Simulation of the diurnal variations of the oxygen isotope anomaly (Δ^{17}O) of reactive atmospheric species

S. Morin1, R. Sander2, and J. Savarino3

1Météo-France/CNRS, CNRM/GAME URA 1357, CEN, 38400 St Martin d'Hères, France
2Air Chemistry Department, Max-Planck Institute of Chemistry, P.O. Box 3060, 55020 Mainz, Germany
3CNRS/Université Joseph Fourier Grenoble 1, LGGE UMR 5183, St Martin d'Hères, France

Received: 22 November 2010 – Accepted: 23 November 2010
– Published: 14 December 2010

Correspondence to: S. Morin (samuel.morin@meteo.fr)

Published by Copernicus Publications on behalf of the European Geosciences Union.
Abstract

The isotope anomaly ($\Delta^{17}O$) of secondary atmospheric species such as nitrate (NO_3^-) or hydrogen peroxide (H_2O_2) has potential to provide useful constrains on their formation pathways. Indeed, the $\Delta^{17}O$ of their precursors (NO_x, HO_x etc.) differs and depends on their interactions with ozone, which is the main source of non-zero $\Delta^{17}O$ in the atmosphere. Interpreting variations of $\Delta^{17}O$ in secondary species requires an in-depth understanding of the $\Delta^{17}O$ of their precursors taking into account non-linear chemical regimes operating under various environmental settings.

We present results from numerical simulations carried out using the atmospheric chemistry box model (CAABA/MECCA) to explicitly compute the diurnal variations of the isotope anomaly of short-lived species such as NO_x and HO_x. $\Delta^{17}O$ was propagated from ozone to other species (NO, NO_2, OH, HO_2, RO_2, NO_3, N_2O_5, $HONO$, HNO_3, HNO_4, H_2O_2) according to the classical mass-balance equation, through the implementation of various sets of hypotheses pertaining to the transfer of $\Delta^{17}O$ during chemical reactions.

The model confirms that diurnal variations in $\Delta^{17}O$ of NO_x are well predicted by the photochemical steady-state relationship during the day, but that at night a different approach must be employed (i.e. “fossilization” of the $\Delta^{17}O$ of NO_x as soon as the photolytical lifetime of NO_x drops below ca. 5 min). We quantify the diurnally-integrated isotopic signature (DIIS) of sources of atmospheric nitrate and H_2O_2 under the various environmental conditions analyzed, which is of particular relevance to larger-scale implementations of $\Delta^{17}O$ where high computational costs cannot be afforded.

1 Introduction

Unraveling chemical mechanisms at play in the atmosphere requires finding creative ways to test the predictions of models which describe them. Most studies to date have relied on concentration measurements to validate model results. Over the past
decades alternative isotopic approaches have demonstrated great capabilities in providing concentration-independent information relevant to atmospheric processes. Of particular interest is the development of measurements of the isotope anomaly ($\Delta^{17}O$) of oxygen-bearing species (Thiemens, 2006). $\Delta^{17}O$ is defined as
$$\delta^{17}O - 0.52 \times \delta^{18}O,$$
with $\delta^xO = R^x / R_{SMOW} - 1$ ($x = 17$ or 18) where R^x refers to the $^xO/^{16}O$ elemental ratio in the species of interest and in Standard Mean Ocean Water (SMOW), taken as a reference. Ozone (O_3) possesses a unique and distinctive isotope anomaly inherited from mass-independent fractionation during its formation in the atmosphere (Marcus, 2008).

In contrast to conventional isotopic ratios which are affected by isotopic fractionation, $\Delta^{17}O$ is insensitive to mass-dependent fractionation. Because the vast majority of chemical reaction induce mass-dependent fractionation, $\Delta^{17}O$ features the remarkable ability to be transferred as is during oxidation reaction in the atmosphere. As a result, $\Delta^{17}O$ of a given species simply reflects the fractional importance in its elemental composition of oxygen atoms inherited directly or indirectly from ozone. This behavior has opened large possibilities to explore atmospheric oxidation mechanisms using $\Delta^{17}O$ signatures (Lyons, 2001; Michalski et al., 2003; Thiemens, 2006; Savarino et al., 2000; Savarino and Morin, 2010).

One area of intense research on the interpretation of $\Delta^{17}O$ signatures is the case of atmospheric nitrate ($HNO_3 +$ particulate NO_3^-). Indeed, atmospheric nitrate is the final oxidation product of nitrogen oxides ($NO_x = NO + NO_2$), which are of primary importance for air-quality (Jacob, 1999; Finlayson-Pitts and Pitts, 2000; Brown et al., 2006). The development of sensitive methods to analyze the oxygen isotopic composition of nitrate (Michalski et al., 2002; Kaiser et al., 2007) makes it possible to obtain $\Delta^{17}O$ of atmospheric nitrate at weekly to sub-daily timescales in most environments. This has been used in the recent past to study the seasonal variations in NO_x oxidation pathways in mid-latitudes (Michalski et al., 2003; Tsunogai et al., 2010; Savarino et al., 2010) and polar (Morin et al., 2008, 2009; Kunasek et al., 2008) regions, the nature of the sources of atmospheric nitrate in the Antarctic lower atmosphere (Savarino et al., 2007; McCabe et al., 2007; Frey et al., 2009), and more recently the global-scale vari-
ations in NO$_x$ sink reactions (Alexander et al., 2009). Δ^{17}O of nitrate has also been used to identify long-term changes in the oxidative properties of the Earth atmosphere, from centennial (Alexander et al., 2004) to millenial (Erbland et al., 2009) time scales.

While including the isotopic composition of long-lived tracers (e.g. CO$_2$, N$_2$O etc.) into global biogeochemical models of the carbon and nitrogen cycle have proved extremely successful (e.g., Hoag et al., 2005), embedding the Δ^{17}O of short-lived reactive compounds into atmospheric photochemical models has only recently gained increased attention (Lyons, 2001; Michalski et al., 2003; Zahn et al., 2006; Dominguez et al., 2009; Gromov et al., 2010; Michalski and Xu, 2010). Current hope within the “atmospheric geochemistry community” is that Δ^{17}O data can help solve atmospheric chemistry issues such as ascertaining the relative role of heterogeneous reactions in NO$_x$ sink mechanisms (i.e. what is the exact role of N$_2$O$_5$ hydrolysis; Brown et al., 2006). However, inferring quantitative atmospheric information from Δ^{17}O of nitrate requires assessing precisely its controls and to include them into a consistent modeling framework. In the last few years, several models have been proposed to study the spatio-temporal variations of Δ^{17}O and relate them to spatio-temporal variations of the fractional contribution of NO$_x$ sink reactions. The pioneering work of Lyons (2001) set the stage for the first model study of the seasonal variations of Δ^{17}O of atmospheric nitrate by Michalski et al. (2003). Further implementations of Δ^{17}O into atmospheric chemistry models were proposed in the following years, from 0D box-modeling (Morin et al., 2008; Dominguez et al., 2009; Michalski and Xu, 2010) to the 3-D chemical transport model GEOS-Chem (Kunasek et al., 2008; Alexander et al., 2009).

This study revisits some assumptions, hypotheses and approaches previously introduced in the literature (e.g. Michalski et al., 2003; Morin et al., 2007, 2008, 2009; Kunasek et al., 2008; Alexander et al., 2009) and puts them within a consistent framework and perspective that makes it easier to understand and implement in existing atmospheric chemistry models. Limitations of the various assumptions that have been used so far are highlighted and critically evaluated. The overarching goal is to provide a rationale behind assumptions and simplifications that have to be used in large scale
model implementation in order to reduce computing costs. First of all, general equations are derived from text-book physical principles. The CAABA/MECCA atmospheric chemistry box model (Sander et al., 2010) was used to explicitly calculate the time evolution of the Δ^{17}O of short-lived reactive species at each time step. Model runs were performed in a few simple cases to demonstrate the usefulness of such assessments and provide the basis of future analogous studies. Finally, recommendations are given for the implementation of simplifying assumptions into large-scale atmospheric chemistry models.

2 General framework

2.1 The general “mass-balance” equation

The general “mass-balance” equation (also termed the “continuity equation”) governing the temporal evolution of the concentration of a given species in a given air parcel is given by:

$$\frac{d}{dt}[X] = \Sigma_i P_i - \Sigma_j L_j$$ \hspace{1cm} (1)

where P_i (L_j) represents each source (sink) rate [cm$^{-3}$s$^{-1}$] of the species X [cm$^{-3}$]. Source and sinks include both chemical reactions within the parcel and fluxes at its boundaries. Atmospheric chemistry models are mostly driven by reaction kinetics, so that the chemical components of P_i and L_j are simply expressed as a reaction rate constant (usually referred to as k values) times the relevant atmospheric concentrations (Jacob, 1999; Finlayson-Pitts and Pitts, 2000).

