Laboratory study on new particle formation from the reaction OH + SO$_2$: influence of experimental conditions, H$_2$O vapour, NH$_3$ and the amine tert-butylamine on the overall process

T. Berndt1, F. Stratmann1, M. Sipilä1,2,*, J. Vanhanen2, T. Petäjä2, J. Mikkilä2, A. Grüner1, G. Spindler1, R. Lee Mauldin III3, J. Curtius4, M. Kulmala2, and J. Heintzenberg1

1Leibniz-Institut für Troposphärenforschung e.V., Permoserstr. 15, 04318 Leipzig, Germany
2Department of Physics, University of Helsinki, P.O. Box 64, 00014, Hesinki, Finland
3Atmospheric Chemistry Division, Earth and Sun Systems Laboratory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-5000, USA
Laboratory study on new particle formation from the reaction OH + SO₂

T. Berndt et al.

6448
Abstract

Nucleation experiments starting from the reaction of OH radicals with SO\(_2\) have been performed in the IfT-LFT flow tube under atmospheric conditions at 293±0.5 K for a relative humidity of 13–61%. The presence of different additives (H\(_2\), CO, 1,3,5-trimethylbenzene) for adjusting the OH radical concentration and resulting OH levels in the range (4–300)·10\(^5\) molecule cm\(^{-3}\) did not influence the nucleation process itself. The number of detected particles as well as the threshold H\(_2\)SO\(_4\) concentration needed for nucleation was found to be strongly dependent on the counting efficiency of the used counting devices. High-sensitivity particle counters allowed the measurement of freshly nucleated particles with diameters down to about 1.5 nm. A parameterization of the experimental data was developed using power law equations for H\(_2\)SO\(_4\) and H\(_2\)O vapour. The exponent for H\(_2\)SO\(_4\) from different measurement series was in the range of 1.7–2.1 being in good agreement with those arising from analysis of nucleation events in the atmosphere. For increasing relative humidity, an increase of the particle number was observed. The exponent for H\(_2\)O vapour was found to be 3.1 representing a first estimate. Addition of 1.2·10\(^{11}\) molecule cm\(^{-3}\) or 1.2·10\(^{12}\) molecule cm\(^{-3}\) of NH\(_3\) (range of atmospheric NH\(_3\) peak concentrations) revealed that NH\(_3\) has a measurable, promoting effect on the nucleation rate under these conditions. The promoting effect was found to be more pronounced for relatively dry conditions. NH\(_3\) showed a contribution to particle growth. Adding the amine tert-butylamine instead of NH\(_3\), the enhancing impact for nucleation and particle growth appears to be stronger.

1 Introduction

Simultaneous measurements of newly formed ultra-fine particles and H\(_2\)SO\(_4\) in the lower troposphere reveal that new particle formation is strongly connected to the occurrence of H\(_2\)SO\(_4\) with concentrations of about 10\(^5\)–10\(^7\) molecule cm\(^{-3}\) (Weber et al., 1996; Sihto et al., 2006; Riipinen et al., 2007). As a result of these studies kinetic anal-
ysis shows that the production rate of new particles can be described by a power law equation for \(\text{H}_2\text{SO}_4 \) with an exponent in the range of 1–2. From a mechanistic point of view, an exponent of 1 for \(\text{H}_2\text{SO}_4 \) can be explained by activation of pre-existing clusters by \(\text{H}_2\text{SO}_4 \), and an exponent of 2 by a simple bimolecular step for \(\text{H}_2\text{SO}_4 \) being rate limiting in the course of nucleation (Kulmala et al., 2006; Sihto et al., 2006; Riipinen et al., 2007). For the bimolecular step, this finding suggests that the critical cluster consists of 2 \(\text{H}_2\text{SO}_4 \) molecules only. The range of \(\text{H}_2\text{SO}_4 \) concentration observed for nucleation events as well as the deduced \(\text{H}_2\text{SO}_4 \) cluster composition are in contradiction to the predictions of classical binary nucleation theory for \(\text{H}_2\text{SO}_4/\text{H}_2\text{O} \) (Kulmala et al., 1998).

Recently, the re-analysis of existing data sets from different measurement sites by Kuang et al. (2008) yielded an exponent of 2 within a very small range of uncertainty. This finding favours a bimolecular reaction of \(\text{H}_2\text{SO}_4 \) producing the critical cluster. The deduced rate coefficient for this step shows variation by three orders of magnitude. For explanation, Kuang et al. (2008) propose the existence of a further gas-phase species that co-nucleates with \(\text{H}_2\text{SO}_4 \) and stabilises the critical cluster. However, the influences of changing conditions for relative humidity and temperature on the nucleation process were not considered in their data analysis.

From laboratory measurements a relatively wide range for the number of \(\text{H}_2\text{SO}_4 \) molecules in the critical cluster (slope: \(\Delta \log(J)/\Delta \log([\text{H}_2\text{SO}_4]) \)) as well as for the threshold \(\text{H}_2\text{SO}_4 \) concentration needed for nucleation is reported. For experiments using \(\text{H}_2\text{SO}_4 \) from a liquid source, nucleation for different relative humidities was detectable for concentrations above \(10^9–10^{10} \) molecule cm\(^{-3} \) (Wyslouzil et al., 1991; Viisanen et al., 1997; Ball et al., 1999; Zhang et al., 2004). It was concluded from particle number measurements as a function of \(\text{H}_2\text{SO}_4 \) concentration that 4–30 molecules of \(\text{H}_2\text{SO}_4 \) are present in the critical cluster.

Experiments starting from the reaction of \(\text{OH} \) radicals with \(\text{SO}_2 \) for in-situ \(\text{H}_2\text{SO}_4 \) formation by Young et al. (2008) yielded threshold \(\text{H}_2\text{SO}_4 \) concentrations needed for nucleation of \(10^8–10^9 \) molecule cm\(^{-3} \). From measured slopes \(\Delta \log(J)/\Delta \log([\text{H}_2\text{SO}_4]) \) the researchers concluded that the critical cluster contains 3–8 \(\text{H}_2\text{SO}_4 \) molecules.
From our laboratory, however, using also the reaction of OH radicals with SO$_2$ for H$_2$SO$_4$ formation (Berndt et al., 2005), experimental evidence for the formation of new particles was found for H$_2$SO$_4$ concentrations of $\sim 10^7$ molecule cm$^{-3}$. The analysis of integral number measurements by means of commercially available UCPCs revealed that measured slopes of log(N) vs. log([H$_2$SO$_4$]) were affected by the decreasing size-dependent counting efficiency of the UCPCs used for dp<3 nm leading to an overestimation of the slope log(N) vs. log([H$_2$SO$_4$]). Therefore, any discussions regarding the composition of the critical cluster have been omitted so far (Berndt et al., 2005).

Very recently, Sipilä et al. (2010) showed experimentally that with the help of high efficiency particle counters (Sipilä et al., 2009; Vanhanen, 2009) new particle formation can be observed in the laboratory for H$_2$SO$_4$ concentrations down to $\sim 10^6$ molecule cm$^{-3}$. As an output of this study, there exists no clear discrepancy in the results of nucleation experiments using either H$_2$SO$_4$ from a liquid reservoir or producing H$_2$SO$_4$ in situ via the reaction of OH radicals with SO$_2$. This finding pushes back the possible role of HSO$_5$ products in the nucleation process (Friend et al., 1980; Berndt et al., 2008; Laaksonen et al., 2008). An average value $\Delta \log(J)/\Delta \log([H_2SO_4])=1.5$ for all measurement series is given (Sipilä et al., 2010). Differences of these findings to former studies in the literature can be explained by insufficient counting efficiency, too short growth times and unexpected high H$_2$SO$_4$ losses, especially for increased H$_2$SO$_4$ concentrations, affecting all experiments and their results thus far.

