Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
doi:10.5194/acp-2016-797
© Author(s) 2016. This work is distributed
under the Creative Commons Attribution 3.0 License.
Research article
25 Oct 2016
Review status
A revision of this discussion paper was accepted for the journal Atmospheric Chemistry and Physics (ACP) and is expected to appear here in due course.
Probing into the aging dynamics of biomass burning aerosol by using satellite measurements of aerosol optical depth and carbon monoxide
Igor B. Konovalov1, Matthias Beekmann2, Evgeny V. Berezin1, Paola Formenti2, and Meinrat O. Andreae3,4 1Institute of Applied Physics, Russian Academy of Sciences, Nizhniy Novgorod, Russia
2LISA/IPSL, Laboratoire Interuniversitaire des Systèmes Atmosphériques, UMR CNRS 7583, Université Paris Est Créteil (UPEC) et Université Paris Diderot (UPD), France
3Biogeochemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
4Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
Abstract. Carbonaceous aerosol released into the atmosphere from open biomass burning (BB) is known to undergo considerable chemical and physical transformations (aging). However, there exists substantial controversy about the nature and observable effects of these transformations. A shortage of consistent observational evidence on BB aerosol aging processes in different environmental conditions and at various temporal scales hinders developing their adequate representations in chemistry transport models (CTMs). In this study, we obtain insights into the BB aerosol dynamics by using available satellite measurements of aerosol optical depth (AOD) and carbon monoxide (CO). The basic concept of our method is to consider AOD as a function of the BB aerosol "photochemical age" (that is, the time period characterizing the exposure of BB aerosol emissions to atmospheric oxidation reactions) predicted by means of model tracers. We evaluate the AOD enhancement ratio (ER) defined as the ratio of optical depth of actual BB aerosol with respect to that of a modeled aerosol tracer that is assumed to originate from the same fires as the real BB aerosol but is not affected by any aging processes. To limit possible effects of model transport errors, the AOD measurements are normalized to CO column amounts that are also retrieved from satellite measurements. The method is applied to the analysis of the meso- and synoptic-scale evolution of aerosol in smoke plumes from major wildfires that occurred in Siberia in summer 2012. AOD and CO retrievals from, respectively, MODIS and IASI measurements are used in combination with simulations performed with the CHIMERE CTM. The analysis indicates that aging processes strongly affected the evolution of BB aerosol in the situation considered, especially in dense plumes (with PM2.5 concentration exceeding 100 μg m−3). For such plumes, the ER is found to increase almost twofold on the scale of ~ 10 hours of the daytime evolution of aerosol (after a few first hours of the evolution that are not resolved in our analysis). The robustness of this finding is corroborated by sensitivity tests and Monte Carlo experiments. Furthermore, a simulation using the volatility basis set framework suggests that a large part of the increase in the ER can be explained by atmospheric processing of semi-volatile organic compounds. Our results are consistent with findings of a number of earlier studies reporting considerable underestimation of AOD by CTMs in which BB aerosol aging processes have either been disregarded or simulated in a highly simplified way. In general, this study demonstrates the feasibility of using satellite measurements of AOD in biomass burning plumes in combination with aerosol tracer simulations for the investigation of BB aerosol evolution and validation of BB aerosol aging schemes in atmospheric models.

Citation: Konovalov, I. B., Beekmann, M., Berezin, E. V., Formenti, P., and Andreae, M. O.: Probing into the aging dynamics of biomass burning aerosol by using satellite measurements of aerosol optical depth and carbon monoxide, Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-797, in review, 2016.
Igor B. Konovalov et al.
Igor B. Konovalov et al.

Viewed

Total article views: 353 (including HTML, PDF, and XML)

HTML PDF XML Total Supplement BibTeX EndNote
281 64 8 353 12 4 12

Views and downloads (calculated since 25 Oct 2016)

Cumulative views and downloads (calculated since 25 Oct 2016)

Viewed (geographical distribution)

Total article views: 353 (including HTML, PDF, and XML)

Thereof 352 with geography defined and 1 with unknown origin.

Country # Views %
  • 1

Saved

Discussed

Latest update: 26 Mar 2017
Publications Copernicus
Download
Short summary
A shortage of consistent observational evidence on biomass burning (BB) aerosol aging processes hinders developing their adequate representations in atmospheric models. Here we show that useful insights into the BB aerosol dynamics can be obtained by using satellite measurements of aerosol optical depth and carbon monoxide. Our analysis indicates that aging processes strongly affect the evolution of BB aerosol in smoke plumes from wildfires in Siberia.
A shortage of consistent observational evidence on biomass burning (BB) aerosol aging processes...
Share