The implementation of Δ^{17}O into the mass balance Eq. (1) follows from mass conservation applied to the oxygen isotope anomaly. Of course, this rather simple method would not apply to isotopic enrichment (δ) values, because isotopic fractionation has to be fully taken into account for every reaction considered (Gromov et al., 2010). The key
assumption behind the modeling approach is that sink reaction do not induce a specific mass-independant fractionation, and that every source reaction induce the transfer of a given Δ^{17}O value to the newly produced species. The Δ^{17}O mass-balance equation reads:

$$\frac{d}{dt} \left([X] \times \Delta^{17}O(X) \right) = \Sigma_i \left(P_i \times \Delta^{17}O(X)_i \right) - \left(\Sigma_j L_j \right) \times \Delta^{17}O(X)$$

where $\Delta^{17}O(X)_i$ is the isotope anomaly that is transferred to X through the production channel P_i of the species X. It is estimated as a function of the Δ^{17}O value of the precursors involved in a given production channel for species X, using a mass-balance approach based on the counting of the oxygen atoms transferred throughout a given production channel. Mass-independent fractionation induced by a specific reaction can also be taken into account in the equation above. Solving numerically the system of equations formed by Eqs. (1) and (2) for all relevant atmospheric species simultaneously yields the time evolution of the concentration and Δ^{17}O of each atmospheric species. This is generally not computationally affordable for large-scale modeling studies such as Alexander et al. (2009). The computation can be carried out for limited periods of time using box models.

2.2 Isotopic exchange reactions

Not only chemical production and destruction impact the Δ^{17}O of a given species. Isotopic exchange reactions can also modify it. Their main characteristic is that they have no impact on the chemical budget of a species (i.e., Eq. (1) is not changed), but they have an impact on the isotopic mass-balance Eq. (2). The magnitude of an isotopic exchange reaction can be expressed in a similar manner to chemical production or destruction fluxes. In what follows, the rate of the ℓ isotopic exchange reaction is referred to as IE_{ℓ}; the ultimate Δ^{17}O value that would be attained in species X if the isotopic exchange with the species Y_{ℓ} fully proceeds is noted Δ^{17}O(Y_{ℓ}). Implementing this into
Eq. (2) yields:

\[
\frac{d}{dt} ([X] \times \Delta^{17}O(X)) = \Sigma_i \left(P_i \times \Delta^{17}O(X)_i \right)
\]

\[
+ \Sigma_e \left(I E_e \times \Delta^{17}O(Y_e) \right)
\]

\[
- \left(\Sigma_j L_j + \Sigma_e I E_e \right) \times \Delta^{17}O(X)
\]

(3)

\[\Delta^{17}O(X) = \frac{\Sigma_i \left(P_i \times \Delta^{17}O(X)_i \right)}{\Sigma_j L_j} \]

(4)

2.3 Steady-state approximation

A very commonly used simplification in atmospheric chemistry model is the so-called “photochemical steady-state (PSS)” approximation. This simply assumes that the photolytical lifetime of a given species is sufficiently short that the short-term variations of its concentration are negligible, i.e. \(\frac{d}{dt} [X] \sim 0 \). In other words, a near-perfect balance between sources and sinks for a given species is assumed. Implementing this assumption into the isotopic mass-balance Eq. (2) yields:

\[\Delta^{17}O(X) = \frac{\Sigma_i \left(P_i \times \Delta^{17}O(X)_i \right)}{\Sigma_j L_j} \]

(4)

Given that at PSS \(\Sigma_i P_i = \Sigma_j L_j \), Eq. (4) can be rewritten as follow:

\[\Delta^{17}O(X) = \frac{\Sigma_i \left(P_i \times \Delta^{17}O(X)_i \right)}{\Sigma_i P_i} \]

(5)

Stated differently, at PSS the \(\Delta^{17}O \) of a given species is instantaneously equal to the \(\Delta^{17}O \) induced by the combination of its different chemical sources, scaled according to their relative strength, as shown in Eq. (5). Without PSS the time evolution of the \(\Delta^{17}O \) of a given species also takes into account its \(\Delta^{17}O \) value earlier on. The longer the lifetime of a given species, the smoother the time evolution of its \(\Delta^{17}O \).
2.4 Controls on $\Delta^{17}O$ of atmospheric nitrate and hydrogen peroxyde H_2O_2

2.4.1 Atmospheric nitrate

Atmospheric nitrate is formed homogeneously and heterogeneously in the atmosphere through the following reactions (Jacob, 1999; Finlayson-Pitts and Pitts, 2000):

$$\text{NO}_2 + \text{OH} \rightarrow \text{HNO}_3 \quad (R1)$$
$$\text{NO}_3 + \text{RH} \rightarrow \text{HNO}_3 \quad (R2)$$
$$\text{N}_2\text{O}_5 \rightarrow \text{HNO}_3 \quad (R3)$$
$$\text{HNO}_4 \rightarrow \text{HNO}_3 \quad (R4)$$

Here, RH represents a generic hydrocarbon. Dry and wet deposition are the main sinks of atmospheric nitrate, controlling its atmospheric lifetime which is on the order of days to weeks (Finlayson-Pitts and Pitts, 2000). A straightforward rearrangement of Eq. (2) yields the equation governing the time evolution of $\Delta^{17}O$ of atmospheric nitrate:

$$\frac{d}{dt} \left([\text{NO}_3^-] \times \Delta^{17}O(\text{NO}_3^-) \right) =$$
$$\sum_i \left(P_i \times \Delta^{17}O(\text{NO}_3^-)_i \right) - \frac{[\text{NO}_3^-]}{\tau} \times \Delta^{17}O(\text{NO}_3^-)$$

where τ is the atmospheric lifetime of atmospheric nitrate. $\Delta^{17}O(\text{NO}_3^-)_i$ values can be calculated for each nitrate production channels (Michalski et al., 2003; Morin et al., 2007, 2009; Kunasek et al., 2008):

$$\Delta^{17}O(\text{NO}_3^-)_{\text{OH}+\text{NO}_2} = 1/3 \Delta^{17}O(\text{OH}) + 2/3 \Delta^{17}O(\text{NO}_2)$$
$$\Delta^{17}O(\text{NO}_3^-)_{\text{NO}_3+\text{RH}} = \Delta^{17}O(\text{NO}_3)$$
$$\Delta^{17}O(\text{NO}_3^-)_{\text{N}_2\text{O}_5} = 5/6 \Delta^{17}O(\text{N}_2\text{O}_5)$$
As will be demonstrated below, both the mixing ratio and the $\Delta^{17}O$ of nitrate precursors vary diurnally. For instance, OH plays a significant role only during the day, and $\Delta^{17}O(NO_2)$ exhibits a strong diurnal variation with a minimum during the day and a maximum at night. Clearly, only the daytime $\Delta^{17}O(NO_2)$ values matter for the OH+NO$_2$ nitrate production channel, since during the night this reaction is suppressed.

We define the diurnally-integrated isotopic signature (DIIS) of the nitrate source as follows:

$$\text{DIIS}_i = \frac{\int_0^{24h} P_i \times \Delta^{17}O(NO_3^-)_i}{\int_0^{24h} P_i}$$

(7)

DIIS values quantify the overall $\Delta^{17}O$ inherited from a given source reaction, taking into account the convolution between diurnal variations in its strength and the associated $\Delta^{17}O$ it transfers. Additionally, DIIS is a useful metrics to quantify the impact of various environmental settings or hypotheses pertaining to isotopic transfer on the ultimate $\Delta^{17}O$ of atmospheric nitrate.

In the case where the atmospheric lifetime of a given secondary species is significantly longer than one day, DIIS values can be used to infer the seasonal variations of $\Delta^{17}O$ from the following equation, virtually assuming that steady-state applies:

$$\Delta^{17}O(t) = \frac{\sum_i (P_i(t) \times \text{DIIS}_i(t))}{\sum_i P_i(t)}$$

(8)

Equation (8) takes into account that both P_i and DIIS$_i$ values change seasonally or as a function of environmental conditions. This method was implicitly used originally by Michalski et al. (2003) to study the seasonal variations of $\Delta^{17}O(NO_3^-)$ in coastal California. While correct at the seasonal scale to study seasonal variation of nitrate as far as its lifetime is significantly larger than several days, this method does not adequately
address variations of $\Delta^{17}O(\text{NO}_3^{-})$ at temporal scale smaller than its atmospheric lifetime (Michalski and Xu, 2010), because sink reactions (both physical and chemical) must then be explicitly taken into account, as shown by Eq. (6).

2.4.2 Hydrogen peroxide (H_2O_2)

Hydrogen peroxide is a key atmospheric oxidant which plays a major role for in-cloud oxidation of S(IV) (Finlayson-Pitts and Pitts, 2000; Alexander et al., 2005). Savarino and Thiemens (1999a) demonstrated that it possesses a small but significant $\Delta^{17}O$ signature, which has then been used to study the partitioning between various S(IV) oxidants in the atmosphere (Savarino et al., 2000; Alexander et al., 2005). H_2O_2 is mostly formed through the self reaction of HO_2:

$$2\text{HO}_2 \rightarrow \text{H}_2\text{O}_2 + \text{O}_2 \quad (R5)$$

The $\Delta^{17}O$ inherited by H_2O_2 during the above reaction is equal to $\Delta^{17}O(\text{HO}_2)$. The concept of DIIS applies to H_2O_2 in a manner analogous to atmospheric nitrate (see above). Since Reaction (R5) is the sole significant H_2O_2 production pathway, and because the atmospheric lifetime of H_2O_2 is generally larger than one day, the application of Eq. (8) is trivial and shows that seasonal variations of $\Delta^{17}O(\text{H}_2\text{O}_2)$ can directly be inferred from variations of DIIS(\text{HO}_2+\text{HO}_2) at first order.

