Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
doi:10.5194/acp-2017-24
© Author(s) 2017. This work is distributed
under the Creative Commons Attribution 3.0 License.
Research article
10 Jan 2017
Review status
This discussion paper is under review for the journal Atmospheric Chemistry and Physics (ACP).
Ozonolysis of α-phellandrene, Part 1: Gas- and particle-phase characterisation
Felix A. Mackenzie-Rae1, Tengyu Liu3,4,a, Wei Deng2,3, Xinming Wang2,3, Sandra M. Saunders1, Zheng Fang3,4, and Yanli Zhang2,3 1School of Chemistry and Biochemistry, The University of Western Australia, Crawley WA 6009, Australia
2Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
3State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
4University of Chinese Academy of Sciences, Beijing 100049, China
anow at: City University of Hong Kong, China
Abstract. The ozonolysis of α-phellandrene, a highly reactive conjugated monoterpene largely emitted by Eucalypt species, is characterised in detail for the first time using a smog chamber at the Guangzhou Institute of Geochemistry, Chinese Academy of Sciences. Gas-phase species were monitored by a proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF), with yields from a large number of products obtained, including formaldehyde (5–9 %), acetaldehyde (0.2–8 %). glyoxal (6–23 %), methyl glyoxal (2–9 %), formic acid (22–37 %) and acetic acid (9–22%). Higher m/z second-generation oxidation products were also observed, with products tentatively identified according to a constructed degradation mechanism. OH yields from α-phellandrene and its first-generation products were found to be 35 ± 12 % and 15 ± 7 % respectively, indicative of prominent hydroperoxide channels. An average first-generation rate coefficient was determined as 1.0 ± 0.7 × 10−16 cm3 molecule−1 s−1 at 298 K, showing ozonolysis as a dominant loss process for both α-phellandrene and its first-generation products in the atmosphere. Endocyclic conjugation in α-phellandrene was also found to be conducive to the formation of highly condensible products, with a large fraction of the carbon mass partitioning into the aerosol phase, monitored with a scanning mobility particle sizer (SMPS) and a high-resolution time-of-flight aerosol mass spectrometer (AMS). Nucleation was observed almost instantaneously upon ozonolysis, indicating the rapid formation of extremely low volatility compounds. Particle nucleation was found to be suppressed by the addition of a Criegee scavenger, suggesting that stabilised Criegee intermediates are important for new particle formation in the system. Aerosol yields ranged from 25–174 % dependant on mass loadings, with both first- and second-generation products identified as large contributors to the aerosol mass. Effective densities ranged from 1.29–1.90 g cm−3. The aerosol oxidation state was also found to be dependent on mass loadings, with parametrisation of the bulk mass indicating a large contribution of highly functionalised low- and semi-volatile organic compounds to the aerosol phase. With a high chemical reactivity and aerosol forming propensity α-phellandrene is expected to have an immediate impact on the local environment to which it is emitted, with ozonolysis therefore likely to be an important contributor to the significant blue haze and frequent nocturnal nucleation events observed over Eucalypt forests.

Citation: Mackenzie-Rae, F. A., Liu, T., Deng, W., Wang, X., Saunders, S. M., Fang, Z., and Zhang, Y.: Ozonolysis of α-phellandrene, Part 1: Gas- and particle-phase characterisation, Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2017-24, in review, 2017.
Felix A. Mackenzie-Rae et al.
Felix A. Mackenzie-Rae et al.
Felix A. Mackenzie-Rae et al.

Viewed

Total article views: 61 (including HTML, PDF, and XML)

HTML PDF XML Total Supplement BibTeX EndNote
52 9 0 61 0 0 0

Views and downloads (calculated since 10 Jan 2017)

Cumulative views and downloads (calculated since 10 Jan 2017)

Viewed (geographical distribution)

Total article views: 61 (including HTML, PDF, and XML)

Thereof 61 with geography defined and 0 with unknown origin.

Country # Views %
  • 1

Saved

Discussed

Latest update: 18 Jan 2017
Publications Copernicus
Download
Short summary
This paper characterises the atmospheric decomposition of the biogenic compound α-phellandrene with ozone for the first time, by conducting carefully controlled experiments in a simulation chamber. Major gas-phase products are identified based on theoretical/mechanism insight, with yields quantified. Meanwhile a significant amount of aerosol is formed from the reaction, with the bulk particle phase characterised. This study therefore betters our understanding of the impact of biogenic emissions.
This paper characterises the atmospheric decomposition of the biogenic compound α-phellandrene...
Share