The primary aim of this work is to investigate the possible role of H$_2$O vapour and NH$_3$ for new particle formation using high efficiency particle counters (detection limit of ~ 1.5 nm mobility diameter) as well as DMPS measurements for investigations at relatively high H$_2$SO$_4$ concentrations (relatively high particle numbers with large diameter). NH$_3$ is believed to represent a third body in the atmospheric nucleation process and theoretical studies proposed that atmospheric mixing ratios of NH$_3$ at pptv-level can stabilize the critical cluster (Coffman and Hegg, 1995; Korhonen et al., 1999). This idea has been supported by Ball et al. (1999) showing experimentally that tens of pptv of NH$_3$ enhances considerably the nucleation rate at a relative humidity of ~ 5 or 15%
and for H$_2$SO$_4$ concentrations in the nucleation zone of >5·1010 molecule cm$^{-3}$. More recently, a re-evaluation at theoretical level shows that even a mixing ratio of 1–10 ppbv NH$_3$ is not able to trigger nucleation at 295 K unless the H$_2$SO$_4$ concentration accounts for at least 109 molecule cm$^{-3}$ (Merikanto et al., 2007). Benson et al. (2009) published experimental data for a temperature of 288 K showing an up to thousand-fold increase of the nucleation rate in the case of added NH$_3$ at levels of 10–50 ppbv under conditions of 108–109 molecule cm$^{-3}$ of H$_2$SO$_4$ in the system. The nucleation-enhancing effect by NH$_3$ increased with decreasing H$_2$SO$_4$ concentrations and decreasing relative humidity. Hanson and Eisele (2002) describe measurements of clusters consisting of H$_2$SO$_4$ and NH$_3$. At 285 K and for H$_2$SO$_4$ and NH$_3$ concentrations of 1.9·109 and 3.5·109 molecule cm$^{-3}$, respectively, several 105 cluster cm$^{-3}$ were detected. Generally, NH$_3$ containing clusters were found being more stable than H$_2$SO$_4$ clusters in absence of NH$_3$. A critical cluster composition of 2 H$_2$SO$_4$ molecules and 1 NH$_3$ molecule is favoured.

Kurten et al. (2008) performed a comparative study regarding the role of NH$_3$ and a series of amines in the atmospheric nucleation process by means of quantum chemical methods. It was concluded that amines can more efficiently support the nucleation than NH$_3$ as the estimated 2–3 order of magnitude lower amine concentrations in atmosphere are overcompensated by the amine-H$_2$SO$_4$ complexes being much stronger bonded.

In a case study, using tert-butylamine as an example, also first experimental results regarding the role of amines for nucleation are presented here.

2 Experimental

The nucleation experiments have been carried out in the atmospheric pressure flow-tube IfT-LFT (i.d. 8 cm; length 505 cm) at 293±0.5 K (Berndt et al., 2005). The flow tube consists of a first section (56 cm) that includes the inlet system for gas input (humidified
air premixed with SO$_2$ from a calibration gas mixture, O$_3$ from an ozone generator outside of the flow tube and the OH scavengers H$_2$, CO or 1,3,5-trimethylbenzene). The second section with a length of 344 cm (middle section) is equipped with 8 UV lamps (Hg-lamps made of quartz-glass PN235 with a cut-off wavelength of 210 nm) for a homogeneous irradiation of the tube. At the end of a third, non-irradiated section (105 cm) the sampling outlets are attached.

Relative humidity was measured by means of a humidity sensor (Vaisala), O$_3$ and SO$_2$ by means of gas monitors (Thermo Environmental Instruments: 49C and 43C) or by long-path UV absorption spectroscopy (Perkin-Elmer: Lambda 800) using a gas cell with a White-mirror optics adjusted at a path-length of 512 cm.

As the carrier gas served high-purity synthetic air (99.9999999%, Linde and further purification with GateKeeper CE-500KF-O-4R, AERONEX). Stated output gas impurity from GateKeeper is <500 ppt (\(\sim1.2\cdot10^{10}\) molecule cm$^{-3}$) for NMHCs, H$_2$O and CO$_2$ in sum. The NH$_3$ concentration in the carrier gas was found to be below the stated detection limit of $2.5\cdot10^9$ molecule cm$^{-3}$ measured by means of a trace gas monitor TGA 310 (OMNISENS).

O$_3$ was produced outside of the flow tube by passing a small fraction of the carrier gas through an ozone generator (UVP OG-2). SO$_2$ was taken from a 1 ppmv or 10 ppmv calibration mixture in N$_2$ (Messer). The water needed for the gas humidifier was obtained from an ultrapure water system (Barnstead, resistivity: 17.4 MΩ cm). CO (99.997%, Air Liquide), 1,3,5-trimethylbenzene (99%, Fluka), NH$_3$ (Merck, >99.9%) and tert-butylamine (Fluka, >99.5%) diluted with a carrier gas were supplied by a gas metering unit. H$_2$ (99.999%, Messer) was directly added to the carrier gas flow. Online GC-FID connected with a cryo-enrichment device (detection limit for organics: a few 10^9 molecule cm$^{-3}$ depending on the chemical structure) was applied for measuring the consumption of 1,3,5-trimethylbenzene. Initial reactant concentrations were (unit: molecule cm$^{-3}$); O$_3$: (3.6–4.4)$\cdot10^{11}$; SO$_2$: (0.21–104)$\cdot10^{10}$; CO: $2.1\cdot10^{14}$; 1,3,5-trimethylbenzene: $8.4\cdot10^{11}$; H$_2$: (1.77–240)$\cdot10^{15}$. The conversion of O$_3$ covered the range of 3.1–42%.
The total gas flow inside the IfT-LFT was set at 3.33, 10, 11, 20, 30, 40, or 50 litre min$^{-1}$ STP resulting in a bulk residence time in the irradiated middle sections of 290, 97, 88, 48, 32, 24, or 19.3 s, respectively. The corresponding bulk residence times for middle and end section are 378, 126, 115, 62, 42, 34, or 25.2 s, respectively. All gas flows were set by means of calibrated gas flow controllers (MKS 1259/1179) and the pressure in the tube was measured using a capacitive manometer (Baratron).

For integral particle measurements a butanol-based UCPC (TSI 3025) as well as a H$_2$O-based UCPC (TSI 3786) have been applied. Measuring particle size distributions, a differential mobility particle sizer (DMPS) consisting of a Vienna-type DMA and a butanol-based UCPC (TSI 3025) were used. For retrieving the size information from the measured mobility distributions, an inversion algorithm according to Stratmann and Wiedensohler (1996) was applied. Besides the bipolar equilibrium charge distribution, in the inversion algorithm, experimentally determined DMA transfer functions and CPC counting efficiencies, and particle losses in the sampling lines are accounted for.