3 Material and methods: numerical experiments on $\Delta^{17}O$ of short-lived species

In this study, we focus on the time evolution of the $\Delta^{17}O$ of short-lived atmospheric reactive species such as HO_x (OH+HO$_2$), NO$_x$ (NO+NO$_2$) and RO$_2$. For simplicity, in this initial study we restrict our analysis to gas-phase reactions and exclude halogen, sulfur and carbonaceous chemistry, to focus on the highly non-linear NO$_x$-HO$_x$/RO$_x$-O$_3$ chemistry first. The impact of diurnal variations of $\Delta^{17}O$ of short-lived species on
secondary species such as atmospheric nitrate and H$_2$O$_2$ is explored through the estimation of diurnally-integrated isotopic signature (DIIS) of these species. This method allows to focus on the understanding of the intertwined relationships between Δ^{17}O of primary species, and extrapolating their relevance to secondary species using DIIS values, rather than delving into gas/particles interactions which would render obscure some of the behaviors highlighted using the simplified but realistic set of gas-phase reactions summarized in an electronic supplement to this article. This series of 51 reactions (including 14 photolysis reactions) represents a subset of the chemical mechanism implemented in MECCA (Sander et al., 2005) suited for simplified analysis in the remote marine boundary layer.

3.1 Species with constant Δ^{17}O values

3.1.1 Δ^{17}O(O$_3$)

The overwhelming source of non-zero Δ^{17}O in the atmosphere is ozone (O$_3$). As repeatedly mentioned in the recent literature (e.g. Morin et al., 2007; Michalski and Bhattacharya, 2009; Alexander et al., 2009; Dominguez et al., 2009), the tropospheric value of Δ^{17}O(O$_3$) is controversial. In what follows, we use a value for Δ^{17}O(O$_3$) of 30‰, which falls within the 25–35‰ range generally found in the literature. If Δ^{17}O(O$_3$) measurements become available in the future, the quantitative conclusions of the present paper in terms of Δ^{17}O of any species would simply have to be multiplied by Δ^{17}O(meas. O$_3$)/30, allowing for an easy update of the results presented below. Note that in case diurnal variations of Δ^{17}O(O$_3$) are discovered and fully documented, the model described below would simply have to be run using a time varying Δ^{17}O(O$_3$) value, and the results presented below quickly updated.

Ozone is isotopically asymmetrical (Janssen, 2005), i.e. the Δ^{17}O borne by its terminal O atoms is higher than at the central position (Bhattacharya et al., 2008; Michalski and Bhattacharya, 2009). In addition, the O atom transferred from O$_3$ to another
species does not have an equal probability to originate from the central or the terminal position in ozone. To know the value of Δ^{17}O transferred through a given bimolecular reaction, it is necessary to know both the intramolecular distribution of Δ^{17}O in ozone and the precise mechanistic properties of the chemical reaction (Savarino et al., 2008).

For the following reaction,

$$\text{NO} + \text{O}_3 \rightarrow \text{NO}_2 + \text{O}_2,$$ \hspace{1cm} (R6)

the Δ^{17}O transfer function was experimentally determined (Savarino et al., 2008):

$$\Delta^{17}\text{O}_{\text{R6}} = 1.18 \times \Delta^{17}\text{O}(\text{O}_3) + 6.6$$ \hspace{1cm} (9)

In what follows we assume that all gas-phase bimolecular chemical reactions involving ozone feature the same mechanistic characteristics. The transferrable Δ^{17}O from ozone during such reactions is denoted Δ^{17}O(O_3^*), consistent with Morin et al. (2009) and Alexander et al. (2009). For Δ^{17}O(O_3)=(30 ± 5)‰, this gives Δ^{17}O(O_3^*)=(42 ± 6)‰.

In lack of precise measurements of the geographical, seasonal or diurnal variations of Δ^{17}O(O_3), we restrain to using a constant value.

3.1.2 Δ^{17}O(H_2O) and Δ^{17}O(O_2)

Because they represent large oxygen reservoirs with a negligible isotope anomaly, we assume in what follows that Δ^{17}O of water vapor (H_2O) and molecular oxygen (O_2) are constant, with a value of 0‰ (Barkan and Luz, 2003, 2005).

3.1.3 Δ^{17}O(RO_2)

In this study we explicitly separate HO$_2$ from other peroxy radicals, denoted RO$_2$ where R represents a carbonaceous chain, because the chemical budget of HO$_2$ and RO$_2$ is very different. While reaction involving ozone contribute to the budget of HO$_2$, the only source of RO$_2$ is the reaction between O$_2$ and a R radical. Since Δ^{17}O(O_2)=0‰.
(see above), this immediately implies that Δ^{17}O(RO$_2$)=0‰ under all tropospheric conditions.

3.2 Overview of the sets of hypotheses regarding the Δ^{17}O transfer throughout chemical reactions

Below we present the various sets of hypotheses (numbered Cases 1 to 6) implemented to compute the time evolution of Δ^{17}O of the species of interest using various assumptions in terms of Δ^{17}O transfer.

3.2.1 Case 1: NO$_x$ photochemical steady-state (PSS) and basic hypotheses

- OH, HO$_2$: Δ^{17}O of both species is equal to 0‰.
- NO, NO$_2$, NO$_3$: The Δ^{17}O of these species is calculated using PSS:

$$\Delta^{17}O(NO_2) = \alpha \times \Delta^{17}O(O_3^*)$$

with

$$\alpha = \frac{k_{NO+O_3}[O_3]}{k_{NO+O_3}[O_3] + k_{NO+HO_2}[HO_2] + k_{NO+RO_2}[RO_2]}$$

as defined by Michalski et al. (2003) and demonstrated in Morin et al. (2007). It follows from PSS that $\Delta^{17}O(NO)$=$\Delta^{17}O(NO_2)$. Assuming that the NO$_2$+O$_3$ reaction possesses the same mechanistic characteristics as the NO+O$_3$ reaction, $\Delta^{17}O(NO_3)$ is given as:

$$\Delta^{17}O(NO_3) = (2\alpha + 1)/3 \times \Delta^{17}O(O_3^*)$$

- HONO, HNO$_3$, H$_2$O$_2$: the calculation of Δ^{17}O is calculated following Eq. (2).
N$_2$O$_5$, HNO$_4$: both these species are dimers formed by the combinations of two radicals (NO$_2$ and NO$_3$, and NO$_2$ and HO$_2$, respectively). It assumed in all calculations that photolysis leads to a scrambling of oxygen atoms originally in N$_2$O$_5$ and HNO$_4$. In this case, the Δ^{17}O of the species formed is that of the average Δ^{17}O prior to the photolysis. In contrast, thermal decomposition (TD) is not assumed to induce an isotopic scrambling. Thus it is necessary to track the time evolution of the Δ^{17}O of both components of the dimer making up N$_2$O$_5$ and HNO$_4$, respectively, since their O atoms are not isotopically equivalents.

Table 1 gives the Δ^{17}O(X)$_i$ values for each species produced, if different from 0 and not given above.

3.2.2 Case 2: explicit NO$_x$

In this case, the time evolution of Δ^{17}O of NO, NO$_2$ and NO$_3$ is computed explicitly. This means that the PSS approximation is not used at all regarding the computation of the Δ^{17}O of these species. Table 2 presents the chemical reactions for which the Δ^{17}O(X)$_i$ is different than in Case 1.

3.2.3 Case 3: explicit HO$_x$

In this case, in addition to the hypotheses of Case 2 above, the Δ^{17}O value of HO$_2$ is allowed to vary in time and is computed explicitly. This also induces non-zero values of Δ^{17}O(H$_2$O$_2$), through reaction G2110. Table 3 presents the chemical reactions for which the Δ^{17}O(X)$_i$ is different than in Case 1 and 2. Note that in Case 3 Δ^{17}O(OH) is still assigned a value of to 0‰.

3.2.4 Additional tests

In addition to the three main cases presented above, three additional tests were performed. They all are based on Case 3, i.e. they can all be independently compared to.
Case 3.

Case 4: MIF H+O₂

In this case, we take into account that reaction H+O₂→HO₂ (G2100) induces mass-independent fractionation of oxygen isotopes. The effect is assumed to be on the order of 1‰, according to Savarino and Thiemens (1999b). In practice, any HO₂ produced through this channel is thus attributed a Δ¹⁷O value of 1‰.

Case 5: thermal decomposition (TD) scrambling

In this case, it is assumed that the thermal decomposition of N₂O₅ and HNO₄ induces a scrambling of their oxygen isotopes. Table 4 presents the chemical reactions for which the Δ¹⁷O(X)ᵢ is different than in Case 1 in terms of Δ¹⁷Oᵢ of species produced upon the thermal decomposition of N₂O₅ and HNO₄.

