Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
https://doi.org/10.5194/acp-2017-513
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
12 Jun 2017
Review status
This discussion paper is under review for the journal Atmospheric Chemistry and Physics (ACP).
Measurement-based climatology of aerosol direct radiative effect, its sensitivities, and uncertainties from a background southeast U.S. site
James P. Sherman1 and Allison McComiskey2 1Department of Physics and Astronomy, Appalachian State University, 525 Rivers Street, Garwood Hall room 231, Boone, NC 28608 USA
2NOAA Earth Systems Research Laboratory, Global Monitoring Division/GMD-1, 325 Broadway, Boulder, CO 80305 USA
Abstract. Aerosol optical properties measured at Appalachian State University's co-located NASA AERONET and NOAA ESRL aerosol network monitoring sites over a nearly four-year period (June 2012 thru February 2016) are used, along with satellite-based surface reflectance measurements, to study the seasonal variability of diurnally averaged clear sky aerosol direct radiative effect (DRE) and radiative efficiency (RE) at the top-of-atmosphere (TOA) and at the surface. Aerosol chemistry and loading at the Appalachian State site are likely representative of the background southeast U.S. (SE U.S.), home to high summertime aerosol loading and one of only a few regions not to have warmed during the 20th century. This study is the first multi-year ground truth DRE study in the SE U.S., using aerosol network data products that are often used to validate satellite-based aerosol retrievals. The study is also the first in the SE U.S. to quantify DRE uncertainties and sensitivities to aerosol optical properties and surface reflectance, including their seasonal dependence.

Median DRE for the study period is −2.9 W m−2 at the TOA and −6.1 Wm−2 at the surface. Monthly median and monthly mean DRE at the TOA (surface) are −1 to −2 W m−2 (−2 to −3 W m−2) during winter months and −5 to −6 W m−2 (−10 W m−2) during summer months. The DRE cycles follow the annual cycle of aerosol optical depth (AOD), which is 9 to 10 times larger in summer than in winter. Aerosol RE is anti-correlated with DRE, with winter values 1.5 to 2 times more negative than summer values. Due to the large seasonal dependence of aerosol DRE and RE, we quantify the sensitivity of DRE to aerosol optical properties and surface reflectance, using a calendar day representative of each season (21 December for winter; 21 March for spring, 21 June for summer, and 21 September for fall). We use these sensitivities along with measurement uncertainties of aerosol optical properties and surface reflectance to calculate DRE uncertainties. Aerosol DRE at both the TOA and surface is most sensitive to changes in AOD, followed (in order) by single-scattering albedo (ω0), scattering asymmetry parameter (g), and surface reflectance (R). One exception is under the high summertime aerosol loading conditions, when sensitivity of TOA DRE to ω0 is comparable to that of AOD. While DRE sensitivity to AOD varies by only ~ 25 to 30 % with season, DRE sensitivity to ω0, g, and R vary by factors of 10 to 20 with season. Since the measurement uncertainties of AOD, ω0, g, and R are comparable at Appalachian State, their relative contributions to DRE uncertainty are roughly proportional to their (seasonally dependent) DRE sensitivity values, which suggests that the seasonal dependence of DRE uncertainty must be accounted for. Clear sky aerosol DRE uncertainty at the TOA (surface) ranges from 0.44 W m−2 (0.73 W m−2) for December to 0.90 W m−2 (1.3 W m−2) for June. Expressed as a fraction of DRE computed using monthly median aerosol optical properties and surface reflectance, the DRE uncertainties at TOA (surface) are 16 to 20 % (12 to 20 %) for March, June, and September and 48 % (49 %) for December. The relatively low DRE uncertainties are largely due to the low uncertainty in AOD measured by AERONET. Use of satellite-based AOD measurements by MODIS in the DRE calculations increases DRE uncertainties by a factor of 2.5 to 5 and DRE uncertainties are dominated by AOD uncertainty for all seasons.


Citation: Sherman, J. P. and McComiskey, A.: Measurement-based climatology of aerosol direct radiative effect, its sensitivities, and uncertainties from a background southeast U.S. site, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-513, in review, 2017.
James P. Sherman and Allison McComiskey
James P. Sherman and Allison McComiskey
James P. Sherman and Allison McComiskey

Viewed

Total article views: 142 (including HTML, PDF, and XML)

HTML PDF XML Total Supplement BibTeX EndNote
105 29 8 142 6 1 7

Views and downloads (calculated since 12 Jun 2017)

Cumulative views and downloads (calculated since 12 Jun 2017)

Viewed (geographical distribution)

Total article views: 142 (including HTML, PDF, and XML)

Thereof 141 with geography defined and 1 with unknown origin.

Country # Views %
  • 1

Saved

Discussed

Latest update: 24 Jun 2017
Publications Copernicus
Download
Short summary
This paper highlights the first multi-year ground-based climatology of aerosol direct radiative effect (DRE) in the southeastern U.S. Aerosol DRE at the co-located NOAA and NASA aerosol monitoring sites at Appalachian State University is approximately five times more negative during summer than winter. Aerosol DRE is most sensitive to aerosol optical depth (AOD). Use of MODIS-measured increases DRE uncertainty by a factor of 2.5 to 5.
This paper highlights the first multi-year ground-based climatology of aerosol direct radiative...
Share