A case study of aerosol processing and evolution in summer in New York City

Y. L. Sun¹, Q. Zhang², J. J. Schwab³, W. N. Chen⁴, M. S. Bae⁵, Y. C. Lin⁴, H. M. Hung⁶, and K. L. Demerjian³

¹State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
²Department of Environmental Toxicology, University of California, Davis, CA, USA
³Atmospheric Sciences Research Center, State University of New York, Albany, NY, USA
⁴Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
⁵Environmental Engineering Department, Mokpo National University, South Korea
⁶Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan

Received: 2 September 2011 – Accepted: 12 September 2011
– Published: 15 September 2011

Correspondence to: Y. L. Sun (sunyele@mail.iap.ac.cn)

Published by Copernicus Publications on behalf of the European Geosciences Union.
Abstract

We have investigated an aerosol processing and evolution event from 21–22 July during the summer 2009 Field Intensive Study at Queens College in New York City (NYC). The evolution processes are characterized by three consecutive stages: (1) aerosol wet scavenging, (2) nighttime nitrate formation, and (3) photochemical production and evolution of secondary aerosol species. Our results suggest that wet scavenging of aerosol species tends to be strongly related to their hygroscopicities and also mixing states. The scavenging leads to a significant change in bulk aerosol composition and average carbon oxidation state because of scavenging efficiencies in the following order: sulfate > low-volatility oxygenated organic aerosol (LV-OOA) > semi-volatile OOA (SV-OOA) > hydrocarbon-like OA (HOA). The second stage involves a quick formation of nitrate from heterogeneous reactions at nighttime. During the third stage, simultaneous increases of sulfate and SV-OOA were observed shortly after sunrise, indicating secondary aerosol formation. Organic aerosol particles become highly oxidized in ∼half day as the result of photochemical processing, consistent with previously reported results from the CO-tracer method (OA/∆CO). The photochemical reactions appear to progress gradually associated with a transformation of semi-volatile OOA to low-volatility species based on the evolution trends of oxygen-to-carbon (O/C) ratio, relationship between f44 (fraction of m/z 44 in OA) and f43 (fraction of m/z 43 in OA), and size evolution of OOA and HOA. Aerosols appear to become more internally mixed during the processing. Our results suggest that functionalization by incorporation of both C and O plays a major role in the early period of OA oxidation (O/C < 0.5). Our results also show that photochemical production of LV-OOA during this event is approximately a few hours behind of sulfate production, which might explain the sometimes lack of correlations between LV-OOA and sulfate, two secondary aerosol species which often exist in internal mixtures over regional scales.
1 Introduction

Atmospheric aerosols, consisting of liquid and solid particles suspended in the air, are important components of atmosphere. Aerosols play a significant role in visibility reduction (Watson, 2002), regional air pollution (Molina and Molina, 2004), and climate change (IPCC, 2007). Aerosols and their associated direct and indirect effects on radiative forcing are highly uncertain (Forster et al., 2007) due to a lack of knowledge on their sources, composition, evolution processes and deposition (Pöschl, 2005; Hallquist et al., 2009). Particularly, organic aerosols (OA), accounting for a large fraction of sub-micron aerosol mass (Kanakidou et al., 2005; Zhang et al., 2007a; Jimenez et al., 2009), are most poorly understood because of their complex and diverse volatilities, functionalities, and solubilities. Aerosols also exert a serious impact on human health by increasing the damage of respiratory and cardiovascular systems and reducing life expectancy (Pope et al., 2002, 2009).

Atmospheric aerosols are formed from various emission sources and transformation processes. Aerosol particles can be primary from the direct emissions (e.g. combustion of fossil fuels, biomass burning, mineral dust and sea salt) or secondary from gas-to-particle transformation processes such as nucleation and heterogeneous reactions. As the primary emissions of aerosols and secondary formation of inorganic species (e.g. sulfate and nitrate) are fairly well understood, there is considerable uncertainty on the formation of secondary organic aerosol (SOA) (Hallquist et al., 2009). For example, the traditional SOA model only considering SOA formation from volatile organic compounds (VOCs) often greatly underestimate the observed SOA (Heald et al., 2005; Volkamer et al., 2006; Dzepina et al., 2009; Wood et al., 2010). In addition to source emissions and secondary formation, other dominant processes affecting ambient aerosol concentrations include cloud processing, additional OA aging, wet deposition by precipitation, and dry deposition by convective transport and diffusion (Pöschl, 2005). The chemical and physical properties of aerosol particles such as chemical composition, size distribution, and oxidation state may change significantly because of
these evolution processes. Thus a comprehensive characterization and understanding of aerosol evolution processes is required for effective control of the aerosol effects on climate and public health.

In summer 2009, we revisited Queens College (QC) in New York City (NYC), previously an EPA supersite during PMTACS-NY, with an Aerodyne High-Resolution Time-of-Flight AMS (HR-AMS) (DeCarlo et al., 2006). In comparison to the deployment of the Quadrupole AMS (Q-AMS) in 2001 and 2004 (Drewnick et al., 2004a, b; Weimer et al., 2006), HR-AMS is significantly improved in terms of chemical resolution and sensitivity, allowing greater detail in the study of chemical composition and atmospheric processing of OA. The real-time, highly time-resolved (5 min resolution) concentrations and size distributions of non-refractory submicron aerosol (NR-PM$_{1}$) species (i.e. organics, sulfate, nitrate, ammonium, and chloride) were measured in-situ from 13 July through 3 August to investigate the sources and evolution processes of submicron aerosols in NYC. The mass concentrations, size distributions, chemical composition, and temporal and diurnal variations of NR species, elemental composition of OA, and investigations of sources and processes of OA components have been detailed in Sun et al. (2011a).