Case 6: isotopic exchange OH–H₂O

In this case, we take into account the isotopic exchange reaction between OH and H₂O:

QH + H₂¹⁶O → ᵆOH + H₂Q \hspace{1cm} (R7)

where Q denotes one of the three O isotopes. This reaction leads to the erasure of Δ¹⁷O(OH) following isotopic exchange with water vapor, which has a 0‰ Δ¹⁷O. Tropospheric OH is always at photochemical steady-state during daytime given its extremely short lifetime (a few seconds at most). Under such conditions, its Δ¹⁷O is computed as follows:

\[
Δ¹⁷O(OH) = \frac{Σ_i L_i}{Σ_i L_i + k_{R7}[OH][H₂O]} \times Δ¹⁷O(OH)_{source}
\] \hspace{1cm} (10)
where values for k_{R7} were measured by Dubey et al. (1997). In this study, the sole chemical reaction considered inducing non-zero $\Delta^{17}O$ values in OH is the reaction between O(1D) and H$_2$O. Mass-balance then states that $\Delta^{17}O(OH)_{\text{source}}=1/2 \times \Delta^{17}O(O_3)$ (Morin et al., 2007). Under most conditions prevailing in the lower troposphere in mid-latitudes, $\Delta^{17}O(OH)=0\%$ (Michalski et al., 2003). However, under cold conditions the isotopic exchange reaction can compete with its OH chemical sinks (Morin et al., 2007), which are mostly OH+CH$_4$ and OH+CO (Finlayson-Pitts and Pitts, 2000). When Case 6 is tested, $\Delta^{17}O(OH)$ is assigned a value calculated from Eq. (10) and the mixing ratio of CO, CH$_4$ and H$_2$O and the relevant kinetic rate constants.

3.3 Numerical implementation and computation of $\Delta^{17}O$

MECCA

MECCA (Model Efficiently Computing the Chemistry of the Atmosphere, Sander et al., 2005) is embedded in the CAABA (Chemistry As A Box-model Application, Sander et al., 2010) bundle. It uses an adaptative time resolution mathematical method to solve the stiff set of equations describing the evolution of the chemical composition of the portion of atmosphere hypothetically contained in a closed box.

Isotopic equations

The MECCA box-model described just above, like all atmospheric chemistry models, solves the continuity equation for all considered species and all reactions simultaneously:

$$\frac{d}{dt}[X] = \Sigma_i P_i - \Sigma_j L_j$$

Considering that the model provides the necessary data at a time step t, it follows that at the next time step $t+\Delta t$:

$$[X](t + \Delta t) = [X](t) + \Delta t \times \Sigma_i P_i - \Delta t \times \Sigma_j L_j$$

(11)
The same applies to the isotopic continuity equation (Eq. 2), so that:

\[[X](t + \Delta t) \times \Delta^{17}O(X)(t + \Delta t) = [X](t) \times \Delta^{17}O(X)(t) \]

\[+ \Delta t \times \sum (P_i \times \Delta^{17}O(X)_i(t)) \]

\[- \Delta t \times (\Sigma_j L_j) \times \Delta^{17}O(X)(t) \]

(12)

By combining Eqs. (11) and (12), \(\Delta^{17}O(X)(t + \Delta t)\) can be inferred as a function of the relevant chemical and isotopic data at time \(t\). This simple explicit approach was implemented in a computer program separate from MECCA, which takes as input a data file containing the variables dealt with in Eqs. (11) and (12) at each time step, and processes them according to the different cases described above in terms of \(\Delta^{17}O(X)_i\) to compute the time evolution of \(\Delta^{17}O\) of each relevant species.

One major issue that has to be considered when using this simple approach pertains to the comparison of the chemical lifetime of a species \(X\) and the time-step of the integration of Eqs. (11) and (12). Indeed, if the lifetime of \(X\) is shorter than the time step considered, then the total chemical production or destruction during a given time step \(\Delta\) may exceed the amount of species \(X\) dealt with in the box (or grid-cell). This causes immediate failure of the integration procedure. The time step of the isotopic calculations performed here was chosen accordingly. A time resolution of 10s was found to be sufficient to avoid integration issues such as described above. More integrated approaches, fully embedded into the box-model itself, have been developed and avoid such shortcomings (see e.g., Gromov et al., 2010). However, for the sake of the present study, and taking advantage of the easiness of manipulating \(\Delta^{17}O\) through simple mass-balance equations, we preferred the implementation presented above for this study.

3.4 Presentation of MECCA model runs

Our base-run corresponds to atmospheric settings typical of the remote, mid-latitude (45° N) boundary layer during springtime. Photolysis rate coefficients are calculated...
as a function of solar zenith angle using a simple parameterization. The model run is started on 1 April, at a temperature of 293 K, a relative humidity of 81%, with a starting NO$_2$ mixing ratio of 20 pmol mol$^{-1}$. Initial values for the mixing-ratio of main atmospheric species follow: CH$_4$, 1.8 µmol mol$^{-1}$; CO, 70 nmol mol$^{-1}$; H$_2$O$_2$, 600 pmol mol$^{-1}$; HNO$_3$, 5 pmol mol$^{-1}$; HCHO, 30 pmol mol$^{-1}$, O$_3$, 25 nmol mol$^{-1}$. After a spin-up time of 1 day, sufficient to initialize the mixing ratio of short-lived species, the time evolution of the mixing ratio and isotope anomaly of short-lived species is analyzed during 36 h, corresponding to the time frame between 24 and 60 h from the start of the model run. In lack of emissions of primary species into the box considered, this suffices to identify and study the main features of the diurnal variations of the mixing ratio and Δ^{17}O of short-lived species while not suffering from the inherent limitations of box-modeling experienced when longer time periods are considered (Sander et al., 2005).

We concentrate our in-depth analysis on this one model run, which shows many different interesting features of the diurnal variations of Δ^{17}O of short-lived species and their sensitivity of the various assumptions tested through Cases 1 to 6. The intricacy and the highly non-linear coupling between HO$_x$, NO$_x$ including their Δ^{17}O requires careful attention to decipher the causes for the variation of Δ^{17}O. The relevance of the conclusions reached from this analysis is assessed using other model runs undertaken under different atmospheric conditions. Indeed, atmospheric chemical processes depend in particular on temperature, time of the year and latitude (through their control of incoming solar radiation) and the chemical regime of the atmosphere.
4 Results

4.1 Description and analysis of the base model run

4.1.1 Diurnal variations in mixing ratios and reaction rates

Figure 2 shows the diurnal evolution of the mixing ratio of O₃, HOₓ and NOₓ/NOᵧ (NOᵧ refers to NOₓ and its reservoir species such as NO₃, N₂O₅, HNO₄ etc.) simulated by MECCA under the conditions of the base model run presented in Sect. 3.4. It shows typical variations, notably with peak values of OH, HO₂ and NO reached during the day. The NOₓ/NOᵧ partitioning changes diurnally, with species such as NO₃ and N₂O₅ present mostly during the night, and species such as HNO₄, HONO present mostly during the day. H₂O₂ is produced during the day, and undergoes dry deposition which leads to a reduction of its mixing ratio during the night. The mixing ratio of ozone remains quasi-constant during the time period studied, illustrating that the simulation reproduces fairly well the chemical steady-state prevailing in the remote, mid-latitude boundary layer.

As a straightforward corollary of the above paragraph, it appears that within the simulation the OH+NO₂ and HNO₄ hydrolysis are mostly daytime nitrate production pathways, while NO₃+RH and N₂O₅ hydrolysis proceed only at night, when significant amounts of NO₃ and N₂O₅ are present. Note that this study does not aim at disentangling complex aspects of the daytime chemistry of N₂O₅ revealed by recent field campaigns (e.g., Brown et al., 2006). H₂O₂ is only produced during the day, when HO₂ maximizes. Figure 3 exemplifies such opposed behavior and illustrates the concept behind diurnally-integrated isotopic signature (DIIS) of the nitrate and hydrogen peroxyde sources. From the analysis of this figure, it appears obvious that the nighttime Δ₁⁷O values of HO₂ have no impact on the Δ₁⁷O of H₂O₂ produced. Only daytime Δ₁⁷O values are worth discussing in this case.
4.1.2 Overview of the diurnally-integrated isotopic signatures (DIIS) values for atmospheric nitrate and hydrogen peroxyde

Table 5 shows the DIIS values for the four atmospheric nitrate sources considered, as well as for H₂O₂. The main results of this simulation are that

- DIIS values for the OH+NO₂ reaction pathway are on the order of 20‰ and do not seem significantly dependent to within 0.1‰ upon the different isotopic assumptions tested, except Case 5 which is detailed below. In particular, whether Δ¹⁷O(NO₂) is computed explicitly or using the PSS formula has no impact on the DIIS value.

- DIIS values for HNO₄ hydrolysis are on the order of 16‰ and do not depend on the method to compute the Δ¹⁷O of NOₓ (Case 1 and Case 2 yield similar results). When Δ¹⁷O(HO₂) is computed explicitly, HNO₄ DIIS values increase moderately by ca. 0.6‰.

- DIIS values for NO₃+RH and N₂O₅ hydrolysis are on the order of 40 and 33‰, respectively, and show a significant different between Case 1 and Case 2, i.e. whether PSS is used to compute the Δ¹⁷O of NOₓ and NO₇. Using the PSS formulation for NOₓ yields an overestimation of 1.8‰ of the DIIS values for both nitrate production channels.

- DIIS values for H₂O₂ production are 0 for both Cases 1 and 2, consistent with the fact that Δ¹⁷O(HO₂) is assigned a value of 0. When Δ¹⁷O(HO₂) is computed explicitly, the DIIS value reaches 1.1‰ (Case 3). Taking into account mass-independent fraction (MIF) of 1‰ in the H+O₂ reaction leads to increasing the DIIS value by 0.7‰.

