cipitation for Mongolia (see the next section). Thus, the amount of global fallout and
vertical fractionation between 90Sr and 137Cs has been suppressed in the Taklimakan
Desert.

3.2 Mean annual precipitation map of Mongolia

Figure 2 shows that there are clear contrasts between the forest steppe region in north-
ern Mongolia, which has higher precipitation, and the so-called Gobi desert in southern
Mongolia with lower precipitation. The mean annual precipitation at the 25 Mongolian
local meteorological observatories over approximately 50 years ranged from about 150
to 300 mm yr$^{-1}$. The relationship between the specific activity of each radionuclide and
the estimated precipitation at each sampling site is plotted in Fig. 3a and b, and the re-
lationship between the ratio of both activities and precipitation is shown in Fig. 3c. Pre-
cipitation at the sampling sites ranges from about 100 to 300 mm yr$^{-1}$, indicating that
most of the sampling sites are in the dessert-steppe zone. Although the precipitation

2850
range was narrow (only 200 mm yr$^{-1}$), there was a significant positive correlation with specific activity for both radionuclides ($p < 0.001$). The areas with higher specific activity tended to be grassland with shrubs, and conversely, shrubs were scarce in areas with lower specific activity. It is known that elution of 90Sr in the soil column is faster than that of 137Cs (e.g. Forsberg and Strandmark, 2001). The elution of 90Sr in the soil would also be affected by variations in soil characteristics, such as organic matter content and ion exchange capacity, not only precipitation. 137Cs and estimated precipitation were more strongly correlated ($r = 0.706$) than were 90Sr and precipitation ($r = 0.478$), which seemed consistent with the K_d values for each radionuclide. The 137Cs/90Sr activity ratio was also well correlated with precipitation (Fig. 3c). In other words, in the continental grasslands with relatively higher amounts of rain (the “moist steppe” region), the specific activities of both radionuclides and the 137Cs/90Sr activity ratio of the surface soil were higher.

3.3 Cross plotting 90Sr and 137Cs for various samples

To investigate the effect of the desert-steppe zone surface soil dust from the Asian continent on the atmospheric depositions observed in Tsukuba, we created a cross plot of the anthropogenic radionuclides for Mongolian soil, Taklimakan soil and dust, Tsukuba soil, and atmospheric depositions in Tsukuba (Fig. 4). The figure can be considered as an analogue to those widely used in stable isotope studies, for example, ϵNd over 87Sr/86Sr (e.g. Nakai et al., 1993; Nakano et al., 2004; Lee et al., 2010). There was a significant positive linear correlation ($r = 0.823$) between 137Cs content and the 137Cs/90Sr ratio in Mongolian soil samples because both of them are controlled by the amount of precipitation, as Igarashi et al. (2009) assumed. This linear curve appears as if it was produced by the mixing of two end members (a mixing line), but the linear relationship would have been created by the simplicity of the bio-geochemical processes in the region. In Fig. 4, the Taklimakan soil samples also exhibit a linear curve with the same slope as the Mongolian curve plus a positive intercept. As was anticipated,
though the cause of the intercept is unknown, the above-mentioned finding suggests that the similar relationship of $^{137}\text{Cs}/^{90}\text{Sr}$-$^{137}\text{Cs}$ for the Mongolian desert-steppe zone could be applicable to the Taklimakan region. This means, to the wide arid and semi-arid areas of North China, Inner Mongolia and Mongolia, the present relationship between ^{90}Sr and ^{137}Cs and precipitation will be applicable. The Taklimakan dust showed a higher $^{137}\text{Cs}/^{90}\text{Sr}$ ratio (4.0 ± 1.0), possibly because of the relatively large error. The Tsukuba soil samples compose another group in the upper left corner of Fig. 4. The atmospheric deposition data are dispersed between the Asian continental soil and the Tsukuba soil clusters, which suggest that atmospheric deposition in Tsukuba could be created by mixing the continental and local dust components as end members. The spring atmospheric deposition data during the 1990s is distributed along a narrow range for ^{137}Cs specific activity, which may be a result of mixing of the Tsukuba and the continental soils from a relatively dry climatic zone because the latter have low ^{137}Cs specific activity as well as a low $^{137}\text{Cs}/^{90}\text{Sr}$ activity ratio. On the other hand, the spring atmospheric deposition data during the 2000s are shifted towards to those of continental soils from the relatively humid climatic zone, which have high ^{137}Cs specific activity as well as a high $^{137}\text{Cs}/^{90}\text{Sr}$ activity ratio. The atmospheric depositions in the 2000s’ spring are created by mixing the Tsukuba and continental soils (likely to be two components from relatively dry and relatively humid zones). Three out of the four single precipitation events during spring 2007 exhibited relatively high ^{137}Cs specific activity (25–80 mBq g$^{-1}$), which could be interpreted to mean that there was a major contribution from a relatively humid continental source. One of the data points is even located at the high end of the Mongolian–Taklimakan soil plot. The dust deposited during the event displayed the nature of grassland surface soil, which was consistent with the findings of a backward trajectory analysis of the air mass (Igarashi et al., 2009). The air parcel that brought this precipitation was considered to have developed in northern China and Mongolia (Igarsahi et al., 2009), which is evidence that the recent Asian dust outbreak over the continent is related to surface degradation (desertification).
Higher levels of 90Sr and 137Cs were found in the atmospheric depositions in Japan in the years of the 2000s in which frequent Asian dust events occurred. The deposition was most pronounced during March 2002 when 90Sr and 137Cs were observed throughout Japan (Fujiwara et al., 2007; Fujiwara, 2010; Igarashi et al., 2006; Igarashi, 2009b). At that time, deposition was several times the normal levels, especially in areas along the Sea of Japan and in northern Japan. Some of these significant events were tracked back to source areas in northern China and Mongolia (Akata et al., 2007; Fujiwara et al., 2007). The higher specific activities and activity ratio in the atmospheric depositions found in areas along the Sea of Japan and in northern Japan in March 2002 could have been a result of contributions from the relatively humid grassland soils of Mongolia, Inner Mongolia and northern China.