2.1 High sensitivity particle measurements

A pulse height analysing ultrafine condensation particle counter, PHA-UCPC, (Weber et al., 1995) as well as a mixing-type CPC, M-CPC (Vanhanen, 2009), came into operation allowing the detection of particles with a diameter down to about 1.5 nm. The PHA-UCPC comprises a butanol-based UCPC (TSI 3025A) with modified white light optics and a multi-channel analyser (Dick et al., 2000). Pulse height analysis technique allows distinguishing between homogeneously nucleated droplets and droplets formed by heterogeneous nucleation on particles with sizes below 2 nm in mobility diameter (Sipilä et al., 2008, 2009). Therefore, very high butanol super-saturations can be used to maximize the detection efficiency at sub-3 nm size range. The saturator temperature of the UCPC was increased from nominal 37°C up to 43°C. Condenser temperature was kept at 10°C. Solving heat and mass transfer equations yielded the maximum saturation ratio of S \approx 4.0 (in nominal operation settings S \approx 3.1). The detection efficiency – MCA channel relation of the PHA-UCPC was calibrated using ammonium sulphate
particles classified in a high resolution DMA. Since the pulse height response is sensitive to particle chemical composition, the particle diameter – MCA channel relation was corrected using sulphuric acid particles produced in IfT-LFT and classified with a very short (11 mm) Vienna-type DMA (Sipilä et al., 2010). A detailed description of the modified PHA-UCPC and its calibration as well as data inversion procedures are given in Sipilä et al. (2009).

The M-CPC comprises a particle size magnifier, PSM (Vanhanen et al., 2009), and an external CPC (TSI-3010). PSM is used to activate and grow sub 2 nm particles to sizes detectable with a simple CPC. Design of the PSM bases on the work of Sgro and Fernández de la Mora (2004). As the working fluid, diethylene glycol is used. Choice of the working fluid bases on the findings by Iida et al. (2009) who concluded that due to its high surface tension and low saturation vapour pressure a high saturation ratio is acquired without homogeneous nucleation. Thus, the activation of existing seed aerosol down to sizes well below 2 nm becomes possible in absence of background from homogeneous nucleation. Calibration results (Vanhanen et al., 2009) have shown that PSM detects charged particles with unity approaching efficiency (practically diffusion loss limited) down to ∼1.5 nm. Below that still >50% of the smallest calibration ion, tetramethyl-ammonium-ion, with mobility equivalent diameter of 1.05 nm, was activated in the PSM in comparison to reference electrometer. Since the particle sizes in our experiments ranged up from ∼1.3 nm, we assume the unity detection efficiency for the M-CPC in this study.

2.2 CI-MS measurements

Sulfuric acid in the IfT-LFT was measured with a Chemical Ionization Mass spectrometer, CI-MS (Eisele and Tanner, 1993; Mauldin et al., 1998; Petäjä et al., 2008). In short, the measurement proceeds as follows. The sulfuric acid in the sample flow is chemically ionized by (NO$_3^-$) ions. The reagent ions are generated by nitric acid and a 241Am alpha source and mixed in a controlled manner in a drift tube utilizing concentric
sheath and sample flows together with electrostatic lenses.

Prior to entering the vacuum system, the chemically ionized sulfuric acid molecules pass through a layer of dry nitrogen flow in order to dehydrate the sulfuric acid. In the vacuum system the sulfuric acid clusters are dissociated to the core ions by collisions with the nitrogen gas seeping through the pinhole in the collision-dissociation chamber (Eisele and Tanner, 1993). The sample beam is collimated with a set of conical octopoles, mass filtered with a quadrupole and detected with a channeltron. The sulfuric acid concentration is determined by the ratio between the signals at mass 97 amu (HSO$_4^-$) and the reagent ion at mass 62 amu (NO$_3^-$) multiplied by the instrument and setup dependent calibration factor.

The calibration factor is determined by photolyzing ambient water vapor with a mercury lamp to generate a known amount of OH radicals in front of the inlet (e.g. Mauldin et al., 2001). The produced OH radicals subsequently convert isotopically labeled 34SO$_2$ into labeled sulfuric acid in a well defined reaction time yielding finally after ionization (H34SO$_4^-$). A nominal detection limit of the CI-MS instrument is 5·104 molecule cm$^{-3}$ for a 5 min integration period.

2.3 Determination of H$_2$SO$_4$ concentration

Besides CIMS, H$_2$SO$_4$ concentrations were also determined using model calculations according to the following reaction scheme (Berndt et al., 2005):

\begin{align*}
O_3 & \rightarrow \ldots \rightarrow 2\ OH \quad (1) \\
OH + H_2 & \rightarrow \text{products} \quad (1a) \\
OH + CO & \rightarrow \text{products} \quad (1b) \\
OH + 1,3,5-\text{trimethylbenzene} & \rightarrow \text{organic products} \quad (1c) \\
OH + SO_2 & \rightarrow \ldots \rightarrow H_2SO_4 \quad (2)
\end{align*}
H₂SO₄ → wall

For each experiment the effective photolysis rate coefficient k_1 was determined separately measuring the O₃ decay. In order to adjust the needed OH radical level in the flow tube, either H₂, CO or 1,3,5-trimethylbenzene were added consuming the major fraction of generated OH radicals. Rate coefficients (unit: cm³ molecule⁻¹ s⁻¹) $k_{2a}=6.7·10^{-15}$, $k_{2b}=2.4·10^{-13}$ (DeMore et al., 1997), $k_{2c}=5.7·10^{-11}$ (Kramp and Paulson, 1998) and $k_3=1.2·10^{-12}$ (Zellner, 1978) were taken from literature. From results given by Stockwell and Calvert (1983) it can be concluded that more than 80% of the reacted SO₂ is converted to H₂SO₄. Therefore, the assumption of a formation yield of unity for H₂SO₄ from the overall process of SO₂ oxidation (pathway 3) should be applicable. For the wall loss of H₂SO₄, a diffusion controlled process is assumed applying $k_4=3.65·D(H₂SO₄)/r^2$ with the diffusion coefficient $D(H₂SO₄)$ given by Hanson and Eisele (2000). The stated H₂SO₄ concentrations represent average values for the irradiated middle section.

3 Results and discussion

3.1 Model evaluation

Experimentally it is difficult to measure H₂SO₄ concentration directly in the nucleation zone. Loss processes occurring during the transfer of H₂SO₄ from the nucleation zone to the detector make corrections necessary which represent an additional source of uncertainties. In this study, H₂SO₄ concentrations are calculated using the measurements of O₃ conversion in the irradiated middle section in combination with a kinetic scheme with well-established rate coefficients and well-known concentrations for OH radical consumers (H₂, CO, 1,3,5-trimethylbenzene) and SO₂.