- under the environmental conditions tested, whether isotopic exchange between OH and H₂O is considered has no significant impact on all the reaction pathways.
considered. This simply indicates that $\Delta^{17}O(OH)=0\%$ under these environmental conditions.

- Isotopic scrambling during the thermal decomposition of N_2O_5 and HNO_4 leads to lowering the DIIS value of all reaction pathways, excepted H_2O_2 production.

4.1.3 Detailed analysis of the main results

Representation of diurnal variations of $\Delta^{17}O(NO_2)$

As shown on Fig. 3a, $\Delta^{17}O(NO_2)$ exhibits diurnal variations with a maximum during the night and a minimum during the day, consistent with previous expectations (Morin, 2009). Figure 4 compares the results obtained using permanent photochemical steady-state (Case 1, NO$_x$ PSS) and explicitly computed (Case 2, NO$_x$ explicit, see Sect. 3.2.2). During the day, both calculations show a minimum at noon, on the order of 28%. This is explained by the fact that during the day, the contribution of the NO+RO$_2$ and NO+HO$_2$ to the production of NO$_2$ peaks at noon, when peroxy radicals reach their maximum values (see Fig. 2). Owing to the short lifetime of NO$_2$ during the day, the result of the computation based on PSS is fully consistent with the explicit computation. This explains why the DIIS value for the OH+NO$_2$ pathway is the same under Case 1 and Case 2 (see Table 5), because this pathway operates only during the day, when $\Delta^{17}O(NO_2)$ has the same value whether Case 1 or Case 2 is considered.

The major difference between the two simulations occurs at night. Indeed, while the result from PSS leads $\Delta^{17}O(NO_2)$ to reach values above 41% at night (i.e., on the order of $\Delta^{17}O(O_3^*)$), the result from the explicit calculation does not exceed 39% at night, except for a limited period of time at dawn. The explanation for this behavior follows: at dusk, the $\Delta^{17}O(NO_2)$ is fixed by the PSS conditions which prevail just before PSS recycling of NO$_x$ becomes insignificant. At this point, NO$_2$ becomes relatively inert and its $\Delta^{17}O$ does not vary anymore. As evidenced by Fig. 4, night-time $\Delta^{17}O(NO_2)$ corresponds to the $\Delta^{17}O(NO_2)$ value computed at PSS when the lifetime of NO$_2$ is on
the order of 10 min. It is then “fossilized” until the dawn comes, along with the restart of photochemical activity. The difference between the two calculations lies between 2 and 3‰ under the conditions of the base model run. This explains why DIIS values for the nighttime nitrate production pathways depend strongly on the method chosen to compute $\Delta^{17}O(NO_x)$ and $\Delta^{17}O(NO_y)$, because much of the difference occurs at night.

$\Delta^{17}O(HO_2)$ and $\Delta^{17}O(H_2O_2)$

In Cases 3, 4, 5 and 6, where $\Delta^{17}O(HO_2)$ is computed explicitly, non-zero $\Delta^{17}O(HO_2)$ values are simulated. Figure 5 shows the diurnal variations of $\Delta^{17}O(HO_2)$ and $\Delta^{17}O(H_2O_2)$. The non-zero $\Delta^{17}O$ value in Case 3, on the order of 1‰, stems directly from the OH+O$_3$ reaction producing HO$_2$ with a non-zero $\Delta^{17}O$ value, which is then mixed with other sources of HO$_2$. The addition of mass-independent fractionation through the H+O$_2$ reaction, which is dominant HO$_2$ production reaction, results in elevating the $\Delta^{17}O(HO_2)$ value by roughly the magnitude of the isotopic fractionation constant. Combining the explicit calculation of the time evolution of $\Delta^{17}O(HO_2)$ with the inclusion of mass-independent fractionation occurring during the H+O$_2$ reaction leads to daytime $\Delta^{17}O(HO_2)$ values on the order of 2‰.

We note that the corresponding DIIS values relevant to H$_2$O$_2$ production for either Case 3 or 4 (1.1 and 1.8‰, respectively) is consistent with the experimental results of Savarino and Thiemens (1999a), who measured rainwater $\Delta^{17}O(H_2O_2)$ values ranging between 1.2 and 2.4‰, under coastal California conditions.

Impact of isotopic scrambling during the thermal decomposition of N$_2$O$_5$ and HNO$_4$

Case 5 tests the hypothesis where thermal decomposition leads to isotopic scrambling between O atoms in molecules making up N$_2$O$_5$ and HNO$_4$ (see Table 4). Under such conditions, it is observed that the $\Delta^{17}O$ of HO$_2$ increases, while $\Delta^{17}O$ of NO$_x$ gener-
ally decreases. This behavior is reflected in the DIIS values of the relevant reactions (see Table 5). Detailed investigation of the reasons for this result reveals that much of the effect proceeds through the thermal decomposition of HNO₄, especially at dusk when HNO₄ thermal decomposition is on the order of its formation rate due to reduced photochemical activity lowering the amount of HO₂. Through slow but steady cycles of formation/decomposition, HNO₄ temporarily bridges the pool of oxygen atoms within NOₓ and HOₓ, leading to lowering the Δ¹⁷O of NOₓ and increasing the Δ¹⁷O of HOₓ in a significant manner (see Fig. 5). The same holds for N₂O₅ in terms if NOₓ/NO₃ oxygen atoms swapping, but this effect is less visible owing to other existing coupling mechanisms between NOₓ and NO₃. In the following, we do not further discuss the impact of the hypothesis of Case 5, although model results are also given for this case.

4.2 Sensitivity to atmospheric conditions

This section presents the results obtained under different conditions than in the base model run. For the sake of brevity, and since the physico-chemical reasons behind the observed behavior are similar to the phenomena described above, we focus our attention on DIIS values, which provide an efficient metrics to compare model runs carried out under different environmental conditions.

4.2.1 Impact of seasonal variations

Using the same chemical mechanism and the same initial chemical composition of the boundary layer, model runs were performed at different times of the year, i.e. starting from 1 January with a temperature of 283 K and 1 July with a temperature of 303 K to see whether seasonal variations in environmental conditions (temperature and actinic flux) can modify the conclusions reached above for the springtime model run, started on 1 April with a temperature of 293 K. The photochemical activity increases monotonically from the winter to summer model runs, as expected (chemical data not shown).
The model shows that the DIIS of daytime nitrate production (OH+NO$_2$ and HNO$_4$ hydrolysis) is most dependent on the season, due to its strong ties to photochemical activity, which controls Δ^{17}O of NO$_2$ and HNO$_4$ through photochemical steady state during the day. The DIIS of OH+NO$_2$ varies significantly, from ca. 17‰ in summer to ca. 25‰ during the winter. The DIIS of HNO$_4$ photolysis also varies, from ca. 14‰ in summer to ca. 19‰ in winter.

In contrast, the DIIS of nighttime nitrate production channels exhibits a stronger dependence upon the isotopic assumption (as detailed in Sect. 4.1.3), but shows little seasonal variations. The biggest variation is between Case 1 (using PSS applied to NO$_x$) and Case 2 (explicit Δ^{17}O(NO$_x$) throughout the day), the former leading to an overestimation ranging from 1.3 to 1.9‰, from winter to summer for both N$_2$O$_5$ hydrolysis and NO$_3$+RH. The DIIS of nighttime nitrate production channels varies within about 1‰ seasonally, on the order of 40 (32.5)‰ year-round, for the NO$_3$+RH (N$_2$O$_5$ hydrolysis) channel.

Last, the DIIS of H$_2$O$_2$ production shows little seasonal variation (less than 0.1‰). It is consistently on the order of 1‰ when only the OH+O$_3$ reaction is responsible for Δ^{17}O transfer from O$_3$ to HO$_2$. It increases to around 1.7‰ when mass-independent fractionation of 1‰ is considered throughout the reaction H+O$_2$ \rightarrow HO$_2$. The only major change occurs in Case 5, i.e. considering scrambling during the thermal decomposition of N$_2$O$_5$ and HNO$_4$.

Under the conditions experienced for our base model run, the isotopic exchange reaction between OH and H$_2$O does not lead to Δ^{17}O(OH) values significantly different from 0. This explains why the DIIS values for Case 6 are very similar to that of Case 3. This effect becomes significant only at lower temperatures (see Morin et al., 2007) and is further explored in Sect. 4.2.2.
4.2.2 Higher latitude and colder conditions

A simulation was carried out under springtime Arctic conditions, i.e. a latitude of 80° N and temperature of 253 K, starting from 1 April. The results of this comparison is shown in terms of DIIS values in Table 7.

The DIIS values of daytime nitrate production channels show a strong difference between Arctic and mid-latitude conditions. With the exception of Case 6, the Arctic DIIS values for the OH+NO₂ reaction are ca. 5.5‰ higher than at mid-latitudes, which simply stems from reduced photochemical recycling under reduced insulation prevailing in the Arctic and colder temperatures. It is noteworthy that under Arctic conditions, owing to the lower temperatures prevailing, the OH+NO₂ DIIS value is 2‰ higher under Case 6 (isotopic exchange between OH and H₂O) than under other cases (except Case 5). The diurnal variations of ∆¹⁷O(NO₂) is similar for Case 2 and Case 6 under Arctic conditions, demonstrating that all of the difference observed stems from the fact that ∆¹⁷O(OH) amounts ca. 6‰ under Arctic conditions and Case 6, consistent with the initial estimates provided by Morin et al. (2007).