The climatic–biological system should, in principle, be similar in the arid and semi-arid regions across East Asia. Semi-desert shrubs and grassland are distributed throughout southern and eastern Mongolia, in the middle of Inner Mongolia, and in northeastern China (see Fig. 6 in Fujiwara et al., 2007, Fig. 1b in Kurosaki and Mikami, 2007 and Fig. 1 in Lin et al., 2006). According to Tian et al. (2007), the dust storms observed at stations in Inner Mongolia and its vicinity have a stronger influence on Asian dust observation in Japan (by Japan Meteorological Agency) than do other dust source regions in northern China. The soil degradation in northeastern China, Inner Mongolia, and eastern Mongolia would therefore have the greatest effect on Japan as compared to other western dust source regions.

3.4 Grain size effect on the composition of anthropogenic radionuclides

Since the particle size distributions are different for soil samples and deposition samples and anthropogenic radionuclides are surface adsorbent, the above-mentioned comparison for Fig. 4 does have limitations, as has been discussed for the comparable case of grain size and stable isotopes (e.g. Chen et al., 2007). All soil samples in this study were passed through a 53-µm mesh screen. The local dust, which is captured by
an open-surface sampler, contains larger particles, up to several hundred micrometers in size. The present analytical sieving process seems adequate to extract the fraction suspended by wind from local soil samples. In the case of the Mongolian soil, only dust particles less than 10 µm are transported thousands of kilometers in the air over the Asian continent and the Sea of Japan. Sieving with a finer mesh is needed to achieve a higher level of precision in the measurements of specific activity. However, finer soil particles will exhibit higher specific activity not only for 137Cs (Tsukada et al., 2008) but also for 90Sr, which is controlled by the total particle surface area over the mass; thus, it is unlikely that there would be a substantial change in the 137Cs/90Sr ratio. Therefore, the present conclusion is also not likely to change substantially. Nevertheless, we cannot totally reject the possibility at present. The radiochemical analysis of the finer size fraction of the dust samples is scheduled as a future task.

3.5 The Asian dust source change since the early 2000s

Xuan et al. (2004) defined the Asian dust source region as having two parts or systems: the Mongolian Plateau and the Tarim Basin. Although this view seems common among meteorological researchers (e.g. Huang et al., 2008; Iwasaka et al., 1983; Qian et al., 2002; Shao and Dong, 2006; Sun et al., 2001; Tegen and Schepanski, 2009), it is possible that this classification is too coarse geographically. In the present manuscript, we have focused on whether there has been a change in the dust source towards the desert-steppe zones (especially for grassland) but have not attempted to identify the precise source region.