In order to show the reliability of the modelling for H₂SO₄ determination the IfT-LFT outlet was directly attached to a CI-MS for H₂SO₄ measurements. Figure 1 shows...
the comparison of measured H$_2$SO$_4$ concentrations with modelling results for H$_2$SO$_4$ concentrations at the outlet of the IfT-LFT for a total gas flow of 11 litre min$^{-1}$ STP and a relative humidity of 10, 22 or 44%. In the given data the diffusion controlled wall loss in the tubing between IfT-LFT outlet and the inlet of the CI-MS has been taken into account (length: 97 cm, H$_2$SO$_4$ loss: 41%). Error bars represent the total uncertainty of H$_2$SO$_4$ measurements being approximately a factor of 2. Generally, the modelling results for [H$_2$SO$_4$] are in good agreement with the CI-MS H$_2$SO$_4$ measurements. For relatively high H$_2$SO$_4$ concentrations ([H$_2$SO$_4$] > (3–5)·107 molecule cm$^{-3}$) increasing deviation of measured concentrations from the expected 1:1 line is visible. This behaviour is more pronounced for high r.h. in the system. Increasing the total gas flow from 11 to 20 litre min$^{-1}$ STP (i.e. lowering the residence time in the middle and end section from 115 to 62 s) results in less curvature of CI-MS [H$_2$SO$_4$] vs. modelled [H$_2$SO$_4$] in the region of high H$_2$SO$_4$ concentrations, cf. Sipilä et al. (2010). From the kinetic point of view, this behaviour can be explained by an additional H$_2$SO$_4$ consuming step (not accounted for in the model) being more important in the case of high H$_2$SO$_4$ concentrations and long residence times. This step has to be of an order higher than 1. In the same way as the additional loss of H$_2$SO$_4$ out of the gas phase was observed, particle formation became more important with increasing residence time, H$_2$SO$_4$ concentrations and r.h., see explanations later. At least qualitatively, the disappearance of gas-phase H$_2$SO$_4$ can be explained by the formation of observed particles (and also by H$_2$SO$_4$ containing clusters being necessarily produced in the course of particle formation).

The agreement between measured and modelled H$_2$SO$_4$ concentrations at the IfT-LFT outlet is good for H$_2$SO$_4$ concentrations up to (3–5)·107 molecule cm$^{-3}$ and a total flow of 11 litre min$^{-1}$ STP. For higher flow rates this limit is shifted to higher H$_2$SO$_4$ concentrations, see Sipilä et al. (2010).
3.2 Adjustment of OH concentrations by H₂, CO or 1,3,5-trimethylbenzene and the purity of the carrier gas

The predominant fraction of generated OH radicals (via pathway 1) is consumed by H₂, CO or 1,3,5-trimethylbenzene in order to lower the OH radical concentration in the flow tube close to atmospheric levels. In each case, the concentrations of the additives are high enough that consumption of OH radicals by diffusion controlled wall loss can be neglected in the modelling scheme, i.e. for example: \(k_{2a}[H_2] \gg k_{\text{wall,OH}} \). In Fig. 2 measured particle numbers are depicted from experiments at r.h. = 22% with a total gas flow of 3.33 litre min⁻¹ STP using the 3 different additives. Maximum OH concentrations are \(2 \cdot 10^7 \) ([CO] = 2.1 \cdot 10^{14}), \(8 \cdot 10^6 \) ([1,3,5-trimethylbenzene] = 8.4 \cdot 10^{11}), \(4 \cdot 10^5 \) ([H₂] = 2.4 \cdot 10^{17}) and \(3 \cdot 10^7 \) ([H₂] = 1.77 \cdot 10^{15}), all concentrations in molecule cm⁻³. The particle measurements do not show any dependence on the chemical nature and the concentration of the additive used. This indicates that the additives themselves or reaction products of those are not significantly involved in the nucleation process. In the case of 1,3,5-trimethylbenzene, the disappearance of this organic was followed by means of a GC-FID connected with a cryo-enrichment technique. The obtained ratio of reacted 1,3,5-trimethylbenzene and O₃, \(\Delta[1,3,5\text{-trimethylbenzene}] / \Delta[O_3] = 2 \pm 0.4 \), supports the validity of the reaction scheme, cf. Sect. 2.3. It is to be noted, that a change of the OH concentration from \(4 \cdot 10^5 \) molecule cm⁻³ to \(3 \cdot 10^7 \) molecule cm⁻³ does not influence the number of particles detected. That indicates that also oxidation products arising from any gas impurities (with nearly stable background concentrations) do not significantly contribute to the particle formation observed, as an increase of the OH concentration by about 2 orders of magnitude causes also an up to 2 orders of magnitude higher formation rate of the oxidation products from these impurities.

The used carrier gas after purification had a stated residual amount of impurities of \(< 1.2 \cdot 10^{10} \) molecule cm⁻³ (NMHCs, H₂O and CO₂ in sum). By means of online GC-FID technique including cryo-enrichment (detection limit for organics: a few \(10^9 \) molecule cm⁻³) no signals for organic impurities was observed. Also, as the result
of the carrier-gas analysis using a high sensitivity proton-transfer reaction mass spectrometer (PTR-MS, Hansel et al., 1998) operating in the range 50–250 Dalton, there was no indication for the occurrence of any impurities pointing at impurity concentrations clearly below 10^9 molecule cm$^{-3}$ (see Sipilä et al., 2010). But nevertheless, it is impossible to rule out any impurities being out of range of detectable substances for the analytical techniques applied here.

3.3 Importance of residence time in nucleation experiments

The experimentally observed curves for particle number vs. $[\text{H}_2\text{SO}_4]$ measured by means of a butanol-based UCPC (TSI 3025) showed a strong dependence on the residence time of the reaction gas in the flow tube. Scaling by time, i.e. dividing measured particle numbers by the residence time in the irradiated middle section, reveals that also the curves for nucleation rate vs. $[\text{H}_2\text{SO}_4]$ are clearly dependent on the residence time, see measurements at r.h. = 22% in Fig. 3. The nucleation rate in Fig. 3 is stated as “apparent”, for explanation see below. The measured particle numbers represent the overall result of i) the nucleation process itself, ii) the growth of stable nuclei towards the size detectable with the particle counter used, and iii) the counting efficiency depending on the final particle size. From the data given in Fig. 3 it is obvious that the growth process (coupled with the size-dependent counting efficiency of the counter) governs the particle number measured. The deduced values for J increase with increasing residence time in the flow tube, e.g. for $[\text{H}_2\text{SO}_4]=6 \cdot 10^7$ molecule cm$^{-3}$ J rises from 0.1 cm$^{-3}$ s$^{-1}$ (19.3 s) to 100 cm$^{-3}$ s$^{-1}$ (290 s). Consequently, the resulting nucleation rates represent only “apparent” values for J being clearly influenced by the growth process and the ability of the used counter to detect small particles. Measurements of the particle size distribution for a residence time of 290 s and H_2SO_4 concentrations of $\sim 10^8$ molecule cm$^{-3}$ showed mean particle diameters of ~ 3 nm. That is the stated cut-off size of the used butanol-based UCPC (TSI 3025). In this range of H_2SO_4 concentration the total particle numbers arising from integrating over the size distributions
were in reasonable agreement with the numbers of integral measurements. This fact suggests that for these experimental conditions (long residence time and relatively high concentrations of H$_2$SO$_4$ for effective growth) the majority of newly formed particles are measurable by means of the UCPC (TSI 3025) used, and consequently, the resulting nucleation rates J are less affected by particle growth and decreasing counting efficiency.