The DIIS values for nighttime nitrate production are very similar under mid-latitude and Arctic conditions, on the order of 40‰ and 33‰, for NO₃+RH and N₂O₅ hydrolysis, respectively. Note also that the impact of the hypothesis of Case 6 on the DIIS values is insignificant. In terms of H₂O₂ DIIS, Arctic values tend to be a little lower by a few tenth of ‰. The effect of Case 6 is limited to 0.1‰ in terms of H₂O₂ DIIS.

In summary, the impact of colder and more boreal environmental conditions is mostly seen for the DIIS of daytime nitrate production, upon which photochemical conditions and the ∆¹⁷O of OH have a direct impact. The DIIS of nighttime nitrate production channels as well as H₂O₂ seem to be fairly insensitive to these factors.

4.2.3 Higher initial NOₓ mixing ratio

A further simulation was carried out under springtime mid-latitude conditions (45° N, 293 K), with an initial NOₓ mixing ratio of 2 µmol mol⁻¹ instead of 20 pmol mol⁻¹ in the
5 Discussion and implications

5.1 Implications for modeling Δ^{17}O(NO$_3^-$)

We compare here our results to the implementation of Δ^{17}O(NO$_3^-$) into the GEOS-CHEM chemistry transport model, which was recently carried out by Alexander et al. (2009). In this work, Δ^{17}O(NO$_x$) was computed under the hypothesis of photochemical steady-state. For the sole daytime nitrate production channel considered (OH+NO$_2$), Δ^{17}O(NO$_2$) was computed using the α value (see Sect. 3.2.1) computed using accumulated reaction rates between 10:00 and 14:00 solar time. For nighttime nitrate production channels, Alexander et al. (2009) used the photochemical steady-state formalism using NO$_2$ production rates accumulated between 0:00 and 2:00 solar time. We compute the Δ^{17}O inherited by atmospheric nitrate through the OH+NO$_2$ and NO$_3$+RH using the algorithm of Alexander et al. (2009) presented above, and compare it to the DIIS values. The results are given in Table 9. We find that the algorithm introduced by Alexander et al. (2009) underestimates the isotopic signature of the OH+NO$_2$ channel by 1‰, because it ignores contributions of this channel before 10:00 and after 14:00, when Δ^{17}O(NO$_2$) is relatively higher than during noontime but the OH+NO$_2$ reaction
proceeds significantly. Alexander et al. (2009) also overestimate the isotopic signature of the NO3+RH channel by 1.6‰, due to the fact that they use PSS equations to derive $\Delta^{17}O(\text{NO}_3)$ at night, which has been proven above to cause significant overestimation of the DIIS of nighttime nitrate production channels.

We strongly suggest that DIIS values are implemented in large-scale modeling frameworks, such as GEOS-CHEM, to avoid performing such errors. The daytime issue can be resolved using α values computed in a similar manner than in Alexander et al. (2009) but over a larger integration period (e.g., at least from 6:00 to 18:00 solar time). The issue with the nighttime nitrate production channels should be solved without resorting to using photochemical steady state equations at night, since we have shown that this leads to systematically erroneous results and is based on a scientific oxymoron. Given the apparent low sensitivity of DIIS values for nighttime nitrate production channels to environmental conditions such as temperature, actinic flux and NOx levels, a conservative approach may be to use a fixed value of 40 and 33‰ value for the DIIS of NO3+RH and N2O5 hydrolysis, respectively.

5.2 Implication for $\Delta^{17}O(\text{H}_2\text{O}_2)$

An interesting implication of our work is the fact that under all testes environmental conditions, the model predicts non-zero $\Delta^{17}O(\text{H}_2\text{O}_2)$ even without invoking mass-independent fractionation through the H+O2 reaction, as evidenced by Savarino and Thiemens (1999a). This significant $\Delta^{17}O(\text{H}_2\text{O}_2)$, on the order of 1‰, stems from the OH+O3 reaction and could be used in the future to probe the level of photochemical activity of a given air parcel through measurements of $\Delta^{17}O(\text{H}_2\text{O}_2)$ either in the gas-phase or in rainwater, as suggested by Savarino and Thiemens (1999b).

5.3 Open questions

Two untested assumptions of this work are the hypothesis that $\Delta^{17}O(\text{O}_3)$ remains constant throughout the day and, and that the thermal decomposition of N2O5 and HNO4...
does not lead to any isotopic scrambling between the two molecules making up these dimers. The assumption related to the diurnal variations of $\Delta^{17}O(O_3)$ should be addressed in the near future using field measurements carried out using a chemical probing method based upon the NO$_2^-$ + O$_3$ reaction (Michalski and Bhattacharya, 2009; Vicars and Savarino, 2010). The question related to the chemical mechanism operating during thermal decomposition requires advanced chemical physics modeling at the molecular scale. Alternatively, studies on $\Delta^{17}O(H_2O_2)$ may partly solve this issue, since we have shown that the DIIS of its production is most sensitive to this assumption.

6 Conclusions

This study addresses in detail the question of the impact of diurnal variations of $\Delta^{17}O$ of short-lived reactive species on secondary species such as atmospheric nitrate and H$_2$O$_2$. Using a state of the art photochemical box model, the time evolution of $\Delta^{17}O$ of NO$_x$, NO$_y$ and HO$_x$ is computed under various sets of hypotheses pertaining to the method of computing the $\Delta^{17}O$ values, reflecting different levels of simplifying approximations. Most of the conclusions of this article are drawn from model simulations carried out under clean atmospheric conditions in mid-latitudes; their broader relevance and robustness is however assessed using model simulations carried out under cold and boreal conditions, and under a 100-fold increase in initial NO$_x$ mixing ratio.

The primary goal of this study was to demonstrate that using a detailed box-modeling study to assess the isotopic signature of various nitrate and H$_2$O$_2$ production pathways is feasible and provides relevant information to larger-scale modeling studies. In the meantime, essential features of the coupling between chemical reactions and the $\Delta^{17}O$ of key atmospheric species were described and are most likely also valid under different environmental contexts. Taking this study as an initial step, the model could rather easily be extended to account for gas/particles interactions, which are of primary importance for the budget of NO$_x$, and to simulate $\Delta^{17}O$ values of secondary species such as atmospheric nitrate and H$_2$O$_2$ under atmospheric contexts as different as over conti-
nents (urban polluted, tropical etc.) and under polar conditions including more complex and realistic chemical mechanisms. We believe that the present study provides the necessary framework for carrying out this work under conditions that will make it usable by larger-scale modeling studies, or for the interpretation of short-term intensive measurement campaigns using a modeling tool analogous to CAABA/MECCA.

Supplementary material related to this article is available online at: http://www.atmos-chem-phys-discuss.net/10/30405/2010/acpd-10-30405-2010-supplement.pdf.

The publication of this article is financed by CNRS-INSU.

References

Morin, S.: Interactive comment on “Quantifying atmospheric nitrate formation pathways based on a global model of the oxygen isotopic composition ($\Delta^{17}O$) of atmospheric nitrate” by B. Alexander et al., Atmos. Chem. Phys. Discuss., 9, C1154–C1170, 2009. 30425
Morin, S., Savarino, J., Bekki, S., Gong, S., and Bottenheim, J. W.: Signature of Arctic surface ozone depletion events in the isotope anomaly ($\Delta^{17}O$) of atmospheric nitrate, Atmos. Chem. Phys., 7, 1451–1469, doi:10.5194/acp-7-1451-2007, 2007. 30408, 30412, 30415, 30417, 30420, 30428, 30429
Savarino, J. and Thiemens, M. H.: Analytical procedure to determine both $\delta^{18}O$ and $\delta^{17}O$ of H$_2$O$_2$ in natural water and first measurements, Atmos. Environ., 33, 3683–3690, 1999a. 30414, 30426, 30431
Savarino, J. and Thiemens, M. H.: Mass-independent oxygen isotope (^{16}O, ^{17}O and ^{18}O) fractionation found in H$_x$, O$_x$ reactions, J. Phys. Chem. A, 103, 9221–9229, 1999b. 30419, 30431

Table 1. Listing of Δ^{17}O(X_i) relevant to Case 1, if not given in Sect. 3.2.1. Note the special case of HNO$_4$ and N$_2$O$_5$, for which the Δ^{17}O of each of the molecule making up the dimer are explicitly referred to and tracked.

<table>
<thead>
<tr>
<th>Rxn #</th>
<th>Reaction</th>
<th>Δ^{17}O(X_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G3109</td>
<td>NO$_3$ + NO$_2$ \rightarrow N$_2$O$_5$</td>
<td>Δ^{17}O(N$_2$O$_5$−NO2)${G3109}$=Δ^{17}O(NO$_2$)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Δ^{17}O(N$_2$O$_5$−NO3)${G3109}$=Δ^{17}O(NO$_3$)</td>
</tr>
<tr>
<td>G3200</td>
<td>NO + OH \rightarrow HONO</td>
<td>Δ^{17}O(HONO)$_{G3200}$=$\frac{1}{2}\left(\Delta^{17}$O(NO)+$\Delta^{17}$O(OH)\right)$</td>
</tr>
<tr>
<td>G3202</td>
<td>NO$_2$ + OH \rightarrow HNO$_3$</td>
<td>Δ^{17}O(HNO3)${G3202}$=$\frac{1}{3}\left(2\Delta^{17}$O(NO$_2$)+$\Delta^{17}$O(OH)\right)$</td>
</tr>
<tr>
<td>G3203</td>
<td>NO$_2$ + HO$_2$(+M) \rightarrow HNO$_4$</td>
<td>Δ^{17}O(HNO$_4$−NO2)${G3203}$=Δ^{17}O(NO$_2$)</td>
</tr>
<tr>
<td>G4109</td>
<td>HCHO + NO$_3$(+O$_2$) \rightarrow HNO$_3$ + CO + HO$_2$</td>
<td>Δ^{17}O(HNO3)${G4109}$=Δ^{17}O(NO$_3$)</td>
</tr>
</tbody>
</table>
Table 2. Δ^{17}O(X), for Case 2: explicit NO$_x$. Only equations featuring different Δ^{17}O(X), than in Case 1 are presented here.