As a general trend, the annual incidence of dust events over China (around the 1960s) decreased until the late 1990s (e.g. Hara et al., 2006; Zhang et al., 2003; Wang et al., 2008). This may be due to declining dust storm activity in the Tarim Basin. Dust events then increased after 2000, possibly due to the increasing dust storm activity in the Mongolian Plateau as well as to additional sources. This dust source change has been documented in previous reports such as Kurosaki and Mikami (2003), Lim and Chun (2006), and Kim (2008). Kurosaki and Mikami (2003) reported that the outbreak
of dust storms on the Asian continent had dramatically increased in different areas of conventional dust source regions during 2000–2002. This geographical expansion is confirmed by the present work as being attributable to the desertification of the less-eroded grassland regions. The extent of temporal desertification over the Asian continent has been studied using satellite images and the normalized difference vegetation index (NDVI). Zou and Zhai (2004) noted for the first time the relation between vegetation coverage and spring dust outbreaks over northern China based on an NDVI analysis. Lin et al. (2006) reported that, “The desert areas were expanded from 2000 to 2002, were shrunk in 2003, and were expanded from 2003 to 2005 again. The hot spot areas of desertification are mainly distributed over southeastern Mongolia and eastern Inner-Mongolia.” Their conclusion is in accord with ours. In the case of a severe drought, the NDVI values decrease by 19% in taiga, 30–55% in forest steppe, 55–78% in steppe area and more than 64% in desert steppe area comparing with very wet years (Bayasgalan, 2005). Recently, Sugimoto et al. (2010) considered the role of vegetation cover on dust emissions from the Mongolian Gobi region during spring 2007. They concluded that the growth of grass had significantly suppressed dust emissions there.

A major concern is the question of what is responsible for the change in the dust source towards grassland, human impacts (over-grazing, over-reclamation, land misuse, etc.), climatic changes, or some combination of both? Although answering this question is difficult, some discussion may be beneficial. Zhang et al. (2003) stressed that “meteorology and climate have had a greater influence on the Asian dust emissions and associated Asian dust storm occurrences than desertification.” Ding et al. (2005), Han et al. (2008), Hara et al. (2006), Wang et al. (2008), and others have argued that the variation in dust storm occurrence relates to the change in large-scale atmospheric circulation. Kurosaki and Mikami (2005) found the effect of snow cover on dust emissions. On the other hand, Wang et al. (2006) conducted a comprehensive analysis of "proxies for human activity to evaluate the key contributors to desertification" for the northeastern part of Inner Mongolia, where the desert-steppe occurs. They concluded that human activities were not the primary driving force of desertification in the region.
Because the Mongolian grassland is rather fragile (Xuan et al., 2004), the grass cover may be susceptible to small reductions in precipitation. Narabayar (2009) found that arid regions in Mongolia have increased by 3.4% during the past decade and that 78.2% of the land has been degraded. He ascribed such wide degradation in Mongolia to warming without any increase in precipitation. The recent assessment in Mongolia describes that percentage of desert zone (net primary productivity; NPP < 60 Ch m\(^{-2}\)) tends to expand to the north (MARCC, 2010).

According to Xuan et al. (2004), simulated dust emission rates increase from north to south across Mongolia by five orders of magnitude, with the maximum appearing southwest of the Gobi area. Xuan et al. (2004) stated that "The poor alpine ecosystem of Mongolia is fragile. In the 1950s, the exploration (present authors' note: "possibly exploitation") of dry grasslands for farming near Ulan Bator resulted in serious soil erosion and desertification." Consequently, the scenario that appears to best describe the dust source change, and which would be consistent with the conclusion of Fujiwara et al. (2007), is as follows: a slight reduction in precipitation in the desert-steppe zone caused the widespread increase in fresh bare surfaces. These bare surfaces were exposed to strong winds, which resulted in the dust storm outbreaks during the 2000s. This scenario is further supported by J. Li et al. (2009), who discuss the recent weakening of the summer Asian monsoon and refer to the increasing "northern drought and southern flood" moisture pattern (Yu et al., 2004). A change in the humidity distribution over the Asian continent would be of fundamental importance to the pattern and characteristics of outbreaks of dust storms.

4 Conclusions

This is the first report that provides a detailed discussion of the Asian dust outbreak, with an extensive presentation of data on anthropogenic radionuclides in continental surface soil. It was revealed that, in the East Asian desert-steppe zone, levels of \(^{90}\)Sr and \(^{137}\)Cs in the surface soil had a notable straightforward correlation with precipitation.
Their specific activities as well as the $^{137}\text{Cs}/^{90}\text{Sr}$ ratio were consequently shown to be useful as a proxy for climatic conditions in the dust source region, for which conventional isotope tracers would be of no use. The Asian dust source regions are spreading eastward and northward from the conventional source as a result of the degradation of the relatively moist zone (grasslands) in years that have experienced frequent Asian dust events (during the 2000s). The major controlling factor may not be direct anthropogenic activities but possibly climate change, especially slightly reduced precipitation, which has amplified surface degradation due to the fragility of the ecosystem.