In a second set of experiments at r.h.=22%, particle measurements have been performed by means of a PHA-UCPC and a M-CPC (both counters with a cut-off size down to 1.5 nm in mobility diameter) instead of the butanol-based UCPC (TSI 3025) as used before, cf. Fig. 4. Using these high sensitivity counters no clear dependence of derived nucleation rates on the residence time in the flow tube was observed. Obviously, in this case, particle growth is not the limiting step and the counting efficiency is high enough that the majority of formed particles can be detected. A comparative study using PHA-UCPC, M-CPC and the butanol-based UCPC (TSI 3025) is given by Sipilä et al. (2010). A rough estimate regarding the particle loss in the IfT-LFT was carried out assuming a loss process starting in the middle of the irradiated section to the point of detection. For the 3 flow rates used, the loss of 1.5 nm particles amounts to 31% (11 litre min$^{-1}$ STP), 13% (30 litre min$^{-1}$ STP), or 10% (40 litre min$^{-1}$ STP). For larger particles the losses are of less importance. Corrections for particle loss have not been included. Linear regression analysis has been performed according to:

$$
\log(J/cm^{-3}s^{-1}) = \log(k/cm^{-3}s^{-1}) + \alpha \log([H_2SO_4]/molecule cm^{-3})
$$

(4)

(J=nucleation rate). The application of a power equation according to Eq. (5) (here in logarithmic form) is in line with the nucleation theorem (Kashchiev, 1982). In this context, the parameter α stands for the number of H$_2$SO$_4$ molecules in the critical cluster. The analysis yielded $\alpha=1.80\pm0.06$ and $k=1.3\cdot10^{-12}$ cm$^{-3}$ s$^{-1}$ (full line in Fig. 4). Setting $\alpha=2$ as a fixed value, $k=4.2\cdot10^{-14}$ cm$^{-3}$ s$^{-1}$ follows (dashed line in Fig. 4). For the individual data series in Fig. 4, α is in the range of 1.7–2.1. Constraining α to an integer value, i.e. $\alpha=1$ or 2, a number of one or two H$_2$SO$_4$ molecules in the critical cluster
follows assuming that the nucleation step is rate limiting. The presence of one or two
H$_2$SO$_4$ molecules in the critical cluster is in clear contradiction to the reported values
from former laboratory studies, i.e. 4–30 (Wyslouzil et al., 1991), 21 or 10 (Viisanen
et al., 1997), 7–13 (Ball et al., 1999), 3–8 (Young et al., 2008), 9–10 (Benson et al.,
2009) but in line with Sipilä et al. (2010) using also particle measurements by means
of PHA-UCPC and M-CPC. The agreement of α-values from this study with those re-
ported from observations in the atmosphere (Weber et al., 1996; Kulmala et al., 2006;
Sihto et al., 2006, Riipinen et al., 2007, Kuang et al., 2008) is very good. Kuang et
al. (2008) reported pre-exponential K-values according to $J=K[H_2SO_4]^2$ from different
measurement sites being in the range of (1–1600)$\cdot10^{-14}$ cm3s$^{-1}$. The value from this
study, $k=4.2\cdot10^{-14}$ cm$^{-3}$s$^{-1}$ for $\alpha=2$ according to Eq. (5), is at the lower end of the
range derived from atmospheric measurements. (Note, the different units for K and k
 arise from the logarithmic notation in Eq. (5), the numerical values are comparable).
Differences in the pre-exponential factors can be probably explained by different H$_2$O
concentrations and temperatures during the nucleation events as well as by the occur-
rence of elevated concentrations of bases (NH$_3$ or amines) at the different sites, see
later.

3.4 Comparison of IfT-LFT results with nucleation data by Young et al. (2008)

As a case study, results from nucleation experiments by Young et al. (2008) are com-
pared with our findings from the IfT-LFT at nearly comparable, experimental conditions.
Young et al. (2008) conducted nucleation experiments starting also from OH+SO$_2$ in a
flow reactor using Chemical Ionisation Mass Spectrometry (CI-MS) measurements for
the determination of H$_2$SO$_4$ concentrations. OH radicals are formed by UV-photolysis
of H$_2$O directly at the beginning of the nucleation zone. Figure 5 shows measured
particle numbers as a function of end [H$_2$SO$_4$] at 288 K by Young et al. (2008) and
the comparable data from IfT-LFT as a function of [H$_2$SO$_4$] at 293 K. In both studies
the relative humidity was set to 15%. Young et al. (2008) used a residence time of
19 s. In our experiment the residence time in the irradiated middle section was 19.3 s.
and 25.2 s in total for the middle and end section together. The same kind of particle counter (TSI 3786) was used in both experiments.

When comparing the results by the TSI 3786 counter for a particular concentration of \([\text{H}_2\text{SO}_4]\) (e.g. \(2 \times 10^8\) molecule cm\(^{-3}\)) a difference in the integral particle numbers of 2–3 orders of magnitude between our measurements and the results of Young et al. (2008) is observed, cf. Fig. 5. This relatively large difference is mainly caused by the fact that the particle concentration is a steep function of \([\text{H}_2\text{SO}_4]\]. Trying to explain the differences in terms of the \(\text{H}_2\text{SO}_4\) concentrations, a difference of about a factor of 2 follows. Our \(\text{H}_2\text{SO}_4\) concentration represents an average value for the irradiated middle section of the IfT-LFT. On the other hand, data given by Young et al. (2008) represent the end \(\text{H}_2\text{SO}_4\) concentrations at the system outlet (the initial value is 2.4 times the end value). Furthermore, the axial \(\text{H}_2\text{SO}_4\) profiles in both tubes are not identical due to the different approaches applied for \(\text{H}_2\text{SO}_4\) production (point source for \(\text{H}_2\text{SO}_4\) in the experiment by Young et al. (2008) and continuous \(\text{H}_2\text{SO}_4\) formation in the IfT-LFT). The different temperatures used in the two experiments, 288 K or 293 K, can also influence the results. Generally, higher particle numbers are expected for lower temperatures. In conclusion, when considering the different definitions of \(\text{H}_2\text{SO}_4\) concentrations, the different concentration profiles in the flow reactors, and the differences in temperature, it can be stated that results from the two experiments agree within their uncertainties applying the same kind of a particle counter (TSI 3786).

But, comparing the results of integral particle measurements done by the \(\text{H}_2\text{O}\)-based TSI 3786 counter with the PHA-UCPC and the M-CPC a clear disagreement is observed regarding both, the threshold \(\text{H}_2\text{SO}_4\) concentrations needed for nucleation, and the slopes, \(\Delta \log(N)/\Delta \log([\text{H}_2\text{SO}_4]) = 7.9\) (TSI 3786); 2.0 (PHA-UCPC); 1.8 (M-CPC), cf. also Sipilä et al. (2010). For the short residence time used here as well as for the relatively dry conditions only a small fraction of nucleated particles is able to grow into the detection window of the TSI 3786 counter. This leads to a clear overestimation of the threshold \(\text{H}_2\text{SO}_4\) concentrations as well as too steep slopes \(\Delta \log(N)/\Delta \log([\text{H}_2\text{SO}_4])\).
3.5 Influence of H$_2$O vapour

3.5.1 Nucleation rate

In the next set of experiments, particle measurements by means of the PHA-UCPC and the M-CPC were repeated for r.h. higher than the standard value of 22%, trying to explore the importance of H$_2$O vapour concentration in the process of new particle formation. As a result of a former study using our experimental approach (Berndt et al., 2005), a distinct increase of the particle number with increasing r.h. was observed. In the present paper, focus was on data for r.h. $>20\%$ being the most relevant humidities for atmospheric conditions. Fig. 6 shows experimental results of the nucleation rate as a function of H$_2$SO$_4$ concentrations for a total flow of 11 litre min$^{-1}$ and 3 different relative humidities. Nucleation rates were obtained by dividing measured particle numbers by the residence time in the irradiated middle section of 88 s. By means of both counters a clear increase of nucleation rate with increasing r.h. is visible. The results from the PHA-UCPC suggesting stronger r.h. dependence compared to the M-CPC data. Currently, no explanation for this different behaviour can be given.

