Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
doi:10.5194/acp-2016-998
© Author(s) 2016. This work is distributed
under the Creative Commons Attribution 3.0 License.
Research article
25 Nov 2016
Review status
A revision of this discussion paper was accepted for the journal Atmospheric Chemistry and Physics (ACP) and is expected to appear here in due course.
Cloud condensation Nuclei over the Southern Ocean: wind dependence and seasonal cycles
John L. Gras and Melita Keywood Oceans and Atmosphere, CSIRO, Aspendale, 3195, Australia
Abstract. Multi-decadal observations of aerosol microphysical properties from regionally representative sites can be used to challenge regional or global numerical models that simulate atmospheric aerosol. Presented here is an analysis of multi-decadal observations at Cape Grim (Australia) that characterise production and removal of the background marine aerosol in Southern Ocean marine boundary layer (MBL) on both short-term weather-related and underlying seasonal scales.

A trimodal aerosol distribution comprises Aitken nuclei (< 100 nm), CCN/accumulation (100–350 nm) and coarse mode particle (> 350 nm) modes, with the Aitken mode dominating number concentration. While the integrated particle number in the MBL over the clean Southern Ocean is only weakly dependent on wind speed the different modes in the aerosol size distribution vary in their relationship with windspeed. The balance between a positive wind dependence in the coarse mode and negative dependence in the accumulation/CCN mode leads to a relatively flat wind dependence in summer and moderately strong positive wind dependence in winter. The change-over in wind dependence of these two modes occurs in a very small size range at the mode intersection, indicative of differences in the balance of production and removal in the coarse and accumulation/CCN modes.

While a marine biological source of reduced sulfur appears to dominate CCN concentration over the summer months (December to February) other components contribute to CCN over the full annual cycle. Wind-generated coarse mode sea-salt is an important CCN component year round and is the second most important contributor to CCN from autumn through to mid-spring (March to November). A portion of the non-seasonal dependent contributor to CCN can clearly be attributed to wind generated sea-salt with the remaining part potentially being attributed to long range transported material. Under conditions of greater supersaturation, as expected in more convective cyclonic systems and their associated fronts, Aitken mode particles become increasingly important as CCN.


Citation: Gras, J. L. and Keywood, M.: Cloud condensation Nuclei over the Southern Ocean: wind dependence and seasonal cycles, Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-998, in review, 2016.
John L. Gras and Melita Keywood
John L. Gras and Melita Keywood

Viewed

Total article views: 184 (including HTML, PDF, and XML)

HTML PDF XML Total BibTeX EndNote
128 45 11 184 4 11

Views and downloads (calculated since 25 Nov 2016)

Cumulative views and downloads (calculated since 25 Nov 2016)

Viewed (geographical distribution)

Total article views: 184 (including HTML, PDF, and XML)

Thereof 180 with geography defined and 4 with unknown origin.

Country # Views %
  • 1

Saved

Discussed

Latest update: 26 Mar 2017
Publications Copernicus
Download
Short summary
Long term observations at regionally representative sites can be used to challenge regional or global numerical models that underpin climate projections. Analysis of multi-decadal observations of aerosol microphysical properties in the remote marine boundary layer of the Southern Hemisphere characterises production and removal of marine aerosol on both short-term weather-related and underlying seasonal scales.
Long term observations at regionally representative sites can be used to challenge regional or...
Share