Dust particles less than 10 µm in size are most likely actually transported thousands of kilometers in the air, and a radiochemical analysis of this smaller size fraction in source soils is a task for further verification of the present study, although we would not expect any major change in the conclusions. Also, future cross-over studies with other tracer techniques could offer more insights into temporal changes in the source region of Asian dust and related factors.

Appendix A

No direct link to past nuclear tests conducted in the dust source region

There are large social concerns over anthropogenic radionuclides in the atmosphere and some people worry that the Asian dust may convey close-in contamination due to the past Chinese nuclear tests in the Taklimakan Desert. So this topic is addressed separately here. The data given in this manuscript deny that the Asian dust carries the direct contamination from those nuclear tests, but it does sometimes carry ordinary continental grassland soil. Although high levels of radionuclides in the air are not frequently detected by general radioactivity monitoring in the absence of nuclear accidents or serious contamination, it should be noted that even natural dust phenomena can generate this sort of enhanced atmospheric radioactivity. This is
probably why Hirose et al. (2010) have observed high specific activity of Pu isotopes in atmospheric depositions during the spring along with frequent Asian dust events since 2000 in Japan.

Researchers in France (Menut et al., 2009; Masson et al., 2010) needed to solve a similar problem for transported Saharan dust because it also contains a trace but detectable amount of 137Cs and other radionuclides. Contamination of 137Cs detected during the Saharan dust event in France was suspected to be the result of leakage from past nuclear test sites in French Saharan territory (Danesi et al., 2008). Igarashi et al. (2005) pointed out that close-in fallout from atmospheric nuclear explosions should have been an insignificant source of surface contamination of 90Sr and 137Cs around the test sites, thus negligible in aeolian dust transport, and French researchers drew similar conclusions (Menut et al., 2009; Masson et al., 2010). Only 0.7% of the Saharan dust was ascribed to the test area, accounting for only a small percentage of the atmospheric 137Cs peak concentrations recorded in France during the transport event (Menut et al., 2009). These experiences indicate that the Saharan dust episode might have a common background, that degradation of grassland where the surface serves as the reservoir for fallout anthropogenic radionuclides, with the present Asian dust case. Then fresh bare surface due to grassland degradation over the dust source area would generate abrupt increases in the concentration of anthropogenic radionuclides in the air, despite the fact that nuclear disasters have not occurred.

Other source of 137Cs in the atmosphere than soil dust

137Cs is semi-volatile in fire and spreads with smoke. Both fires in the forests polluted by the Chernobyl accident and fuel consumption of the contaminated woods are considered as sources of 137Cs in the air (Igarashi, 2009a). Although the effect is significant in the neighboring and source areas of the polluted boreal forests, such as in eastern and northern Europe (Igarashi 2009a; Lujaniené et al., 2009; Bourcier et al., 2010), it would be insignificant in East Asia, except for a specific transport event such
as the one that occurred in spring 2003 (Kaneyasu et al., 2007; Jeong et al., 2008). Consequently, this effect is negligible in East Asia and was not considered in this study.

Acknowledgements. The authors thank the Mongolian Institute of Meteorology and Hydrology for supporting our survey. Mr. Sato, formerly at the MRI, is acknowledged for suggesting the international collaboration. The authors thank Mr. Hashimoto, Japan Chemical Analysis Center, and Mr. Matsuda and Mr. Kawamura, Kyushu Environmental Evaluation Association, for helping to plan and support the survey. All samples were exported and imported following all regulations and with the approval of both Mongolian and Japanese authorities. Ms. Fujiwara is acknowledged for her office work for both the survey and the export/import of the Mongolian soil samples. Sample preparation and radiochemical analyses were carried out by Ms. Inukai, Ms. Togashi, Mr. Tomita, and Mr. Mizo, KANSO Co. Ltd. Part of the expense for conducting the Mongolian survey and the sample analysis was covered by the fund for Radioactivity Survey in Japan from the Ministry of Education, Culture, Sports, Science and Technology. Ms. Noumi helped edit the manuscript. Thanks are also due to Ms. Tagami, National Institute of Radiological Sciences, for helpful discussion of K_d values of 90Sr and 137Cs.