For simultaneous determination of the exponent for H$_2$SO$_4$ (α) and for H$_2$O vapour (β) in Eq. (6) all data were used.

$$J = k([\text{H}_2\text{SO}_4]/\text{molecule cm}^{-3})^{\alpha}([\text{H}_2\text{O}]/10^{15}\text{molecule cm}^{-3})^{\beta}$$

(5)

In order to convert the values for r.h. at 293 K to absolute H$_2$O vapour concentrations a saturation vapour pressure of 23.41 mbar was applied (Goff, 1946). For carrying out maximum Likelihood estimates of α, β, and k a damped Gauss-Newton technique was applied (Johnson, 1980). In this least-squares method relative variances were minimised instead of absolute variances, because the numerical values of derived nucleation rates J span several orders of magnitude.

$$\sum_{i}(J_{i}^{\text{model}}/J_{i}^{\text{measured}} - 1)^2 = \min$$

(6)
This approach ensures that relatively small values in the least-square sum are not undervalued.

According to Eq. (6) the parameter fitting yielded $\alpha=1.86\pm0.03$, $\beta=3.08\pm0.09$ and $k=(1.05\pm0.98)\cdot10^{-19}$ cm$^{-3}$ s$^{-1}$. The dashed lines in Fig. 6 show the modelling results using Eq. (6). Note, α values of 1.6–2.0 were obtained for the individual measurement series by means of linear regression analysis according to Eq. (5). It is obvious that the data measured by the PHA-UCPC at r.h.=61% are not adequately described using Eq. (6). On the other hand, excluding this data set in the fitting procedure does not change the fitting results significantly ($\alpha=1.88\pm0.03$, $\beta=3.00\pm0.08$ and $k=(1.03\pm0.84)\cdot10^{-19}$ cm$^{-3}$ s$^{-1}$). The exponent $\alpha=1.86$ for H$_2$SO$_4$ is nearly the same as found according to Eq. (5) for the data set at r.h.=22% given here and by Sipilä et al. (2010). The exponent for H$_2$O vapour, $\beta=3.08$, points at a strong promoting effect of H$_2$O vapour for nucleation. Analysis of atmospheric nucleation, however, shows an inhibiting overall effect of H$_2$O vapour on the nucleation process (Laaksonen et al., 2008), probably caused by any other, indirect effects governing the overall influence of H$_2$O vapour. From all other laboratory experiments, also an enhancing effect of H$_2$O vapour is reported. The deduced number of H$_2$O in the critical cluster (corresponding to β) span a wide range of values, i.e. ~9 (Wyslouzil et al., 1991), 4–6 (Ball et al., 1999), 6–15 (Benson et al., 1999).

Simulated nucleation rates according to Eq. (6) for r.h.=22% ([H$_2$O]=1.3$\cdot10^{17}$ molecule cm$^{-3}$) and r.h.=61% ([H$_2$O]=3.5$\cdot10^{17}$ molecule cm$^{-3}$) have been compared with atmospheric nucleation rates as observed in Heidelberg and Hyytiälä (Riipinen et al., 2007). The agreement between simulation and atmospheric observations is good allowing in principle the application of this parameterisation in the framework of atmospheric nucleation modelling. The parameterization given here is based on experimental data obtained at 293 K. Atmospheric measurements, however, have been performed in the range of lower temperatures with no definite specification. Lowering of the temperature should cause an increase of the effective rate coefficient k in Eq. (6). On the other hand, at lower temperatures the H$_2$O vapour concentration in
the atmosphere can drop significantly leading to a decrease of the H$_2$O term in Eq. (6). Therefore, a more detailed analysis of atmospheric data considering the influence of r.h. (H$_2$O vapour concentration), temperature and background aerosol concentrations and temperature-dependent measurements from the laboratory are needed.

3.5.2 Particle growth

As a result of PHA-UCPC analysis an increase of the mean particle diameter with increasing r.h. was visible, i.e. beside the nucleation rate also the growth process is significantly enhanced by H$_2$O vapour. In Fig. 7 the PHA-UCPC data along with results from DMPS measurements for elevated H$_2$SO$_4$ concentrations are depicted. Qualitatively, mean particle diameters derived by both techniques show a similar trend. It is to be noted that diameters of ∼2 nm derived from DMPS measurements can be influenced by the inaccuracy of the CPC counting efficiency applied in the inversion algorithm.

3.6 Addition of bases

3.6.1 NH$_3$

In experiments with NH$_3$ addition the measurements of NH$_3$ concentrations have been performed at the inlet and the outlet of IfT-LFT by means of an OMNISENS TGA310 system (stated detection limit: 2.5·109 molecule cm$^{-3}$). All measurements shown here were conducted with a total gas flow of 30 litre min$^{-1}$ STP resulting in a relatively short residence time in the flow tube, 32 s in the irradiated middle section. Under this flow condition, after a waiting time of about 1 h (to equilibrate gas and walls) the measured NH$_3$ concentrations at the inlet and the outlet were nearly identical. Distinct differences between inlet- and outlet-concentrations were observed in the case of flow rates of 10 litre min$^{-1}$ STP and below. Before starting an experiment (without NH$_3$ additions) no NH$_3$ background signal was measureable. For maintenance (avoidance of NH$_3$ memory effects), beside the standard procedure between the experiments and at night-
time (flushing with a small stream of dry carrier gas) the flow tube was also flushed under low pressure (10–20 mbar) from time to time and the jacket-temperature was set at 50°C.

Figure 8a and b show measurements of the particle number as a function of H$_2$SO$_4$ concentrations in absence and presence of a NH$_3$ addition of 1.2·1012 molecule cm$^{-3}$ for a relative humidity of 13% and 47%, respectively. A NH$_3$ concentration of 1.2·1012 molecule cm$^{-3}$ is representative for a maximum value in agricultural areas (Robarge et al., 2002). In the case of the highly populated area of New York, a mean NH$_3$ mixing ratio of 5 ppbv (1.2·1011 molecule cm$^{-3}$) is reported (Bari et al., 2003). Both NH$_3$ data represent peak concentrations in the atmosphere.

A comparison of the measured particle numbers in Fig. 8a and b without NH$_3$ addition shows that in the case of dry conditions (Fig. 8a, r.h.=13%; relatively small particles) TSI 3025 is able to detect only a small fraction of the particles counted by PHA-UCPC. For relatively wet conditions (Fig. 8b, r.h.=47%; relatively large particles) the measurement series from both counters are closer together and start to merge for high H$_2$SO$_4$ concentrations. Also here it is clearly seen that the counting efficiency of the chosen counter strongly influences the results, cf. explanations in the chapters before. Adding 1.2·1012 molecule cm$^{-3}$ NH$_3$ an increase of the particle number becomes visible for both counters. The rise of particle number is more pronounced in the case of dry conditions, i.e. 1–2 orders of magnitude at r.h.=13% (Fig. 8a) and only a factor of 2–5 at r.h.=47% (Fig. 8b). Qualitatively these findings are in line with experimental results by Benson et al. (2009) stating that in the case of NH$_3$ addition (5·1011 molecule cm$^{-3}$) the nucleation enhancing effect is distinctly higher for relatively dry conditions, i.e. enhancement by a factor of 1000 at r.h.=4% and by a factor of ~2 at r.h. 33%. Benson et al. (2009) also concluded that the deduced number of H$_2$SO$_4$ in the critical cluster is lowered in the presence of NH$_3$ indicating a stabilizing effect of the critical cluster. Our measurements did not show a clear change of the slope ∆log(N)/∆log([H$_2$SO$_4$]) as a result of NH$_3$ addition with exception of PHA-UCPC measurements at r.h.=13% suggesting a small rise of the slope. Benson et al. (2009)
used in their study a butanol-based TSI 3776 counter. It can be speculated that insufficient counting efficiency of the commercial counter (TSI 3776) affected again the derived slopes $\Delta \log(N)/\Delta \log([H_2SO_4])$ as given by Benson et al. (2009). In Fig. 9a and b size distribution measurements in absence and presence of NH$_3$ additions ($1.2 \cdot 10^{11}$ or $1.2 \cdot 10^{12}$ molecule cm$^{-3}$) at r.h. = 13% or 47%, respectively, are given. It is obvious that NH$_3$ addition leads to a signal increase in all size windows shifting the whole size distribution to higher mean diameters. As expected from the integral measurement (cf. Fig. 8a and b) the NH$_3$ effect appears to be much stronger in the case of low r.h.

