Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
doi:10.5194/acp-2016-812
© Author(s) 2016. This work is distributed
under the Creative Commons Attribution 3.0 License.
Research article
19 Oct 2016
Review status
A revision of this discussion paper was accepted for the journal Atmospheric Chemistry and Physics (ACP) and is expected to appear here in due course.
Impact of temperature dependence on the possible contribution of organics to new particle formation in the atmosphere
Fangqun Yu1, Gan Luo1, Alexey B. Nadykto1,2, and Jason Herb1 1Atmospheric Sciences Research Center, State University of New York, 251 Fuller Road, Albany, New York 12203, USA
2Department of Applied Mathematics, Moscow State University of Technology “Stankin”, Vadkovsky 1, Moscow, Russia
Abstract. Secondary particles formed via new particle formation (NPF) dominate cloud condensation nuclei (CCN) abundance in most parts of the troposphere and are important for aerosol indirect radiative forcing (IRF). Laboratory measurements have shown that certain organic compounds can significantly enhance binary nucleation of sulfuric acid and H2O. According to our recent study comparing particle size distributions measured in nine forest areas in North America with those predicted by a global size-resolved aerosol model, current H2SO4-Organics nucleation parameterizations appear to significantly over-predict NPF and particle number concentrations in summer. The lack of the temperature dependence in the current H2SO4-Organics nucleation parameterization has been suggested to be a possible reason for the observed over-prediction. In this work, H2SO4-Organics clustering thermodynamics from quantum-chemical studies has been employed to develop a scheme to incorporate temperature dependence into H2SO4-Organics nucleation parameterization. We show that temperature has a strong impact on H2SO4-Organics nucleation rates, and may reduce nucleation rate by ~ one order of magnitude per 10 K of the temperature increase. The particle number concentrations in summer over North America based on the revised scheme is a factor of more than two lower, in much better agreement with the observations. With the temperature-dependent H2SO4-Organics nucleation parameterization, the summer month CCN concentrations in the lower troposphere in the northern hemisphere are about 10–30 % lower and the aerosol first IRF about 0.5–1.0 W/m2 less negative compared to the temperature independent one. This study highlights the importance of the temperature effect and its impacts on NPF in global modeling of aerosol IRF.

Citation: Yu, F., Luo, G., Nadykto, A. B., and Herb, J.: Impact of temperature dependence on the possible contribution of organics to new particle formation in the atmosphere, Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-812, in review, 2016.
Fangqun Yu et al.
Fangqun Yu et al.

Viewed

Total article views: 253 (including HTML, PDF, and XML)

HTML PDF XML Total BibTeX EndNote
185 55 13 253 10 17

Views and downloads (calculated since 19 Oct 2016)

Cumulative views and downloads (calculated since 19 Oct 2016)

Viewed (geographical distribution)

Total article views: 253 (including HTML, PDF, and XML)

Thereof 253 with geography defined and 0 with unknown origin.

Country # Views %
  • 1

Saved

Discussed

Latest update: 26 Mar 2017
Publications Copernicus
Download
Short summary
H2SO4-Organics clustering thermodynamics from quantum studies has been employed to develop a scheme to include temperature dependence into H2SO4-Organics nucleation parameterization. We show that temperature has a strong impact on nucleation rates, particle number concentrations, and aerosol first indirect radiative forcing in summer. The study represents the first (to our acknowledge) attempt of studying the temperature effect on organics-mediated nucleation in the global atmosphere.
H2SO4-Organics clustering thermodynamics from quantum studies has been employed to develop a...
Share