In this study, we analyzed a 2-day aerosol processing and evolution event from 21–22 July which we interpret as a progression of three typical atmospheric processes. The whole process started with a quick wet scavenging of inorganic species and secondary OA, followed by a nighttime nitrate formation process, and then photochemical production and aging on the second day. Here we present a detailed investigation of these processes focusing on (1) the relationship between scavenging rates and properties of aerosol species, (2) the impacts of scavenging on aerosol composition, mixing states, and oxidative properties, (3) the formation mechanisms of nitrate, and (4) the photochemical production and aging of secondary inorganic and organic species.
2 Methods

2.1 Aerosol sampling

Submicron aerosol particles were measured in-situ from 13 July through 3 August 2009 on the campus of Queens College (40.74°N, 73.82°W) by an Aerodyne HR-AMS. The HR-AMS was deployed inside the state-of-the-art Atmospheric Sciences Research Center-Mobile Laboratory (ASRC-ML) (Lin et al., 2011) along with various fast-response aerosol and gas instruments. During the 3-week routine measurements, the ASRC-ML was parked at Lot 6, which is approximately 500 m south of the Long Island Expressway (LIE, I-495) and 1.2 km east of the Van Wyck Expressway (I-678), two high-traffic highways in the NYC metropolitan area.

The HR-AMS was operated under the sensitive V-mode and the high mass resolution (∼6000) W-mode alternatively every 5 min. Under V-mode operation, the AMS cycled through the mass spectrum (MS) mode and the particle time-of-flight (PTofF) mode every 30 s. No PToF data were sampled in W-mode due to limited signal-to-noise (S/N) ratio. The HR-AMS was calibrated for ionization efficiency (IE) and particle sizing at the beginning and in the middle of this study following the standard protocols (Jayne et al., 2000; Jimenez et al., 2003; Drewnick et al., 2005). Detailed descriptions of sampling site and HR-AMS operation are given in Sun et al. (2011a).

2.2 Collocated measurements

The synchronous collocated measurements in ASRC-ML include absorption coefficient (B_{abs}) by a DMT single-wavelength Photoacoustic Soot Spectrometer (PASS-1), formaldehyde (HCHO) and NO$_2$ by an Aerodyne Quantum Cascade Laser (QCL) Spectrometer, CO$_2$ and H$_2$O by a Li-COR CO$_2$ analyzer, trace gases of O$_3$, NO, and NO$_2$ by 2B technologies analyzers, VOCs by a BTEX (benzene, toluene, ethylbenzene, and xylene) analyzer, and size-resolved number concentrations by a TSI Fast Mobility Particle Sizer (FMPS, Model 3091, 5.6–560 nm) spectrometer. In addition to measurements...
from the ASRC-ML, aerosol and gas species were also measured inside NYS DEC Air Monitoring Building, ~140 m north of Lot 6. Detailed descriptions of this site are given in Drewnick et al. (2004a) and Weimer et al. (2006). The key measurements at this site included water-soluble ions by a Particle-into-Liquid Sampler (PILS) coupled with two Ion Chromatographs (IC), chemical composition and mass concentrations of NR-species by an Aerodyne Aerosol Chemical Speciation Monitor (ACSM), OC and EC by a Sunset Labs OC/EC Analyzer, sulfate by a Thermo Electron 5020 Sulfate Particulate Analyzer, and PM$_{2.5}$ by a Tapered Element Oscillating Microbalance (TEOM). Other collocated measurements such as trace gases and number concentrations are detailed elsewhere (Sun et al., 2011a).