Total particle numbers arising from integration over the size distributions increase in the series $1.1 \cdot 10^4$, $2.7 \cdot 10^5$, $2.1 \cdot 10^6$ cm$^{-3}$ (r.h. = 13%) and $4.4 \cdot 10^4$, $7.6 \cdot 10^4$, $2.9 \cdot 10^5$ cm$^{-3}$ (r.h. = 47%) for NH$_3$ additions of 0, $1.2 \cdot 10^{11}$ and $1.2 \cdot 10^{12}$ molecule cm$^{-3}$, respectively. The data with NH$_3$ additions point at small values for $\Delta \log(N)/\Delta \log([NH_3])$ being below or close to 1. This finding suggests that the critical clusters stabilized by NH$_3$ can consist of 1 molecule of NH$_3$ and 2 molecules of H$_2$SO$_4$ (for constant NH$_3$ addition: $\Delta \log(N)/\Delta \log([H_2SO_4]) \sim 2$). Hanson and Eisele (2002) favoured a critical cluster consisting of 1 molecule of NH$_3$ and 2 molecules of H$_2$SO$_4$ as a result of their cluster measurements in presence of NH$_3$ at 285 K. Benson et al. (2009) concluded that less than 2 NH$_3$ molecules are present in the critical cluster.

NH$_3$, the most abundant base in atmosphere shows a nucleation enhancing effect for relatively high concentrations close to atmospheric peak concentrations. From chemistry point view, acid-base interactions should cause this behaviour. It is not clear why the NH$_3$ effect is much more pronounced in the case of dry conditions. Probably, there is a competition of H$_2$O vapour (or any H$_2$O clusters) and NH$_3$ in the process of critical cluster stabilization. But this scenario is highly speculative at the moment and much more experimental work is needed. Especially from cluster measurements, more insight in the elementary steps determining the process of nucleation is necessary.
3.6.2 Tert-butylamine

Tert-butylamine represents an example of an arbitrary, primary amine. There are only a limited number of atmospheric amine measurements available in literature. Sellegri et al. (2003) reported trimethylamine concentrations in the order of 10^9 molecule cm$^{-3}$ measured at the boreal forest site in Hyytiälä. From a measurement site close to a dairy farm, concentrations in the order of 10^{12} molecule cm$^{-3}$ have been obtained for a couple of amines as butylamine, diethylamine and pyridine (Rabaud et al., 2003).

Beside the NH$_3$ data, in Fig. 9b the nucleation enhancing effect by tert-butylamine is demonstrated for relatively high amine concentrations being representative for areas with intensive cattle-breeding. It is to be noted that the given amine concentrations in the experiments are the theoretical (maximum) values after dilution of a gas mixture of tert-butylamine with carrier gas at the IfT-LFT entrance assuming no wall losses. Additions of $1.5 \cdot 10^{11}$ or $7.5 \cdot 10^{11}$ molecule cm$^{-3}$ of tert-butylamine show a much stronger effect on nucleation and growth than the comparable NH$_3$ addition. This behaviour is qualitatively in line with the predictions of quantum chemical methods given by Kurten et al. (2008). These data represent a first experimental observation regarding the possible role of amines for atmospheric nucleation and point to a significant nucleation-enhancing effect of amines at sites being close to local sources. Intended investigations including also secondary and tertiary amines with different alkyl chain lengths will bring more insight to what extent amines under atmospheric conditions can be important in competition with NH$_3$.

4 Summary

Nucleation experiments starting from the reaction of OH radicals with SO$_2$ have been performed in the IfT-LFT flow tube under atmospheric conditions at 293±0.5 K for a relative humidity of 13–61%. The agreement between measured and modelled H$_2$SO$_4$ concentrations at the IfT-LFT outlet for commonly used conditions was found to be
good suggesting that modelling is able to describe the H$_2$SO$_4$ concentrations in the reaction zone. The addition of H$_2$, CO or 1,3,5-trimethylbenzene in order to adjusting the OH radical concentration in the flow tube did not influence the nucleation process. Resulting OH radical concentrations were in the range of (4–300)\cdot105 molecule cm$^{-3}$.

The detected number of newly formed particles was found to be strongly dependent on the growth time and the detection efficiency of the particle counter used. High efficiency counters allowed detection of particles with diameters down to about 1.5 nm. The parameterization of measured particle numbers and derived nucleation rates was carried out using power law equations for H$_2$SO$_4$ and for H$_2$O vapour. For measurements at r.h. = 22% and different residence times the exponent for H$_2$SO$_4$ was in the range of 1.7–2.1. The overall best fit results in a H$_2$SO$_4$ exponent α=1.80±0.06. R.h.-dependent measurements showed a promoting effect of H$_2$O vapour for both the nucleation rate and particle growth. In the r.h. range of 22–61% the experimental data can be described according to:

$$J = 1.05 \cdot 10^{-19} \text{ cm}^{-3} \text{s}^{-1}([\text{H}_2\text{SO}_4]/\text{molecule cm}^{-3})^{1.86}([\text{H}_2\text{O}]/10^{15} \text{ molecule cm}^{-3})^{3.08} \quad (6a)$$

A comparison of modelling results with ambient measurements in Heidelberg and Hyytiälä (Riipinen et al., 2007) shows that the given parameterisation is able to describe atmospheric new particle formation as observed in the atmosphere. However, additional laboratory investigations as a function of temperature along with a more detailed analysis of atmospheric data as a function of r.h. (H$_2$O vapour concentration), temperature and background aerosol concentrations are needed to be able to predict nucleation rates at different temperatures.

The impact of atmospherically relevant bases, NH$_3$ and the sample amine tert-butylamine, was investigated using atmospheric peak concentrations for these substances. Addition of 1.2\cdot1011 or 1.2\cdot1012 molecule cm$^{-3}$ of NH$_3$ (NH$_3$ background <2.5\cdot109 molecule cm$^{-3}$) revealed that NH$_3$ has a promoting effect on the nucleation rate and particle growth. The enhancing effect was found to be more pronounced for relatively dry conditions, i.e. 1–2 orders of magnitude at r.h. = 13% and a factor of 2–5 at
r.h. = 47% (\([\text{NH}_3]\) = 1.2 \times 10^{12} \text{ molecule cm}^{-3}\). Explaining this behaviour, it can be speculated that probably there is a competition of H$_2$O vapour (or any H$_2$O clusters) and NH$_3$ in the process of critical cluster stabilization. Adding tert-butylamine (as an arbitrary sample amine) instead of NH$_3$, the enhancing effect for nucleation and particle growth was found to be much stronger. This finding is qualitatively in line with the predictions of quantum chemical methods given by Kurten et al. (2008).