<table>
<thead>
<tr>
<th>Rxn #</th>
<th>Δ^{17}O(X),</th>
</tr>
</thead>
<tbody>
<tr>
<td>G3103</td>
<td>NO+O_3→NO$_2$+O$_2$ Δ^{17}O(NO) G3103 = 1/2 (Δ^{17}O(O$_3$)+Δ^{17}O(NO))</td>
</tr>
<tr>
<td>G3106</td>
<td>NO$_2$+O_3→NO$_3$+O$_2$ Δ^{17}O(NO) G3106 = 1/2 (Δ^{17}O(O$_3$)+Δ^{17}O(NO$_2$))</td>
</tr>
<tr>
<td>G3108</td>
<td>NO$_3$+NO→2NO$_2$ Δ^{17}O(NO) G3108 = 1/2 (Δ^{17}O(NO$_3$)+Δ^{17}O(NO))</td>
</tr>
<tr>
<td>G3110</td>
<td>N$_2$O$_5$ (+M)→NO$_2$+NO$_3$ Δ^{17}O(NO) G3110 = Δ^{17}O(N$_2$O$_5$−NO$_2$) Δ^{17}O(NO) G3110 = Δ^{17}O(N$_2$O$_5$−NO$_3$)</td>
</tr>
<tr>
<td>G3201</td>
<td>NO+HO$_2$→NO$_2$+OH Δ^{17}O(NO) G3201 = 1/2 (Δ^{17}O(HO$_2$)+Δ^{17}O(NO))</td>
</tr>
<tr>
<td>G3204</td>
<td>NO$_3$+HO$_2$→NO$_2$+OH+O$_2$ Δ^{17}O(NO) G3204 = Δ^{17}O(NO$_3$)</td>
</tr>
<tr>
<td>G3205</td>
<td>HONO+OH→NO$_2$+H$_2$O Δ^{17}O(NO) G3205 = Δ^{17}O(HONO)</td>
</tr>
<tr>
<td>G3206</td>
<td>HNO$_3$+OH→H$_2$O+NO$_3$ Δ^{17}O(NO) G3206 = Δ^{17}O(HNO$_3$)</td>
</tr>
<tr>
<td>G3207</td>
<td>HNO$_4$ (+M)→NO$_2$+HO$_2$ Δ^{17}O(NO) G3207 = Δ^{17}O(HNO$_4$−NO$_2$)</td>
</tr>
<tr>
<td>G3208</td>
<td>HNO$_4$+OH→NO$_2$+H$_2$O+O$_2$ Δ^{17}O(NO) G3208 = Δ^{17}O(HNO$_4$−NO$_2$)</td>
</tr>
<tr>
<td>G4104</td>
<td>CH$_3$O$_2$+NO→HCHO+NO$_2$+HO$_2$ Δ^{17}O(NO) G4104 = 1/2 Δ^{17}O(NO)</td>
</tr>
<tr>
<td>G4105</td>
<td>CH$_3$O$_2$+NO$_3$→HCHO+HO$_2$+NO$_2$ Δ^{17}O(NO) G4105 = Δ^{17}O(NO$_3$)</td>
</tr>
<tr>
<td>J3101</td>
<td>NO$_2$+hv→NO+$O(^3P)$ Δ^{17}O(NO) J3101 = Δ^{17}O(NO$_2$)</td>
</tr>
<tr>
<td>J3103a</td>
<td>NO$_3$+hv→NO$_2$+O(3P) Δ^{17}O(NO) J3103a = Δ^{17}O(NO$_3$)</td>
</tr>
<tr>
<td>J3103b</td>
<td>NO$_3$+hv→NO+O$_2$ Δ^{17}O(NO) J3103b = Δ^{17}O(NO$_3$)</td>
</tr>
<tr>
<td>J3104a</td>
<td>N$_2$O$_5$+hv→NO$_2$+NO$_3$ Δ^{17}O(NO) J3104a = 1/5 (2 Δ^{17}O(N$_2$O$_5$−NO$_2$)+3 Δ^{17}O(N$_2$O$_5$−NO$_3$)) Δ^{17}O(NO) J3104a = 1/5 (2 Δ^{17}O(N$_2$O$_5$−NO$_2$)+3 Δ^{17}O(N$_2$O$_5$−NO$_3$))</td>
</tr>
<tr>
<td>J3200</td>
<td>HONO+hv→OH+NO Δ^{17}O(NO) J3200 = Δ^{17}O(HONO)</td>
</tr>
<tr>
<td>J3201</td>
<td>HNO$_3$+hv→OH+NO$_2$ Δ^{17}O(NO) J3201 = Δ^{17}O(HNO$_3$)</td>
</tr>
<tr>
<td>J3202</td>
<td>HNO$_4$+hv→0.667NO$_2$+0.667HO$_2$ Δ^{17}O(NO) J3202 = 1/2 (Δ^{17}O(HNO$_4$−NO$_2$)+ Δ^{17}O(HNO$_4$−HO$_2$)) Δ^{17}O(NO) J3202 = 1/2 (Δ^{17}O(HNO$_4$−NO$_2$)+ Δ^{17}O(HNO$_4$−HO$_2$)) +0.333NO$_3$+0.333OH</td>
</tr>
</tbody>
</table>
Table 3. Δ^{17}O(X)$_i$ for Case 3: explicit HO$_x$. Only equations featuring Δ^{17}O(HO$_2$)$_i$ different from 0‰ are presented here.

<table>
<thead>
<tr>
<th>Rxn #</th>
<th>Δ^{17}O(X)$_i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>G2104</td>
<td>Δ^{17}O(HO2)${G2104} = \frac{1}{2} \times \Delta^{17}$O(O$_3^*$)</td>
</tr>
<tr>
<td>G2110</td>
<td>Δ^{17}O(H$_2$O2)${G2110} = \Delta^{17}$O(HO$_2$)</td>
</tr>
<tr>
<td>G2112</td>
<td>Δ^{17}O(HO2)${G2112} = \Delta^{17}$O(H$_2O_2$)</td>
</tr>
<tr>
<td>G3203</td>
<td>Δ^{17}O(HNO$_4$−HO2)${G3203} = \Delta^{17}$O(HO$_2$)</td>
</tr>
<tr>
<td>G3207</td>
<td>Δ^{17}O(HO2)${G3207} = \Delta^{17}$O(HNO$_4$−HO$_2$)</td>
</tr>
</tbody>
</table>
Table 4. $\Delta^{17}O(X)_i$ for Case 5: Thermal decomposition (TD) scrambling.

<table>
<thead>
<tr>
<th>Rxn #</th>
<th>$\Delta^{17}O(X)_i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>G3110 $N_2O_5(+M)\rightarrow NO_2+NO_3$</td>
<td>$\Delta^{17}O(NO_2)_{G3110} = 1/5 \left(2\Delta^{17}O(N_2O_5-NO_2)+3\Delta^{17}O(N_2O_5-NO_3) \right)$</td>
</tr>
<tr>
<td></td>
<td>$\Delta^{17}O(NO_3)_{G3110} = 1/5 \left(2\Delta^{17}O(N_2O_5-NO_2)+3\Delta^{17}O(N_2O_5-NO_3) \right)$</td>
</tr>
<tr>
<td>G3207 $HNO_4(+M)\rightarrow NO_2+HO_2$</td>
<td>$\Delta^{17}O(NO_2)_{G3207} = 1/2 \left(\Delta^{17}O(HNO_4-NO_2)+\Delta^{17}O(HNO_4-HO_2) \right)$</td>
</tr>
<tr>
<td></td>
<td>$\Delta^{17}O(HO_2)_{G3207} = 1/2 \left(\Delta^{17}O(HNO_4-NO_2)+\Delta^{17}O(HNO_4-HO_2) \right)$</td>
</tr>
</tbody>
</table>
Table 5. Diurnally-integrated isotopic signature (DIIS) values for the atmospheric nitrate and H$_2$O$_2$ production channels, respectively. Overview of the results from the base model run carried out in springtime (1 April) under mid-latitude (45° N) remote boundary layer conditions.