2.3 AMS data analysis

The aerosol mass spectrometry data were analyzed for the mass concentrations and size distributions with the standard AMS data analysis software (SQUIRREL v1.46, Sueper, 2011) and the ion-speciated composition and elemental composition, i.e. oxygen-to-carbon (O/C), hydrogen-to-carbon (H/C), nitrogen-to-carbon (N/C), and organic mass-to-organic carbon (OM/OC) ratios with the high resolution data analysis software (PIKA, v1.06) and APES (v 1.04A), respectively. The PMF2 algorithm (v 4.2) (Paatero and Tapper, 1994) is used in robust mode to unravel AMS high resolution mass spectra (HRMS) into distinct OA components. PMF2 solutions were investigated with an Igor Pro-based PMF Evaluation Tool (PET, v 2.04) (Ulbrich et al. 2009). Five OA components, i.e. hydrocarbon-like OA (HOA), cooking-related OA (COA), regional, highly aged low-volatility oxygenated OA (LV-OOA), less photo-chemically aged semi-volatile oxygenated OA (SV-OOA), and a unique nitrogen-enriched OA (NOA) were identified (Sun et al., 2011a). Each component demonstrates distinct temporary variation and mass spectral patterns that are indicative of their associations with unique sources and processes. More details on AMS data analysis can be found in Sun et al. (2011a).
A tracer-based method was used to derive the size distributions of HOA and OOA in Pittsburgh based on those of \(m/z \) 44 and \(m/z \) 57 after subtracting OOA contribution (0.2 % of \(m/z \) 44, mainly \(C_3H_5O^+ \)) from the measured \(m/z \) 57 size distribution data (Zhang et al., 2005c). This method was used because only eight organic \(m/z \)'s were acquired using a Q-AMS (Zhang et al., 2005b). In this study, the size distributions of \(m/z \)'s up to 300 were obtained with a time-of-flight mass spectrometer, allowing us to apply the custom principal component analysis (CPCA) technique (Zhang et al., 2005a) to the 3-dimensional size-resolved mass spectra (dimensions: date/time, size, and \(m/z \)) to determine the size distributions of OA components. To improve the S/N, we averaged the 102 size bins acquired between 30–1500 nm (\(D_{va} \)) into 20 bins before performing CPCA analysis to the size-resolved mass spectra for 21–24 July. The tracer-based method was performed as a comparison. Figure S1 shows the mass spectra of HOA and OOA determined for different size bins, and their correlations with those identified from PMF analysis of OA bulk spectra (i.e. acquired under the MS mode). The HOA between \(\sim \)60–800 nm and OOA between \(\sim \)150–800 nm shows overall similar spectral patterns to the reference spectra of HOA and OOA, respectively. The weak correlations below 60 nm and above 800 nm for HOA and below 150 nm and above 800 nm for OOA are likely due to poor S/N ratios, partly due to limited AMS transmission efficiencies for these particles (Liu et al., 2007) and gas phase CO\(_2\) interferences in the ultrafine mode \(m/z \) 44 data (Zhang et al., 2004). A comparison between CPCA and the tracer-method indicates that both report very similar size distribution patterns but the tracer-based approach seems to report lower HOA during OOA dominant periods, and lower OOA during HOA dominant periods (Fig. S2). Detailed analysis and interpretation of size-resolved mass spectra will be presented elsewhere.

All the data in this study are reported at ambient temperature and pressure conditions in Eastern Standard Time (EST), which equals Coordinated Universal Time (UTC) minus 5 h or local Time (i.e. East Daylight Time – EDT) minus 1 h.
3 Results and discussions

Figure 1 shows the time series of meteorological variables, mixing ratios of gaseous species, mass concentrations and fractions of NR species and OA components, and O/C ratio of OA from 21–22 July. Overall, the aerosol processing during these two days can be classified into three stages: (I) aerosol wet scavenging, (II) night time nitrate formation, and (III) photochemical production and aging of secondary aerosol species. In the following sections, we describe the three stages in detail, each of which represents an important process of aerosol particles in the atmosphere.

3.1 Aerosol wet scavenging

This stage started with a light rain at ∼03:00 in the morning of 21 July. The rain lasted till ∼19:00 at night. During the 16-h period, air temperature remained mild at ∼20 °C, relative humidity was close to 100 %, solar radiation was low, and the wind was consistently from the northeast with speed of <∼2 m s⁻¹ (Fig. 1). The ammonium sulfate and LV-OOA concentrations decreased slowly at the beginning, followed by rapid scavenging due to the intense precipitation between 05:00–09:00. Other aerosol species (e.g. HOA, COA, nitrate, and chloride), however, showed little changes in concentration and even slight increases (Fig. 1b, d), for which the relatively shallow planetary boundary layer height (due to cool temperature and overcast conditions) might have played some roles. The scavenging process led to a significant change in aerosol composition, as indicated by the variations in the mass fractions of aerosol species (Fig. 1a, c). Over the course of scavenging, organics gradually became the dominant component, contributing up to 70 % of the total NR-PM₁ while ammonium sulfate only accounted for a minor fraction (<20 %) at the end of the scavenging. In contrast, the concentrations of EC and HOA remained relatively flat during this stage, showing small enhancements during morning rush hours (Fig. 1f, d). The OA composition also showed a dramatic change with a significant reduction of SOA (= LV-OOA + SV-OOA) in association with an increased fraction of POA (= HOA + COA).
Table 1 shows the scavenging rates of major aerosol species, ion families and mass spectral tracer ions in mass concentrations and mass percentages. The scavenging rates were calculated by performing linear regression on mass concentrations between 03:00–19:00. Sulfate showed the highest scavenging rate (267 ng m\(^{-3}\) h\(^{-1}\)) followed by LV-OOA (126 ng m\(^{-3}\) h\(^{-1}\)), which corresponds to a scavenging percentage of 6.0% and 4.8%, respectively. The primary OA factors (COA and HOA), as well as EC, showed slight increases despite rain scavenging, part of which was due to local emissions. The scavenging rates of aerosol species appear to be closely related to their hygroscopicities which are indicated by the hygroscopicity parameter – kappa (\(\kappa\)) (Petters et al., 2009). This is consistent with the results from a previous study that the scavenging efficiencies are positively related to the polarity and solubilities of compounds (Limbeck and Puxbaum, 2000). Ammonium sulfate is highly hygroscopic with \(\kappa \approx 0.6\) (Petters et al., 2009). The hygroscopicity of OA, however, strongly depends on the oxidation state and degree of aging. A recent study found a positive relationship between hygroscopicity and O/C ratio of OA from several field datasets and of SOA from smog chamber (Jimenez et al., 2009). The results show that the \(\kappa\) of OA components with O/C >0.6 is roughly above 0.16, while those with O/C <~0.3 are weakly hygroscopic. Chang et al. (2010) postulated a linear relationship between \(\kappa_{\text{Org}}\) and O/C as \(\kappa_{\text{Org}} = 0.29 \times \text{O/C} (\text{O/C} = 0.3–0.6)\) based on AMS and CCN measurements at a rural site in Ontario, Canada. Massoli et al. (2010) further investigated the relationship between oxidation level and hygroscopic properties of SOA generated via OH radical oxidation in an aerosol flow reactor. A non-linear, but positive relationship between \(\kappa_{\text{Org}}\) and O/C was observed. The results by Massoli et al. (2010) are overall in agreement with those reported previously for OA with comparable O/C ratios (Jimenez et al., 2009; Chang et al., 2010).