References

Hirose, K., Igarashi, Y., Aoyama, M., and Inomata, Y.: Depositional behaviors of plutonium and

Jeong, J. I., Park, R. J., and Youn, D.: Effects of Siberian forest fires on air quality in East Asia

Yuan, Y. and Li, J.: The wet-dry changes in recent 40 years in Taklimakan area, Chinese Geogr.

Table 1. Specific activities (dry weight basis) for anthropogenic radionuclides and their activity ratio in Mongolian surface soil and comparison with related data of surface soils collected in Taklimakan and Tsukuba (other than Mongolian soil, the data cited are from Igarashi et al., 2005).

<table>
<thead>
<tr>
<th>Sample</th>
<th>$^{137}\text{Cs} \text{ (mBq}\cdot\text{g}^{-1})$ Specific activity</th>
<th>$^{90}\text{Sr} \text{ (mBq}\cdot\text{g}^{-1})$ Specific activity</th>
<th>$^{137}\text{Cs}^{90}\text{Sr}$ ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mongolian soil ($n = 57$ for $^{137}\text{Cs}; n = 36$ for ^{90}Sr)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max.</td>
<td>102</td>
<td>23.0</td>
<td>5.8</td>
</tr>
<tr>
<td>Min.</td>
<td>3.29</td>
<td>5.9</td>
<td>1.2</td>
</tr>
<tr>
<td>Median</td>
<td>26.2</td>
<td>11.7</td>
<td>3.4</td>
</tr>
<tr>
<td>Taklimakan dust ($n = 1$)</td>
<td>7.05 ± 1.4</td>
<td>1.75 ± 0.26</td>
<td>4.0</td>
</tr>
<tr>
<td>Taklimakan soil ($n = 6$)</td>
<td>Max.</td>
<td>31.5</td>
<td>11.0</td>
</tr>
<tr>
<td></td>
<td>Min.</td>
<td>5.01</td>
<td>2.22</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>16.3</td>
<td>6.34</td>
</tr>
<tr>
<td>Tsukuba soil ($n = 13$)</td>
<td>Max.</td>
<td>19.8</td>
<td>4.39</td>
</tr>
<tr>
<td></td>
<td>Min.</td>
<td>3.27</td>
<td>1.01</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>12.4</td>
<td>1.73</td>
</tr>
<tr>
<td>Monthly deposition sample at MRI* during 1992 to 1999 (Bq/g)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>($n = 92$)</td>
<td>Max.</td>
<td>26.1</td>
<td>8.37</td>
</tr>
<tr>
<td></td>
<td>Min.</td>
<td>1.87</td>
<td>0.97</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>5.56</td>
<td>2.83</td>
</tr>
</tbody>
</table>

* Excluding anomalous data for ^{90}Sr.

Meteorological Research Institute, Tsukuba, Japan.
Fig. 1. Sampling sites of a survey of anthropogenic radionuclides in surface soil carried out in Mongolia in autumn 2007. Red and yellow lines indicate Mongolian and aimag (prefecture) borders, respectively. Small blue dots are the sampling sites, and the large ones are cities and towns, which were avoided for sampling. The background land color image is from TNT Global Data Sets (MicroImages, Inc., Nebraska, USA).
Fig. 2. Raster map of interpolated annual average precipitation in Mongolia derived from the precipitation records of 24 meteorological observatories during 1950–2007 using the minimum curvature method (see text for a more detailed explanation).
Fig. 3. Relationship between the specific activities of (a) 90Sr and (b) 137Cs in Mongolian surface soil samples and estimated average annual precipitation data at the sampling sites and (c) relationship between the 137Cs/90Sr activity ratio and precipitation. Errors are counting statistics of 1σ in the measurement.
Fig. 4. A cross plot of Mongolian surface soil, Tsukuba surface soil, Taklimakan surface soil and dust, and atmospheric deposition (monthly and event samples) during spring (March, April and May) in Tsukuba based on the relationship between ^{137}Cs specific activity (mBq g$^{-1}$) and the $^{137}\text{Cs}/^{90}\text{Sr}$ activity ratio. The monthly deposition is total (= wet + dry) deposition, and single wet depositions were collected during spring 2007 (Igarashi et al., 2009). Taklimakan and Tsukuba soil data are from Igarashi et al. (2005). Fitting curves are individually drawn for Mongolian, Tsukuba and Taklimakan soils.