<table>
<thead>
<tr>
<th>Case</th>
<th>NO$_x$ PSS</th>
<th>NO$_3$+RH</th>
<th>N$_2$O$_5$</th>
<th>HNO$_4$</th>
<th>H$_2$O$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1</td>
<td>20.3</td>
<td>41.6</td>
<td>34.6</td>
<td>15.7</td>
<td>0.0</td>
</tr>
<tr>
<td>Case 2</td>
<td>20.3</td>
<td>39.8</td>
<td>32.8</td>
<td>15.7</td>
<td>0.0</td>
</tr>
<tr>
<td>Case 3</td>
<td>20.4</td>
<td>39.8</td>
<td>32.8</td>
<td>16.3</td>
<td>1.1</td>
</tr>
<tr>
<td>Case 4</td>
<td>20.5</td>
<td>39.8</td>
<td>32.9</td>
<td>16.6</td>
<td>1.8</td>
</tr>
<tr>
<td>Case 5</td>
<td>19.6</td>
<td>37.1</td>
<td>30.6</td>
<td>15.9</td>
<td>1.4</td>
</tr>
<tr>
<td>Case 6</td>
<td>20.5</td>
<td>39.8</td>
<td>32.8</td>
<td>16.3</td>
<td>1.1</td>
</tr>
</tbody>
</table>
Table 6. Diurnally-integrated source isotopic signature (DIIS) for the four nitrate and H$_2$O$_2$ production channels considered. Overview of the results from three model runs carried out at different periods of the year (W=1 January, Sp.=1 April and Su.=1 July, respectively), under mid-latitude (45° N) remote boundary layer conditions.

<table>
<thead>
<tr>
<th>Case</th>
<th>NO$_x$ PSS</th>
<th>NO$_x$ explicit</th>
<th>HO$_x$ explicit</th>
<th>MIF in H++O$_2$</th>
<th>TD scrambling</th>
<th>OH+H$_2$O IE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1</td>
<td>24.9 17.3</td>
<td>41.7 41.6 41.3 34.7 34.6 34.4 18.8 15.7 13.6 0.0 0.0 0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case 2</td>
<td>24.9 17.3</td>
<td>40.4 39.8 39.2 33.4 32.8 32.3 18.8 15.7 13.6 0.0 0.0 0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case 3</td>
<td>24.9 17.4</td>
<td>40.4 39.8 39.2 33.4 32.8 32.3 19.3 16.3 14.1 1.0 1.1 0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case 4</td>
<td>25.0 17.5</td>
<td>40.4 39.8 39.2 33.5 32.9 32.3 19.7 16.6 14.5 1.7 1.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case 5</td>
<td>24.2 16.7</td>
<td>37.3 37.1 37.0 30.9 30.6 30.4 19.9 15.9 13.7 2.8 1.4 1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case 6</td>
<td>25.1 17.5</td>
<td>40.4 39.8 39.2 33.4 32.8 32.3 19.3 16.3 14.1 1.0 1.1 0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 7. Comparison of diurnally-integrated source isotopic signature (DIIS) for the four nitrate and H$_2$O$_2$ production channels considered under mid-latitude (45° N, 293 K) and Arctic (80° N, 253 K) conditions in springtime (1 April).

<table>
<thead>
<tr>
<th>Case</th>
<th>OH+NO$_x$</th>
<th>NO$_3$+RH</th>
<th>N$_2$O$_5$</th>
<th>HNO$_4$</th>
<th>H$_2$O$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1 – NO$_x$ PSS</td>
<td>20.3</td>
<td>26.0</td>
<td>41.6</td>
<td>41.1</td>
<td>34.6</td>
</tr>
<tr>
<td>Case 2 – NO$_x$ explicit</td>
<td>20.3</td>
<td>25.9</td>
<td>39.8</td>
<td>40.3</td>
<td>32.8</td>
</tr>
<tr>
<td>Case 3 – HO$_x$ explicit</td>
<td>20.4</td>
<td>25.9</td>
<td>39.8</td>
<td>40.3</td>
<td>32.8</td>
</tr>
<tr>
<td>Case 4 – MIF in H+O$_2$</td>
<td>20.5</td>
<td>26.0</td>
<td>39.8</td>
<td>40.4</td>
<td>32.9</td>
</tr>
<tr>
<td>Case 5 – TD scrambling</td>
<td>19.6</td>
<td>24.9</td>
<td>37.1</td>
<td>35.2</td>
<td>30.6</td>
</tr>
<tr>
<td>Case 6 – OH+H$_2$O IE</td>
<td>20.5</td>
<td>27.9</td>
<td>39.8</td>
<td>40.3</td>
<td>32.8</td>
</tr>
</tbody>
</table>
Table 8. Comparison of diurnally-integrated source isotopic signature (DIIS) for the four nitrate and H$_2$O$_2$ production channels considered, respectively under mid-latitude (45° N, 293 K) and under starting NO$_x$ levels of 20 pmol mol$^{-1}$ (base) and 2 µmol mol$^{-1}$ (high NO$_x$) in spring-time (1 April).

<table>
<thead>
<tr>
<th>Case</th>
<th>OH+NO$_2$ base</th>
<th>NO$_3$+RH base</th>
<th>N$_2$O$_5$ base</th>
<th>HNO$_4$ base</th>
<th>H$_2$O$_2$ base</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NO$_x$ high</td>
<td>NO$_x$ high</td>
<td>NO$_x$ high</td>
<td>NO$_x$ high</td>
<td>NO$_x$ high</td>
</tr>
<tr>
<td>Case 1 – NO$_x$ PSS</td>
<td>20.3 17.3 41.6 41.1 34.6 33.9 15.7 17.5 0.0 0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case 2 – NO$_x$ explicit</td>
<td>20.3 17.3 39.8 40.3 32.8 33.2 15.7 17.5 0.0 0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case 3 – HO$_x$ explicit</td>
<td>20.4 17.4 39.8 40.3 32.8 33.2 16.3 18.1 1.1 1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case 4 – MIF in H+O$_2$</td>
<td>20.5 17.5 39.8 40.4 32.9 33.3 16.6 18.5 1.8 1.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case 5 – TD scrambling</td>
<td>19.6 16.7 37.1 35.2 30.6 28.0 15.9 19.6 1.4 4.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case 6 – OH+H$_2$O IE</td>
<td>20.5 17.5 39.8 40.3 32.8 33.2 16.3 18.1 1.1 1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 9. Comparison between the DIIS values for OH+NO₂ and NO₃+RH with the corresponding values assigned to these reaction rates by Alexander et al. (2009). The values deduced from the algorithm presented by Alexander et al. (2009) are compared to DIIS values computed using Cases 1 and 3, under the conditions of the base model run (mid-latitudes).

<table>
<thead>
<tr>
<th>Case</th>
<th>OH+NO₂</th>
<th>NO₃+RH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>this study</td>
<td>Alexander et al. 2009</td>
</tr>
<tr>
<td>Case 1 – NOₓ PSS</td>
<td>20.3</td>
<td>19.3</td>
</tr>
<tr>
<td>Case 3 – HOₓ and NOₓ explicit</td>
<td>20.4</td>
<td>39.8</td>
</tr>
</tbody>
</table>
Fig. 1. Schematic representing the isotopic mass-balance equation including one isotopic exchange reaction. Arrows represent production (or destruction) fluxes. The flux is given by the \(P, L \) and \(IE \) terms, while the corresponding transferred \(\Delta^{17}O \) value is given in brackets. The solid box represent the chemical budget of the species \(X \), while the dashed box takes into account the full isotopic budget of the species \(X \). The scheme illustrates that isotopic exchange reactions have no impact on the chemical budget of a given specie \(X \).
Fig. 2. Time series of the mixing ratio of the main atmospheric species studied, for the base model run ($T=293$ K, 45° N, see Sect. 3.4 for details). (a) OH and HO$_2$, (b) O$_3$ and H$_2$O$_2$, (c) N$_2$O$_5$, HNO$_4$ and HONO, (d) NO, NO$_2$ and NO$_3$.
Fig. 3. Simulated diurnal variations of the isotopic signature (a–c) and the strength (d–f) of the OH+NO₂, NO₃+RH nitrate production channel and H₂O₂ production channel, respectively. Note that in the case of the OH+NO₂ reaction, the Δ¹⁷O values of individuals precursors (OH and NO₂) are shown along with the isotopic signature of this reaction channel (see Sect. 2.4.1). Results originate from the base model run (T=293 K, 45° N, see Sect. 3.4 for details) under the isotopic hypotheses of Case 3 (see Sect. 3.2.3). Hatched areas represent the period of the day when the considered reaction pathway proceeds insignificantly, thus the corresponding Δ¹⁷O which could then be transferred to the reaction products is irrelevant. The diurnally-integrated isotopic source (DIIS) values correspond to the average of values from the upper panel, weighted by the values of the lower one.
Fig. 4. Diurnal variation of Δ^{17}O(NO$_2$) calculated using two different approaches, i.e. permanent photochemical steady-state for NO$_x$ (Case 1, solid line) and the explicit computation of Δ^{17}O(NO$_x$) (Case 2, dashed line). The dashed line representing the results of the simulations under Case 2 is overlaid with a color code exhibiting the diurnal variation of the photolytical lifetime of NO$_2$. All values above 10 min are shown in red (at night, the photochemical lifetime of NO$_2$ is virtually infinite).
Simulated diurnal variations of Δ^{17}O(H$_2$O$_2$) (top) and Δ^{17}O(HO$_2$) (bottom) under the various hypotheses tested, from the results of the base model run. Note that in Case 1 and 2, Δ^{17}O(HO$_2$) is set to 0. The hatched area covers night-time periods when the presence of HO$_2$ in the atmosphere is insignificant, hence the relevance of its Δ^{17}O value.