According to the findings above, LV-OOA with O/C of 0.63 (\(\kappa\) estimated at ~0.2) would be the most hygroscopic among the five OA factors, SV-OOA (O/C = 0.38) is weakly hygroscopic, and COA/HOA with low O/C ratios (0.18 and 0.06, respectively) are the least hygroscopic or non-hygroscopic. The scavenging rates thus appear to...
be proportional to the O/C of OA components following the order of LV-OOA > SV-OOA > COA/HOA, in agreement with the scavenging rates of tracer ions for OA components in the order of \(\text{CO}_2^+ \) (m/z 44, a tracer for LV-OOA) > \(\text{C}_2\text{H}_3\text{O}^+ \) (m/z 43, a tracer for SV-OOA) > \(\text{C}_4\text{H}^+ \) (m/z 57, a tracer for HOA) (Table 1). Similarly, oxygenated ion families of \(\text{C}_x\text{H}_y\text{O}_2^+ \) and \(\text{C}_x\text{H}_y\text{O}_1^+ \) were scavenged more efficiently at a rate of 3.8% and 2.5%, respectively, in comparison to hydrocarbon ions \(\text{C}_x\text{H}_y^+ \) (0.1%). Similar conclusions were obtained by investigating the scavenging efficiencies of aerosol components in clouds (Sellegri et al., 2003). The less-volatile fraction of OA which was internally mixed with inorganic species at accumulation mode ~500 nm was found to be better scavenged compared to the more-volatile fraction (Sellegri et al., 2003). It should be noted that the scavenging process is not only related to the \(\kappa \), but also to the mixing state of aerosol species, and the intensity and the duration of the precipitation. For example, base on the data reported by Huang et al. (2010) and Sun et al. (2010), faster scavenging of aerosol species, typically within a few hours, were observed in Beijing, China where POA species were overall internally mixed with more hygroscopic secondary species. Another possible reason for the observed decreases of aerosol concentration was the mixing in of cleaner air masses associated with northeastern wind. However, the fact that LV-OOA and sulfate concentrations began to increase upon the ending of the heavy precipitation (at ~09:00) while the wind direction remained northeast (Fig. 1) suggests that wet scavenging was the dominant process responsible for the decreases in aerosol concentrations during this time period.

In addition to changing aerosol composition, the scavenging process also led to apparent changes in aerosol size distributions (Fig. 2). The peaks of the size distributions of organics, sulfate, and nitrate all shifted to larger sizes during the course of scavenging, possibly due to aerosol growth under high humidity conditions. For instance, the accumulation mode of sulfate peaked at ~450 nm at the beginning of the event, but at ~550 nm at the end. Similar size growth was also observed for organics and nitrate. It is interesting to note that as the accumulation mode OA evolved into larger sizes, the ultrafine mode (<150 nm) organics changed little in both concentration and
size distribution (Fig. 2b). This mode was dominated by HOA and EC which are overall non-hygroscopic with low scavenging rates.

Figure 3 shows the evolutions of size-resolved HOA and OOA every six hours on 21 July. Although OOA dominated the overall organic mass loading, HOA comprised a major fraction (>60%) of the ultrafine mode organics. As the scavenging progressed, the mass concentration of HOA showed relatively little variations across the entire size range while that of OOA decreased rapidly, resulting in increased contributions of HOA in both the ultrafine and the accumulation modes. HOA contributed more than 60% of the accumulation mode at the end of scavenging. The different scavenging rates for HOA and OOA further caused a significant change in the average oxidation state of OA. As shown in Fig. 1c, the O/C ratio during the scavenging period decreased almost linearly from ~0.6 to ~0.2, indicating that OA on average became less oxidized due to the much faster scavenging of OOA than HOA.

3.2 Nitrate formation

Stage II is characterized by a quick formation of nitrate that started at ~19:00 (sunset time: 19:30) and persisted ~half day till ~06:00 of the 2nd day (22 July). During this stage, the RH remained high (~95–97%), and the temperature was relatively low (~20°C). The wind speed was close to zero, indicating stagnant air. Atmospheric nitrate formation pathways mainly include heterogeneous hydrolysis of N2O5 at nighttime and gas-phase photochemical production of HNO3 during daytime. The nitrate ambient concentration is also driven by gas-to-particle partitioning of ammonium nitrate and boundary layer dynamics (Seinfeld and Pandis, 2006). The nocturnal formation of nitrate involves the following key steps (Reactions R1–R5) (Brown et al., 2006):

\[
\begin{align*}
\text{NO}_2 + \text{O}_3 & \rightarrow \text{NO}_3 + \text{O}_2 \quad \text{(R1)} \\
\text{NO}_2 + \text{NO}_3 + \text{M} & \leftrightarrow \text{N}_2\text{O}_5 + \text{M} \quad \text{(R2)} \\
\text{N}_2\text{O}_5 + \text{H}_2\text{O(aq)} & \rightarrow 2\text{HNO}_3 \quad \text{(R3)}
\end{align*}
\]