It can be concluded that in the “base-polluted” atmosphere (mainly in areas with intensive cattle-breeding) the nucleation rate can be significantly higher than described for the “clean” case (\([\text{NH}_3]\) < 2.5 \times 10^9 \text{ molecule cm}^{-3}\, no detectable impurities) from the laboratory experiments without base additions.

Acknowledgements. We thank K. Pielok, T. Conrath and A. Rohmer for technical assistance. Financial support in part by EUCAARI (European Integrated project on Aerosol Cloud Climate and Air Quality interactions) No. 036833-2 is acknowledged.

References

Laboratory study on new particle formation from the reaction OH + SO₂

T. Berndt et al.

Kashchiev, D.: On the relation between nucleation work, nucleus size and nucleation rate, J.
Ternary nucleation of H$_2$SO$_4$, NH$_3$, and H$_2$O in the atmosphere, J. Geophys. Res., 104,
Kramp, F. and Paulson, S. E.: On the uncertainties in the rate coefficients for OH reactions with
hydrocarbons, and the rate coefficients of the 1,3,5-trimethylbenzene and m-xylene reactions
Kuang C., McMurry, P. H., McCormick, A. V., and Eisele, F. L.: Dependence of nucleation rates
on sulfuric acid vapor concentration in diverse atmospheric locations, J. Geophys. Res., 113,
Kulmala, M., Lehtinen, K. E. J., and Laaksonen, A.: Cluster activation theory as an explanation
of the linear dependence between formation rate of 3 nm particles and sulphuric acid concen-
tration, Atmos. Chem. Phys., 6, 787–793, 2006,
http://www.atmos-chem-phys.net/6/787/2006/.
Kurtén, T., Loukonen, V., Vehkamäki, H., and Kulmala, M.: Amines are likely to enhance neu-
tral and ion-induced sulfuric acid-water nucleation in the atmosphere more effectively than
ammonia, Atmos. Chem. Phys., 8, 4095–4103, 2008,
http://www.atmos-chem-phys.net/8/4095/2008/.
Laaksonen, A., Kulmala, M., Berndt, T., Stratmann, F., Mikkonen, S., Ruuskanen, A., Lehtinen,
K. E. J., Dal Maso, M., Aalto, P., Petäjä, T., Riipinen, I., Sihto, S.-L., Janson, R., Arnold, F.,
Hanke, M., cker, J., Umann, B., Sellegri, K., O’Dowd, C. D., and Viisanen, Y.: SO$_2$ oxidation
products other than H$_2$SO$_4$ as a trigger of new particle formation. Part 2: Comparison of
ambient and laboratory measurements, and atmospheric implications, Atmos. Chem. Phys.,
8, 7255–7264, 2008,
http://www.atmos-chem-phys.net/8/7255/2008/.
measurements during the First Aerosol Characterization Experiment (ACE 1): Observations
Mauldin, III, R. L., Eisele, F., Tanner, D., Kosciuch, E., Shetter, R., Lefer, B., Hall, S. R., Nowak,
J. B., Buhr, M., Chen, G., Wang, P., and Davis, D.: Measurements of OH, H$_2$SO$_4$, and MSA

Laboratory study on new particle formation from the reaction OH + SO₂

T. Berndt et al.

http://www.atmos-chem-phys.net/8/4049/2008/

Vanhanen, J.: Mixing-type CPC detecting charged clusters down to 1.05 nm, presented at ICNAA 2009, Prague, 2009.

Fig. 1. Comparison of measured [H$_2$SO$_4$] with modelling results for [H$_2$SO$_4$] for 3 different relative humidities. The dashed line shows the 1:1 line. The total flow in IfT-LFT was set at 11 litre min$^{-1}$ (residence time in irradiated middle section of 88 s). Initial reactant concentrations are (unit: molecule cm$^{-3}$); O$_3$: 3.4·10^{11}; SO$_2$: (0.32–23)·10^{10}; CO: 2.1·10^{14}.
Fig. 2. Total particle numbers for different additives for adjusting OH levels in the flow tube; total gas flow: 3.33 litre min$^{-1}$; r.h.=22%; H$_2$O-based UCPC (TSI 3786), growth tube: 78°C, saturator: 1°C. Initial reactant concentrations are (unit: molecule cm$^{-3}$): O$_3$: (1.4–3.7)\cdot1011; SO$_2$: (0.33–806)\cdot1010; CO: 2.1\cdot1014; 1,3,5-trimethylbenzene: 8.4\cdot1011; H$_2$: 1.77\cdot1015 or 2.4\cdot1017. The amount of reacted 1,3,5-trimethylbenzene was (5.6–6.4)\cdot1010 molecule cm$^{-3}$.
Fig. 3. Apparent nucleation rate as a function of H_2SO_4 concentration for different residence times in the irradiated middle section of the IffT-LFT; r.h. = 22%; butanol-based UCPC (TSI 3025).
Fig. 4. Nucleation rate as a function of H_2SO_4 concentration for different residence times in the irradiated middle section of the IfT-LFT; r.h. = 22%. Measurements have been performed by means of PHA-UCPC and M-CPC. Full line represents the overall best fit according to Eq. (5), dashed line stands for the fitting result constraining the exponent for H_2SO_4 at 2.
Fig. 5. Measured particle numbers as a function of end-[H$_2$SO$_4$] at 288 K (cf. Figs. 9 and 10 in Young et al., 2008) and as a function of average-[H$_2$SO$_4$] at 293 K from this study (IfT-LFT); r.h.=15%. Measurements have been done by means of H$_2$O-based UCPC (TSI 3786), PHA-UCPC and M-CPC. UCPC (TSI 3786) used in the IfT-LFT experiments operated at the default temperature settings, time for number averaging: 60–300 s. The residence time was 19 sec in the Young et al. (2008) experiments. The IfT-LFT was operated with a residence time of 19.3 s in the irradiated middle section (25.2 s for middle + end section). For explanation of the corrections done by Young et al. (2008) see the original work.
Fig. 6. Nucleation rate as a function of H$_2$SO$_4$ concentration for different r.h.; total gas flow 11 litre min$^{-1}$ STP. Measurements have been performed by means of PHA-UCPC and M-CPC. The dashed lines stand for the overall best fit according to equation (II), $\alpha=1.86$ (H$_2$SO$_4$), $\beta=3.08$ (H$_2$O).
Fig. 7. Detected mean particle diameters from DMPS and PHA-UCPC measurements as a function of H$_2$SO$_4$ concentration; r.h. 13% or 61%; total gas flow 11 litre min$^{-1}$ STP.
Fig. 8. Particle numbers as a function of H$_2$SO$_4$ concentration in absence and presence of NH$_3$ addition; total gas flow: 30 litre min$^{-1}$ STP. (a) Relative humidity: 13%. (b) Relative humidity: 47%.
Fig. 9. Particle size distributions obtained in absence or presence (1.2·10^{11} or 1.2·10^{12} molecule cm^{-3}) of NH_{3} additions; total gas flow: 30 litre min^{-1} STP. (a) Relative humidity: 13%; [H_{2}SO_{4}]=8·10^{8} molecule cm^{-3}. (b) Relative humidity: 47%; [H_{2}SO_{4}]=2·10^{8} molecule cm^{-3}. Experimental data using tert-butylamine additions of 1.5·10^{11} or 7.5·10^{11} molecule cm^{-3} are also given.