25761
Where DRH is the deliquescence relative humidity which is \(\sim 61\% \) at 298 K for ammonium nitrate. Although the gas phase Reaction (R3) is very slow, the heterogeneous Reaction (R3) can be very fast on aerosol particles at high RH. The mixing ratios of NO\(_2\) and O\(_3\) at the beginning of stage II were both \(\sim 20 \text{ ppb} \), and decreased gradually till 23:00 (Fig. 1), likely due to Reaction (R1). With the presence of abundant NH\(_3\) in NYC (Li et al., 2006), the HNO\(_3\) produced via the heterogeneous Reaction (R3) was quickly neutralized to ammonium nitrate. Submicron aerosol particles were indeed bulk neutralized during this study (Sun et al., 2011b). These formation processes together have led to a continuous increase of nitrate concentration. In addition, the high RH may also have facilitated the gas-to-particle partitioning of HNO\(_3\) and NH\(_3\). Our calculations using the Extended AIM Aerosol Thermodynamics Model (E-AIM) (Clegg et al., 1998) (http://www.aim.env.uea.ac.uk/aim/aim.php) confirmed that the nitrate observed during this period existed completely in the aqueous-phase (Fig. 4). Overall, the concentration of nitrate increased from 0.4 \(\mu \text{g m}^{-3} \) to \(\sim 4 \mu \text{g m}^{-3} \) in \(\sim 8 \text{ h} \), and its contribution to total NR-PM\(_1\) also elevated by 3 times from \(\sim 15\% \) to 50\% (Fig. 1a). Note that much enhanced NO\(_x\), BC, HOA, CO\(_2\), and toluene levels were observed at \(\sim 23:00, 21 \text{ July} \) (Fig. 1), likely due to local traffic emissions. The apparent bimodal size distributions of organics during this time period (Fig. 2) further supported this conclusion. Due to elevated NO and VOCs (e.g. toluene) emissions, the O\(_3\) level was sharply reduced to a very low level (a few ppb), while NO\(_2\) increased to \(\sim 20 \text{ ppb} \) (Fig. 1e). The increase of nitrate concentration lasted till \(\sim 03:00 \) on 22 July, after which nitrate started to decrease. After sunrise at \(\sim 04:40 \) (EST, Fig. 4), the nitrate concentration continued to decrease, consistent with the low equilibrium constant of \(K_p \) for the Reaction (R7)
(high \(K_p \) indicates more stable \(\text{NH}_4\text{NO}_3 \)) (Seinfeld and Pandis, 2006) and the low photochemical production of \(\text{HNO}_3 \) (\(\text{NO}_2 \times \text{UV} \) as a surrogate) via Reaction (R6). Nitrate presented a second peak at noon on 22 July with the majority of it resided in the particle phase, mainly from gas-phase production via reactions of \(\text{NO}_2 \) and \(\text{OH} \) at low RH (\(<60\%\)). Nitrate finally decreased to a very low level after noon, associated with the high temperature and low relative humidity, the decreasing photochemical production rate, and the rising boundary layer.

3.3 Photochemical production of SOA

Stage III represents the photochemical production of SOA, initially as SV-OOA and sulfate from \(\sim06:00 \) to \(\sim18:00 \) on 22 July. This stage is characterized by relatively low RH (\(\sim60\% \)), high temperature (\(\sim28^\circ\text{C} \)), and light south wind (0–3 m s\(^{-1}\); Fig. 1h). The air was calm with wind speed close to zero from 06:00–11:00, during which SV-OOA gradually increased from 0.15 to 1.25 \(\mu\text{g m}^{-3} \) (Fig. 1d). Sulfate showed a simultaneous increase in concentration that continued till \(\sim18:00 \). The SV-OOA concentration peaked at \(\sim14:00 \). A rapid increase of LV-OOA began at \(\sim12:00 \) noon, at a nearly constant rate of \(\sim0.8 \mu\text{g m}^{-3} \text{h}^{-1} \) till 18:00 (Fig. 1d). It’s interesting to note that the photo-oxidation processes during this period (06:00–18:00) appear to involve a continuum of evolution from the freshly oxidized and semi-volatile species to highly oxidized and low volatility species, illustrated by the continuous increase of the O/C ratio of OA from \(\sim0.1 \), a value close to those of primary aerosols (e.g. diesel/gasoline and cooking) (Jimenez et al., 2009; Mohr et al., 2009; He et al., 2010) to above 0.5 (Fig. 1c). The evolution of O/C was roughly linear with an increase rate of \(\sim0.035/\text{h} \). The evolution of OA can be seen more clearly in Fig. 5a, in which the triangular region defined by two different slopes of f44 (\(m/z \) 44/OA) to f43 (\(m/z \) 43/OA) represents an integration of the relationship between f44 and f43 for the OOA components determined from PMF analysis of 43 AMS datasets at different sites (Ng et al., 2010). As discussed in Ng et al. (2010), the less aged SV-OOA tends to occupy the broader base of the triangle while the more aged, regional LV-OOA tends to occupy the narrowing top region.
of the triangle with mass spectrum similar to those of fulvic acid and humic like substances (HULIS). Figure 5a shows that the OA particles showed similar properties to HOA at the beginning of stage III, became more resembled to SV-OOA within the first few hours of aging, and eventually become highly oxidized and close to LV-OOA. Note that the scavenging processes (Sect. 3.1) showed a reversed trend with a decrease of f44 and a simultaneous increase of f43. Similar evolution was also observed for OA across Europe where OA can be viewed as a continuum of aging from semi-volatile to low-volatility as a function of distance from main emission sources (Morgan et al., 2010).

Formaldehyde (HCHO), an important intermediate product of photochemical oxidation, was also observed to show a rapid increase from ∼1 ppb to 5 ppb in ∼8 h starting at 06:00 on 22 July (Fig. 1g). Detailed analysis of sources of HCHO measured during the entire campaign showed that on average ∼60 % of HCHO was produced from photochemical reactions, mainly oxidation of isoprene, methane, and propene (Lin et al., 2011). Given the short lifetime of HCHO (typically 3–4 h during summertime conditions), the continuous increase of HCHO till 14:00 suggests that aerosol processing during the early stage III was most likely driven by local photochemical oxidation. The decrease of HCHO after 14:00 was likely due to photolysis and further oxidation by OH (Lin et al., 2011), consistent with the oxidation of SV-OOA to LV-OOA in the afternoon. LV-OOA+SV-OOA, a surrogate of SOA, shows tight correlation with photochemical product of O₃ ($r^2 = 0.84$) but weaker correlation ($r^2 = 0.40$) with O_x (NO₂ + O₃), likely due to the dominant contribution of NO₂ from local emissions. Recent studies have found that SOA and O_x are well correlated in air masses formed on similar timescales (less than 8 h), but poorly correlated when their formation timescales or location differed greatly (Herndon et al., 2008; Wood et al., 2010). This is consistent with the tight correlations between SOA and O₃ during this stage of photochemical production (06:00–18:00 on 22 July). The correlations between SOA and O₃ or O_x are overall weak for the entire study from 13 July to 3 August ($r^2 = 0.08$) (Sun et al., 2011a).
In addition to local photochemical production, the atmospheric evolution of aerosol particles after 12:00 on 22 July was likely influenced by regional transport as well, given the increase of wind speed. Wind direction was consistently northerly during the whole stage. Back trajectory analysis in conjunction with the MODIS aerosol optical depth (AOD) observations showed that the air masses after 14:00 passed through the south of NYC where high AOD was observed (Fig. S3a). It should be noted that the retrieval of AOD on 22 July might be overestimated due to clouds over south of NYC (Fig. S3b). In addition, Fig. S4 shows the variations of PM$_{2.5}$ at different sites in NYC during 21–22 July. Very similar temporal variations trends were observed at various downwind and upwind sites of QC during 21 July and 22 July. The increases on 22 July all started from very low ambient levels due to the heavy rainfall scavenging on 21 July, indicating a low regional background (at least in a radius of ~40 km) before stage III. Thus, we could argue that the aerosol evolution trend we observed during stage III may be representative of photochemical production over a small regional scale.

The OA formation and evolution processes can be further investigated using the OA/ΔCO ratios (ΔCO is the CO minus background CO) to remove the atmospheric dilution effects (Dunlea et al., 2009; DeCarlo et al., 2010). Previous studies have shown that ambient OA can be rapidly oxidized in ~half day together with an increase of OA mass. Further oxidation of OA appears to affect OA mass to a lesser degree due to the counteractions of fragmentation of molecules and oxygen incorporation (Kroll et al., 2009). Given that we did not have CO measurements in this study, ΔCO$_2$ (with sources mainly from combustion processes) is used as a surrogate. A background CO$_2$ of 340 ppm was calculated as the lowest 5% of data during 21–22 July. The OA/ΔCO$_2$ increased rapidly from ~0.07 µg m$^{-3}$ ppm$^{-1}$ to ~0.6 µg m$^{-3}$ ppm$^{-1}$ from 06:00 to 18:00 (Fig. 6a). The HOA/ΔCO$_2$ and COA/ΔCO$_2$ ratios were fairly constant throughout the entire period due to their primary sources from combustion emissions. The increases of OA/ΔCO$_2$ were initially contributed by the semi-volatile species, and later dominated by LV-OOA. Also, the O/C (a surrogate of photochemical aging) shows tight correlations with OA/ΔCO$_2$ (Fig. 6b) during the aging processes, consistent with previous results.
that the atmospheric aging before O/C = ~0.5 can lead to a quick formation of SOA mass (DeCarlo et al., 2010). It’s also interesting to note that the C and O contents in OA showed a simultaneous increase with a faster increasing rate for O (Fig. S5), indicating that oxygen incorporation might have played a major role in the aging processes before O/C = ~0.5, in agreement with the results from chamber experiments (Kroll et al., 2009). Figure 5b shows the Van Krevelen diagram (H/C vs. O/C) for OA during 21–22 July. During the early stage of oxidation (O/C <0.2), the evolution of H/C versus O/C presents a steeper slope than ~1 reported by Heald et al. (2010), likely due to the addition of carbonyl group and possibly the initial heterogeneous oxidation of POA species (Ng et al., 2011a). A further oxidation of OA after 12:00 appears to show a shallower slope (~0.7), suggesting a different evolution process. An investigation of such evolution for OOA components observed at various sites shows similar shallower slope ~0.5, most likely from the additions of both acid and alcohol functional groups with little fragmentation (Ng et al., 2011a). This is in agreement with a simultaneous increase of both fCO\(^+\) (fraction of CO\(^+\) in OA) and fC\(_2\)H\(_3\)O\(^+\) (fraction of C\(_2\)H\(_3\)O\(^+\) in OA) in triangle plot of fCO\(^+\) vs. fC\(_2\)H\(_3\)O\(^+\) (Fig. S6). The OA/ΔCO\(_2\) started to decrease after ~18:00, and the C and O contents followed the same trend. In addition, we didn’t observe a further oxidation of OA to higher O/C, e.g. up to ~0.9–1 observed from the aircraft measurements during MILAGRO (DeCarlo et al., 2010), but a gradual decrease of O/C from ~0.5 to ~0.4 after 18:00 due to increased contributions from local emissions.

Interestingly, the increase of LV-OOA was ~5 h behind of the photochemical production of sulfate and SV-OOA (Fig. 1), both of which started at ~06:00, demonstrating a difference in formation mechanisms between sulfate and LV-OOA. AIM model calculations show that sulfate mainly existed in particle phase as (NH\(_4\))\(_2\)SO\(_4\) and 2NH\(_4\)NO\(_3\)(NH\(_4\))\(_2\)SO\(_4\), and a very minor fraction in aqueous-phase. This suggests that the local gas-phase bi-molecular reaction of SO\(_2\) and OH was likely the dominant formation process of sulfate during this stage. Comparatively, the formation of LV-OOA involves a longer but continuous oxidation from volatile and semi-volatile
species associated with evolutions of volatilities and functionalities. Results here indicate that secondary formation of sulfate occurred earlier than LV-OOA. The ratio of LV-OOA/\(\text{SO}_4^{2-}\) was \(\sim 0.1\) at the beginning, and gradually increased to \(\sim 1\) as a function of photochemical age, and became stable during the highly aged period (Fig. S7c). Zhang et al. (2007b) also found a lower OOA/\(\text{SO}_4^{2-}\) ratio in acidic particles than in neutralized particles, likely due to the faster addition of sulfate on acidic particles from the faster gas-phase and cloud production. Given that these two species are both products of secondary formation occurring on regional scale, they often correlate with each other in ambient aerosols (Zhang et al., 2005a, c; Ulbrich et al., 2009; DeCarlo et al., 2010; Sun et al., 2011a). Over the course of longer aging processes, LV-OOA and sulfate would be more internally mixed and show better correlations. Overall, our results suggest that the temporal correlation of LV-OOA and sulfate concentrations is likely dependent on the oxidation degree of aerosols. They might not correlate well in the early period of photochemical reactions due to their different oxidation rates and processes as mentioned above.

The detailed size evolution of organics, sulfate, and nitrate during stage III is shown in Fig. 2. Organics showed a significant ultrafine mode between \(\sim 09:00–14:00\), and the average size distributions presented distinct bimodal distributions, peaking at \(\sim 150\) nm and \(\sim 500\) nm respectively. The persistent ultrafine mode of organics together with the synchronous increase of \(\text{NO}_x\), BC, and HOA (Fig. 1 for detail) suggest the dominant contribution of local emissions rather than regional transport. After a few hours of aging, the ultrafine mode OA concentration significantly reduced, accompanied with a large enhancement of the accumulation mode. In addition, the size distribution of organics after \(\sim\)half day aging resembled more to that of sulfate, indicating that atmospheric aging would lead to a change of aerosol mixing state, e.g. evolving from external mixture to more internally mixed. Figure 7 shows the average size distributions of HOA and OOA for selected time intervals during stage III. HOA dominated the OA composition across the whole size range with an overall average contribution close to 60 % before 10:00. After 10:00, we observed a decrease of HOA in accumulation
mode corresponding to an increase of OOA due to atmospheric dilution associated with increase of PBL depth and production of SOA. During 14:00–18:00, OOA comprised up to ∼80% of the bulk OA, though HOA was still the major contributor of organics in the ultrafine mode. The size distributions of sulfate appear to change from a broader to a narrower accumulation mode with the peak values shifting to larger sizes as well during the photochemical evolution processes.

4 Conclusions

A case study from 21–22 July during the summer 2009 Field Intensive Study at QC in NYC was investigated in detail to characterize three typical aerosol processes including wet scavenging, nighttime nitrate formation, and photochemical production and processing of secondary aerosol species. The wet scavenging efficiencies of aerosol species appear to be strongly related to their hygroscopicities and mixing states. The scavenging ratios follow the order of sulfate > LV-OOA > SV-OOA > HOA, leading to a significant change in aerosol composition with reduced contribution of secondary OA and inorganic species during rainfall scavenging event. The wet scavenging also leads to a rapid decrease of the average oxidation state of OA. The second stage is characterized by a quick nighttime formation of nitrate, presumably from heterogeneous reaction of N₂O₅. A second peak in nitrate time series was observed due to daytime photochemical reactions of NO₂ and OH. In the third stage, local-dominant photochemical processes staring ∼06:00 of the second day and persisting ∼half day was observed. Results show that aerosol particles can be oxidized to a high degree in ∼half day, consistent with previously reported results from CO-tracer method (OA/ΔCO). Detailed analysis of the oxidation processes suggests that OA evolution appears to involve a continuum of oxidation processes from semi-volatile to low-volatility species, and external to internal mixtures. The size distributions of OA evolved from bimodal modes (∼150 nm and 500 nm) to a single large accumulation mode. This evolutionary process
leads to about a few hours of delay in the increase of LV-OOA concentration compared that of sulfate. In addition, functionalization by incorporation of C and O contents together plays a major role in the early period of evolution of OA (O/C <0.5).

Supplementary material related to this article is available online at: http://www.atmos-chem-phys-discuss.net/11/25751/2011/acpd-11-25751-2011-supplement.pdf.

Acknowledgements. This research was supported by the One Hundred Person Project of the Chinese Academy of Sciences, the Office of Science (BER), US Department of Energy, Atmospheric Systems Research (ASR) Program (Grants No. DE-FG02-08ER64627, DE-SC0002191), New York State Energy Research and Development Authority, New York State Department of Environmental Conservation, and New York State Office of Science, Technology and Academic Research. We acknowledge our Aerodyne colleagues for sharing equipment and useful discussions during the campaign. We thank the New York State Department of Environmental Conservation for use of their facility, and particularly Mike Christopherson, Ed Marion, and Dirk Felton. We thank the Queens College administration and staff, especially Wing Chan, for hosting this study.

References

Clegg, S. L., Brimblecombe, P., and Wexler, A. S.: A thermodynamic model of the system...

Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., Haywood, J., Lean,

Aerosol processing and evolution in summer in New York City

Y. L. Sun et al.

Introduction

Conclusions

References

Tables

Figures

Li, Y., Schwab, J. J., and Demerjian, K. L.: Measurements of ambient ammonia using a tunable

Zhang, Q., Alfarra, M. R., Worsnop, D. R., Allan, J. D., Coe, H., Canagaratna, M. R., and

Table 1. Scavenging rates of selected aerosol species, ion families, and OA tracer ions in mass concentrations ($\Delta C/\Delta t$) and in percentages ($\Delta%/\Delta t$). The negative values indicate the scavenged species. $\Delta%/\Delta t = (\Delta C/\Delta t)/C_i \times 100$, where C_i is the initial concentration of species C.

<table>
<thead>
<tr>
<th>Species</th>
<th>$\Delta C/\Delta t$ (ng m$^{-3}$ h$^{-1}$)</th>
<th>$\Delta%/\Delta t$ (% h$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfate</td>
<td>−267</td>
<td>−6.0</td>
</tr>
<tr>
<td>LV-OOA</td>
<td>−126</td>
<td>−4.8</td>
</tr>
<tr>
<td>NOA</td>
<td>−0.7</td>
<td>−0.4</td>
</tr>
<tr>
<td>SV-OOA</td>
<td>4.7</td>
<td>1.1</td>
</tr>
<tr>
<td>COA</td>
<td>45</td>
<td>115</td>
</tr>
<tr>
<td>HOA</td>
<td>8.4</td>
<td>2.2</td>
</tr>
<tr>
<td>$C_xH_yO_2^+$</td>
<td>−4.4</td>
<td>−3.8</td>
</tr>
<tr>
<td>$C_xH_yO_1^+$</td>
<td>−1.8</td>
<td>−2.5</td>
</tr>
<tr>
<td>$C_xH_y^+$</td>
<td>1.3</td>
<td>0.1</td>
</tr>
<tr>
<td>CO$_2^+$</td>
<td>−18.5</td>
<td>−4.1</td>
</tr>
<tr>
<td>$C_2H_3O^+$</td>
<td>−4.0</td>
<td>−2.1</td>
</tr>
<tr>
<td>$C_4H_9^+$</td>
<td>1.2</td>
<td>3.4</td>
</tr>
</tbody>
</table>
Fig. 1. Time series of meteorology (relative humidity, temperature, precipitation, solar radiation, wind direction, and wind speed), gaseous species, EC and absorption (B_{abs}), hourly average mass concentrations and fractions of NR species (organics, sulfate, ammonium, nitrate, and chloride) and OA components (LV-OOA, SV-OOA, HOA, COA, and NOA), and O/C ratio of OA from 21–22 July. Three stages representing different atmospheric processes are marked as I, II, and III, respectively.
Fig. 2. Evolution of size distributions for the mass concentrations of organics, sulfate, and nitrate. (b), (c) shows the average size distributions of aerosol species for selected time ranges on 21 and 22 July, respectively.
Fig. 3. Average size distributions of HOA and OOA every six hours on 21 July.
Fig. 4. Variations of nitrate in aqueous-phase and particle-phase from the Extended AIM Aerosol Thermodynamics Model (E-AIM) (Clegg et al., 1998) calculations, the equilibrium constant of K_p for NH$_4$NO$_3$ formation, NO$_2$×UV, a surrogate of photochemical production rate of HNO$_3$ at daytime.
Fig. 5. (a) Relationship between f44 (fraction of m/z 44 to total organic signal) and f43 (fraction of m/z 43 to total organic signal) from 21–22 July. The f44 vs f43 for five OA components are also shown. The dash lines represent the triangle region from Ng et al. (2010). (b) Van Krevelen diagram for OA from 21–22 July and OA components identified from PMF analysis.
Fig. 6. Evolution of (a) O/C, sulfate, OA/ΔCO$_2$ on 22 July, (b) correlations between OA/ΔCO$_2$ and O/C ratio for the period of 21–22 July. The data points between 08:00–18:00 on 22 July are colored by the time.
Fig. 7. Average size distributions of HOA and OOA for selected time ranges on 22 July.